mesh_storage.cpp 79 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271
  1. /**************************************************************************/
  2. /* mesh_storage.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "mesh_storage.h"
  31. using namespace RendererRD;
  32. MeshStorage *MeshStorage::singleton = nullptr;
  33. MeshStorage *MeshStorage::get_singleton() {
  34. return singleton;
  35. }
  36. MeshStorage::MeshStorage() {
  37. singleton = this;
  38. default_rd_storage_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4);
  39. //default rd buffers
  40. {
  41. Vector<uint8_t> buffer;
  42. {
  43. buffer.resize(sizeof(float) * 3);
  44. {
  45. uint8_t *w = buffer.ptrw();
  46. float *fptr = reinterpret_cast<float *>(w);
  47. fptr[0] = 0.0;
  48. fptr[1] = 0.0;
  49. fptr[2] = 0.0;
  50. }
  51. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  52. }
  53. { //normal
  54. buffer.resize(sizeof(float) * 3);
  55. {
  56. uint8_t *w = buffer.ptrw();
  57. float *fptr = reinterpret_cast<float *>(w);
  58. fptr[0] = 1.0;
  59. fptr[1] = 0.0;
  60. fptr[2] = 0.0;
  61. }
  62. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  63. }
  64. { //tangent
  65. buffer.resize(sizeof(float) * 4);
  66. {
  67. uint8_t *w = buffer.ptrw();
  68. float *fptr = reinterpret_cast<float *>(w);
  69. fptr[0] = 1.0;
  70. fptr[1] = 0.0;
  71. fptr[2] = 0.0;
  72. fptr[3] = 0.0;
  73. }
  74. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  75. }
  76. { //color
  77. buffer.resize(sizeof(float) * 4);
  78. {
  79. uint8_t *w = buffer.ptrw();
  80. float *fptr = reinterpret_cast<float *>(w);
  81. fptr[0] = 1.0;
  82. fptr[1] = 1.0;
  83. fptr[2] = 1.0;
  84. fptr[3] = 1.0;
  85. }
  86. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  87. }
  88. { //tex uv 1
  89. buffer.resize(sizeof(float) * 2);
  90. {
  91. uint8_t *w = buffer.ptrw();
  92. float *fptr = reinterpret_cast<float *>(w);
  93. fptr[0] = 0.0;
  94. fptr[1] = 0.0;
  95. }
  96. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  97. }
  98. { //tex uv 2
  99. buffer.resize(sizeof(float) * 2);
  100. {
  101. uint8_t *w = buffer.ptrw();
  102. float *fptr = reinterpret_cast<float *>(w);
  103. fptr[0] = 0.0;
  104. fptr[1] = 0.0;
  105. }
  106. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  107. }
  108. for (int i = 0; i < RS::ARRAY_CUSTOM_COUNT; i++) {
  109. buffer.resize(sizeof(float) * 4);
  110. {
  111. uint8_t *w = buffer.ptrw();
  112. float *fptr = reinterpret_cast<float *>(w);
  113. fptr[0] = 0.0;
  114. fptr[1] = 0.0;
  115. fptr[2] = 0.0;
  116. fptr[3] = 0.0;
  117. }
  118. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_CUSTOM0 + i] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  119. }
  120. { //bones
  121. buffer.resize(sizeof(uint32_t) * 4);
  122. {
  123. uint8_t *w = buffer.ptrw();
  124. uint32_t *fptr = reinterpret_cast<uint32_t *>(w);
  125. fptr[0] = 0;
  126. fptr[1] = 0;
  127. fptr[2] = 0;
  128. fptr[3] = 0;
  129. }
  130. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  131. }
  132. { //weights
  133. buffer.resize(sizeof(float) * 4);
  134. {
  135. uint8_t *w = buffer.ptrw();
  136. float *fptr = reinterpret_cast<float *>(w);
  137. fptr[0] = 0.0;
  138. fptr[1] = 0.0;
  139. fptr[2] = 0.0;
  140. fptr[3] = 0.0;
  141. }
  142. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  143. }
  144. }
  145. {
  146. Vector<String> skeleton_modes;
  147. skeleton_modes.push_back("\n#define MODE_2D\n");
  148. skeleton_modes.push_back("");
  149. skeleton_shader.shader.initialize(skeleton_modes);
  150. skeleton_shader.version = skeleton_shader.shader.version_create();
  151. for (int i = 0; i < SkeletonShader::SHADER_MODE_MAX; i++) {
  152. skeleton_shader.version_shader[i] = skeleton_shader.shader.version_get_shader(skeleton_shader.version, i);
  153. skeleton_shader.pipeline[i] = RD::get_singleton()->compute_pipeline_create(skeleton_shader.version_shader[i]);
  154. }
  155. {
  156. Vector<RD::Uniform> uniforms;
  157. {
  158. RD::Uniform u;
  159. u.binding = 0;
  160. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  161. u.append_id(default_rd_storage_buffer);
  162. uniforms.push_back(u);
  163. }
  164. skeleton_shader.default_skeleton_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  165. }
  166. }
  167. }
  168. MeshStorage::~MeshStorage() {
  169. //def buffers
  170. for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) {
  171. RD::get_singleton()->free(mesh_default_rd_buffers[i]);
  172. }
  173. skeleton_shader.shader.version_free(skeleton_shader.version);
  174. RD::get_singleton()->free(default_rd_storage_buffer);
  175. singleton = nullptr;
  176. }
  177. bool MeshStorage::free(RID p_rid) {
  178. if (owns_mesh(p_rid)) {
  179. mesh_free(p_rid);
  180. return true;
  181. } else if (owns_mesh_instance(p_rid)) {
  182. mesh_instance_free(p_rid);
  183. return true;
  184. } else if (owns_multimesh(p_rid)) {
  185. multimesh_free(p_rid);
  186. return true;
  187. } else if (owns_skeleton(p_rid)) {
  188. skeleton_free(p_rid);
  189. return true;
  190. }
  191. return false;
  192. }
  193. /* MESH API */
  194. RID MeshStorage::mesh_allocate() {
  195. return mesh_owner.allocate_rid();
  196. }
  197. void MeshStorage::mesh_initialize(RID p_rid) {
  198. mesh_owner.initialize_rid(p_rid, Mesh());
  199. }
  200. void MeshStorage::mesh_free(RID p_rid) {
  201. mesh_clear(p_rid);
  202. mesh_set_shadow_mesh(p_rid, RID());
  203. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  204. ERR_FAIL_NULL(mesh);
  205. mesh->dependency.deleted_notify(p_rid);
  206. if (mesh->instances.size()) {
  207. ERR_PRINT("deleting mesh with active instances");
  208. }
  209. if (mesh->shadow_owners.size()) {
  210. for (Mesh *E : mesh->shadow_owners) {
  211. Mesh *shadow_owner = E;
  212. shadow_owner->shadow_mesh = RID();
  213. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  214. }
  215. }
  216. mesh_owner.free(p_rid);
  217. }
  218. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  219. ERR_FAIL_COND(p_blend_shape_count < 0);
  220. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  221. ERR_FAIL_NULL(mesh);
  222. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  223. mesh->blend_shape_count = p_blend_shape_count;
  224. }
  225. /// Returns stride
  226. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  227. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  228. ERR_FAIL_NULL(mesh);
  229. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  230. #ifdef DEBUG_ENABLED
  231. //do a validation, to catch errors first
  232. {
  233. uint32_t stride = 0;
  234. uint32_t attrib_stride = 0;
  235. uint32_t skin_stride = 0;
  236. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  237. if ((p_surface.format & (1ULL << i))) {
  238. switch (i) {
  239. case RS::ARRAY_VERTEX: {
  240. if ((p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) || (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  241. stride += sizeof(float) * 2;
  242. } else {
  243. stride += sizeof(float) * 3;
  244. }
  245. } break;
  246. case RS::ARRAY_NORMAL: {
  247. stride += sizeof(uint16_t) * 2;
  248. } break;
  249. case RS::ARRAY_TANGENT: {
  250. if (!(p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  251. stride += sizeof(uint16_t) * 2;
  252. }
  253. } break;
  254. case RS::ARRAY_COLOR: {
  255. attrib_stride += sizeof(uint32_t);
  256. } break;
  257. case RS::ARRAY_TEX_UV: {
  258. if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  259. attrib_stride += sizeof(uint16_t) * 2;
  260. } else {
  261. attrib_stride += sizeof(float) * 2;
  262. }
  263. } break;
  264. case RS::ARRAY_TEX_UV2: {
  265. if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  266. attrib_stride += sizeof(uint16_t) * 2;
  267. } else {
  268. attrib_stride += sizeof(float) * 2;
  269. }
  270. } break;
  271. case RS::ARRAY_CUSTOM0:
  272. case RS::ARRAY_CUSTOM1:
  273. case RS::ARRAY_CUSTOM2:
  274. case RS::ARRAY_CUSTOM3: {
  275. int idx = i - RS::ARRAY_CUSTOM0;
  276. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  277. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  278. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  279. attrib_stride += fmtsize[fmt];
  280. } break;
  281. case RS::ARRAY_WEIGHTS:
  282. case RS::ARRAY_BONES: {
  283. //uses a separate array
  284. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  285. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  286. } break;
  287. }
  288. }
  289. }
  290. int expected_size = stride * p_surface.vertex_count;
  291. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  292. int bs_expected_size = expected_size * mesh->blend_shape_count;
  293. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  294. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  295. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  296. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  297. expected_size = skin_stride * p_surface.vertex_count;
  298. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  299. }
  300. }
  301. #endif
  302. uint64_t surface_version = p_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  303. RS::SurfaceData new_surface = p_surface;
  304. #ifdef DISABLE_DEPRECATED
  305. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION, "Surface version provided (" + itos(int(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT)) + ") does not match current version (" + itos(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) + ")");
  306. #else
  307. if (surface_version != uint64_t(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION)) {
  308. RS::get_singleton()->fix_surface_compatibility(new_surface);
  309. surface_version = new_surface.format & (RS::ARRAY_FLAG_FORMAT_VERSION_MASK << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  310. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION,
  311. vformat("Surface version provided (%d) does not match current version (%d).",
  312. (surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK,
  313. (RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK));
  314. }
  315. #endif
  316. Mesh::Surface *s = memnew(Mesh::Surface);
  317. s->format = new_surface.format;
  318. s->primitive = new_surface.primitive;
  319. bool use_as_storage = (new_surface.skin_data.size() || mesh->blend_shape_count > 0);
  320. if (new_surface.vertex_data.size()) {
  321. // If we have an uncompressed surface that contains normals, but not tangents, we need to differentiate the array
  322. // from a compressed array in the shader. To do so, we allow the the normal to read 4 components out of the buffer
  323. // But only give it 2 components per normal. So essentially, each vertex reads the next normal in normal.zw.
  324. // This allows us to avoid adding a shader permutation, and avoid passing dummy tangents. Since the stride is kept small
  325. // this should still be a net win for bandwidth.
  326. // If we do this, then the last normal will read past the end of the array. So we need to pad the array with dummy data.
  327. if (!(new_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (new_surface.format & RS::ARRAY_FORMAT_NORMAL) && !(new_surface.format & RS::ARRAY_FORMAT_TANGENT)) {
  328. // Unfortunately, we need to copy the buffer, which is fine as doing a resize triggers a CoW anyway.
  329. Vector<uint8_t> new_vertex_data;
  330. new_vertex_data.resize_zeroed(new_surface.vertex_data.size() + sizeof(uint16_t) * 2);
  331. memcpy(new_vertex_data.ptrw(), new_surface.vertex_data.ptr(), new_surface.vertex_data.size());
  332. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(new_vertex_data.size(), new_vertex_data, use_as_storage);
  333. s->vertex_buffer_size = new_vertex_data.size();
  334. } else {
  335. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.vertex_data.size(), new_surface.vertex_data, use_as_storage);
  336. s->vertex_buffer_size = new_surface.vertex_data.size();
  337. }
  338. }
  339. if (new_surface.attribute_data.size()) {
  340. s->attribute_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.attribute_data.size(), new_surface.attribute_data);
  341. }
  342. if (new_surface.skin_data.size()) {
  343. s->skin_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.skin_data.size(), new_surface.skin_data, use_as_storage);
  344. s->skin_buffer_size = new_surface.skin_data.size();
  345. }
  346. s->vertex_count = new_surface.vertex_count;
  347. if (new_surface.format & RS::ARRAY_FORMAT_BONES) {
  348. mesh->has_bone_weights = true;
  349. }
  350. if (new_surface.index_count) {
  351. bool is_index_16 = new_surface.vertex_count <= 65536 && new_surface.vertex_count > 0;
  352. s->index_buffer = RD::get_singleton()->index_buffer_create(new_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, new_surface.index_data, false);
  353. s->index_count = new_surface.index_count;
  354. s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count);
  355. if (new_surface.lods.size()) {
  356. s->lods = memnew_arr(Mesh::Surface::LOD, new_surface.lods.size());
  357. s->lod_count = new_surface.lods.size();
  358. for (int i = 0; i < new_surface.lods.size(); i++) {
  359. uint32_t indices = new_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  360. s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, new_surface.lods[i].index_data);
  361. s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices);
  362. s->lods[i].edge_length = new_surface.lods[i].edge_length;
  363. s->lods[i].index_count = indices;
  364. }
  365. }
  366. }
  367. ERR_FAIL_COND_MSG(!new_surface.index_count && !new_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  368. s->aabb = new_surface.aabb;
  369. s->bone_aabbs = new_surface.bone_aabbs; //only really useful for returning them.
  370. s->mesh_to_skeleton_xform = p_surface.mesh_to_skeleton_xform;
  371. s->uv_scale = new_surface.uv_scale;
  372. if (mesh->blend_shape_count > 0) {
  373. s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(new_surface.blend_shape_data.size(), new_surface.blend_shape_data);
  374. }
  375. if (use_as_storage) {
  376. Vector<RD::Uniform> uniforms;
  377. {
  378. RD::Uniform u;
  379. u.binding = 0;
  380. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  381. if (s->vertex_buffer.is_valid()) {
  382. u.append_id(s->vertex_buffer);
  383. } else {
  384. u.append_id(default_rd_storage_buffer);
  385. }
  386. uniforms.push_back(u);
  387. }
  388. {
  389. RD::Uniform u;
  390. u.binding = 1;
  391. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  392. if (s->skin_buffer.is_valid()) {
  393. u.append_id(s->skin_buffer);
  394. } else {
  395. u.append_id(default_rd_storage_buffer);
  396. }
  397. uniforms.push_back(u);
  398. }
  399. {
  400. RD::Uniform u;
  401. u.binding = 2;
  402. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  403. if (s->blend_shape_buffer.is_valid()) {
  404. u.append_id(s->blend_shape_buffer);
  405. } else {
  406. u.append_id(default_rd_storage_buffer);
  407. }
  408. uniforms.push_back(u);
  409. }
  410. s->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SURFACE);
  411. }
  412. if (mesh->surface_count == 0) {
  413. mesh->aabb = new_surface.aabb;
  414. } else {
  415. mesh->aabb.merge_with(new_surface.aabb);
  416. }
  417. mesh->skeleton_aabb_version = 0;
  418. s->material = new_surface.material;
  419. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  420. mesh->surfaces[mesh->surface_count] = s;
  421. mesh->surface_count++;
  422. for (MeshInstance *mi : mesh->instances) {
  423. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  424. }
  425. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  426. for (Mesh *E : mesh->shadow_owners) {
  427. Mesh *shadow_owner = E;
  428. shadow_owner->shadow_mesh = RID();
  429. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  430. }
  431. mesh->material_cache.clear();
  432. }
  433. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  434. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  435. ERR_FAIL_NULL_V(mesh, -1);
  436. return mesh->blend_shape_count;
  437. }
  438. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  439. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  440. ERR_FAIL_NULL(mesh);
  441. ERR_FAIL_INDEX((int)p_mode, 2);
  442. mesh->blend_shape_mode = p_mode;
  443. }
  444. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  445. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  446. ERR_FAIL_NULL_V(mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  447. return mesh->blend_shape_mode;
  448. }
  449. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  450. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  451. ERR_FAIL_NULL(mesh);
  452. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  453. ERR_FAIL_COND(p_data.size() == 0);
  454. ERR_FAIL_COND(mesh->surfaces[p_surface]->vertex_buffer.is_null());
  455. uint64_t data_size = p_data.size();
  456. const uint8_t *r = p_data.ptr();
  457. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r);
  458. }
  459. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  460. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  461. ERR_FAIL_NULL(mesh);
  462. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  463. ERR_FAIL_COND(p_data.size() == 0);
  464. ERR_FAIL_COND(mesh->surfaces[p_surface]->attribute_buffer.is_null());
  465. uint64_t data_size = p_data.size();
  466. const uint8_t *r = p_data.ptr();
  467. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->attribute_buffer, p_offset, data_size, r);
  468. }
  469. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  470. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  471. ERR_FAIL_NULL(mesh);
  472. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  473. ERR_FAIL_COND(p_data.size() == 0);
  474. ERR_FAIL_COND(mesh->surfaces[p_surface]->skin_buffer.is_null());
  475. uint64_t data_size = p_data.size();
  476. const uint8_t *r = p_data.ptr();
  477. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->skin_buffer, p_offset, data_size, r);
  478. }
  479. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  480. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  481. ERR_FAIL_NULL(mesh);
  482. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  483. mesh->surfaces[p_surface]->material = p_material;
  484. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  485. mesh->material_cache.clear();
  486. }
  487. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  488. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  489. ERR_FAIL_NULL_V(mesh, RID());
  490. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  491. return mesh->surfaces[p_surface]->material;
  492. }
  493. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  494. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  495. ERR_FAIL_NULL_V(mesh, RS::SurfaceData());
  496. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  497. Mesh::Surface &s = *mesh->surfaces[p_surface];
  498. RS::SurfaceData sd;
  499. sd.format = s.format;
  500. if (s.vertex_buffer.is_valid()) {
  501. sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer);
  502. // When using an uncompressed buffer with normals, but without tangents, we have to trim the padding.
  503. if (!(s.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (s.format & RS::ARRAY_FORMAT_NORMAL) && !(s.format & RS::ARRAY_FORMAT_TANGENT)) {
  504. sd.vertex_data.resize(sd.vertex_data.size() - sizeof(uint16_t) * 2);
  505. }
  506. }
  507. if (s.attribute_buffer.is_valid()) {
  508. sd.attribute_data = RD::get_singleton()->buffer_get_data(s.attribute_buffer);
  509. }
  510. if (s.skin_buffer.is_valid()) {
  511. sd.skin_data = RD::get_singleton()->buffer_get_data(s.skin_buffer);
  512. }
  513. sd.vertex_count = s.vertex_count;
  514. sd.index_count = s.index_count;
  515. sd.primitive = s.primitive;
  516. if (sd.index_count) {
  517. sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer);
  518. }
  519. sd.aabb = s.aabb;
  520. sd.uv_scale = s.uv_scale;
  521. for (uint32_t i = 0; i < s.lod_count; i++) {
  522. RS::SurfaceData::LOD lod;
  523. lod.edge_length = s.lods[i].edge_length;
  524. lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
  525. sd.lods.push_back(lod);
  526. }
  527. sd.bone_aabbs = s.bone_aabbs;
  528. sd.mesh_to_skeleton_xform = s.mesh_to_skeleton_xform;
  529. if (s.blend_shape_buffer.is_valid()) {
  530. sd.blend_shape_data = RD::get_singleton()->buffer_get_data(s.blend_shape_buffer);
  531. }
  532. return sd;
  533. }
  534. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  535. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  536. ERR_FAIL_NULL_V(mesh, 0);
  537. return mesh->surface_count;
  538. }
  539. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  540. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  541. ERR_FAIL_NULL(mesh);
  542. mesh->custom_aabb = p_aabb;
  543. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  544. }
  545. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  546. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  547. ERR_FAIL_NULL_V(mesh, AABB());
  548. return mesh->custom_aabb;
  549. }
  550. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  551. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  552. ERR_FAIL_NULL_V(mesh, AABB());
  553. if (mesh->custom_aabb != AABB()) {
  554. return mesh->custom_aabb;
  555. }
  556. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  557. // A mesh can be shared by multiple skeletons and we need to avoid using the AABB from a different skeleton.
  558. if (!skeleton || skeleton->size == 0 || (mesh->skeleton_aabb_version == skeleton->version && mesh->skeleton_aabb_rid == p_skeleton)) {
  559. return mesh->aabb;
  560. }
  561. AABB aabb;
  562. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  563. AABB laabb;
  564. const Mesh::Surface &surface = *mesh->surfaces[i];
  565. if ((surface.format & RS::ARRAY_FORMAT_BONES) && surface.bone_aabbs.size()) {
  566. int bs = surface.bone_aabbs.size();
  567. const AABB *skbones = surface.bone_aabbs.ptr();
  568. int sbs = skeleton->size;
  569. ERR_CONTINUE(bs > sbs);
  570. const float *baseptr = skeleton->data.ptr();
  571. bool found_bone_aabb = false;
  572. if (skeleton->use_2d) {
  573. for (int j = 0; j < bs; j++) {
  574. if (skbones[j].size == Vector3(-1, -1, -1)) {
  575. continue; //bone is unused
  576. }
  577. const float *dataptr = baseptr + j * 8;
  578. Transform3D mtx;
  579. mtx.basis.rows[0][0] = dataptr[0];
  580. mtx.basis.rows[0][1] = dataptr[1];
  581. mtx.origin.x = dataptr[3];
  582. mtx.basis.rows[1][0] = dataptr[4];
  583. mtx.basis.rows[1][1] = dataptr[5];
  584. mtx.origin.y = dataptr[7];
  585. // Transform bounds to skeleton's space before applying animation data.
  586. AABB baabb = surface.mesh_to_skeleton_xform.xform(skbones[j]);
  587. baabb = mtx.xform(baabb);
  588. if (!found_bone_aabb) {
  589. laabb = baabb;
  590. found_bone_aabb = true;
  591. } else {
  592. laabb.merge_with(baabb);
  593. }
  594. }
  595. } else {
  596. for (int j = 0; j < bs; j++) {
  597. if (skbones[j].size == Vector3(-1, -1, -1)) {
  598. continue; //bone is unused
  599. }
  600. const float *dataptr = baseptr + j * 12;
  601. Transform3D mtx;
  602. mtx.basis.rows[0][0] = dataptr[0];
  603. mtx.basis.rows[0][1] = dataptr[1];
  604. mtx.basis.rows[0][2] = dataptr[2];
  605. mtx.origin.x = dataptr[3];
  606. mtx.basis.rows[1][0] = dataptr[4];
  607. mtx.basis.rows[1][1] = dataptr[5];
  608. mtx.basis.rows[1][2] = dataptr[6];
  609. mtx.origin.y = dataptr[7];
  610. mtx.basis.rows[2][0] = dataptr[8];
  611. mtx.basis.rows[2][1] = dataptr[9];
  612. mtx.basis.rows[2][2] = dataptr[10];
  613. mtx.origin.z = dataptr[11];
  614. // Transform bounds to skeleton's space before applying animation data.
  615. AABB baabb = surface.mesh_to_skeleton_xform.xform(skbones[j]);
  616. baabb = mtx.xform(baabb);
  617. if (!found_bone_aabb) {
  618. laabb = baabb;
  619. found_bone_aabb = true;
  620. } else {
  621. laabb.merge_with(baabb);
  622. }
  623. }
  624. }
  625. if (found_bone_aabb) {
  626. // Transform skeleton bounds back to mesh's space if any animated AABB applied.
  627. laabb = surface.mesh_to_skeleton_xform.affine_inverse().xform(laabb);
  628. }
  629. if (laabb.size == Vector3()) {
  630. laabb = surface.aabb;
  631. }
  632. } else {
  633. laabb = surface.aabb;
  634. }
  635. if (i == 0) {
  636. aabb = laabb;
  637. } else {
  638. aabb.merge_with(laabb);
  639. }
  640. }
  641. mesh->aabb = aabb;
  642. mesh->skeleton_aabb_version = skeleton->version;
  643. mesh->skeleton_aabb_rid = p_skeleton;
  644. return aabb;
  645. }
  646. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  647. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  648. ERR_FAIL_NULL(mesh);
  649. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  650. if (shadow_mesh) {
  651. shadow_mesh->shadow_owners.erase(mesh);
  652. }
  653. mesh->shadow_mesh = p_shadow_mesh;
  654. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  655. if (shadow_mesh) {
  656. shadow_mesh->shadow_owners.insert(mesh);
  657. }
  658. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  659. }
  660. void MeshStorage::mesh_clear(RID p_mesh) {
  661. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  662. ERR_FAIL_NULL(mesh);
  663. // Clear instance data before mesh data.
  664. for (MeshInstance *mi : mesh->instances) {
  665. _mesh_instance_clear(mi);
  666. }
  667. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  668. Mesh::Surface &s = *mesh->surfaces[i];
  669. if (s.vertex_buffer.is_valid()) {
  670. RD::get_singleton()->free(s.vertex_buffer); //clears arrays as dependency automatically, including all versions
  671. }
  672. if (s.attribute_buffer.is_valid()) {
  673. RD::get_singleton()->free(s.attribute_buffer);
  674. }
  675. if (s.skin_buffer.is_valid()) {
  676. RD::get_singleton()->free(s.skin_buffer);
  677. }
  678. if (s.versions) {
  679. memfree(s.versions); //reallocs, so free with memfree.
  680. }
  681. if (s.index_buffer.is_valid()) {
  682. RD::get_singleton()->free(s.index_buffer);
  683. }
  684. if (s.lod_count) {
  685. for (uint32_t j = 0; j < s.lod_count; j++) {
  686. RD::get_singleton()->free(s.lods[j].index_buffer);
  687. }
  688. memdelete_arr(s.lods);
  689. }
  690. if (s.blend_shape_buffer.is_valid()) {
  691. RD::get_singleton()->free(s.blend_shape_buffer);
  692. }
  693. memdelete(mesh->surfaces[i]);
  694. }
  695. if (mesh->surfaces) {
  696. memfree(mesh->surfaces);
  697. }
  698. mesh->surfaces = nullptr;
  699. mesh->surface_count = 0;
  700. mesh->material_cache.clear();
  701. mesh->has_bone_weights = false;
  702. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  703. for (Mesh *E : mesh->shadow_owners) {
  704. Mesh *shadow_owner = E;
  705. shadow_owner->shadow_mesh = RID();
  706. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  707. }
  708. }
  709. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  710. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  711. ERR_FAIL_NULL_V(mesh, false);
  712. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  713. }
  714. Dependency *MeshStorage::mesh_get_dependency(RID p_mesh) const {
  715. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  716. ERR_FAIL_NULL_V(mesh, nullptr);
  717. return &mesh->dependency;
  718. }
  719. /* MESH INSTANCE */
  720. RID MeshStorage::mesh_instance_create(RID p_base) {
  721. Mesh *mesh = mesh_owner.get_or_null(p_base);
  722. ERR_FAIL_NULL_V(mesh, RID());
  723. RID rid = mesh_instance_owner.make_rid();
  724. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  725. mi->mesh = mesh;
  726. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  727. _mesh_instance_add_surface(mi, mesh, i);
  728. }
  729. mi->I = mesh->instances.push_back(mi);
  730. mi->dirty = true;
  731. return rid;
  732. }
  733. void MeshStorage::mesh_instance_free(RID p_rid) {
  734. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  735. _mesh_instance_clear(mi);
  736. mi->mesh->instances.erase(mi->I);
  737. mi->I = nullptr;
  738. mesh_instance_owner.free(p_rid);
  739. }
  740. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  741. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  742. if (mi->skeleton == p_skeleton) {
  743. return;
  744. }
  745. mi->skeleton = p_skeleton;
  746. mi->skeleton_version = 0;
  747. mi->dirty = true;
  748. }
  749. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  750. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  751. ERR_FAIL_NULL(mi);
  752. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  753. mi->blend_weights[p_shape] = p_weight;
  754. mi->weights_dirty = true;
  755. //will be eventually updated
  756. }
  757. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  758. for (const RendererRD::MeshStorage::MeshInstance::Surface &surface : mi->surfaces) {
  759. if (surface.versions) {
  760. for (uint32_t j = 0; j < surface.version_count; j++) {
  761. RD::get_singleton()->free(surface.versions[j].vertex_array);
  762. }
  763. memfree(surface.versions);
  764. }
  765. for (uint32_t i = 0; i < 2; i++) {
  766. if (surface.vertex_buffer[i].is_valid()) {
  767. RD::get_singleton()->free(surface.vertex_buffer[i]);
  768. }
  769. }
  770. }
  771. mi->surfaces.clear();
  772. if (mi->blend_weights_buffer.is_valid()) {
  773. RD::get_singleton()->free(mi->blend_weights_buffer);
  774. mi->blend_weights_buffer = RID();
  775. }
  776. mi->blend_weights.clear();
  777. mi->weights_dirty = false;
  778. mi->skeleton_version = 0;
  779. }
  780. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  781. if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer.is_null()) {
  782. mi->blend_weights.resize(mesh->blend_shape_count);
  783. for (float &weight : mi->blend_weights) {
  784. weight = 0;
  785. }
  786. mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array());
  787. mi->weights_dirty = true;
  788. }
  789. MeshInstance::Surface s;
  790. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  791. _mesh_instance_add_surface_buffer(mi, mesh, &s, p_surface, 0);
  792. }
  793. mi->surfaces.push_back(s);
  794. mi->dirty = true;
  795. }
  796. void MeshStorage::_mesh_instance_add_surface_buffer(MeshInstance *mi, Mesh *mesh, MeshInstance::Surface *s, uint32_t p_surface, uint32_t p_buffer_index) {
  797. s->vertex_buffer[p_buffer_index] = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector<uint8_t>(), true);
  798. Vector<RD::Uniform> uniforms;
  799. {
  800. RD::Uniform u;
  801. u.binding = 1;
  802. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  803. u.append_id(s->vertex_buffer[p_buffer_index]);
  804. uniforms.push_back(u);
  805. }
  806. {
  807. RD::Uniform u;
  808. u.binding = 2;
  809. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  810. if (mi->blend_weights_buffer.is_valid()) {
  811. u.append_id(mi->blend_weights_buffer);
  812. } else {
  813. u.append_id(default_rd_storage_buffer);
  814. }
  815. uniforms.push_back(u);
  816. }
  817. s->uniform_set[p_buffer_index] = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_INSTANCE);
  818. }
  819. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  820. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  821. bool needs_update = mi->dirty;
  822. if (mi->weights_dirty && !mi->weight_update_list.in_list()) {
  823. dirty_mesh_instance_weights.add(&mi->weight_update_list);
  824. needs_update = true;
  825. }
  826. if (mi->array_update_list.in_list()) {
  827. return;
  828. }
  829. if (!needs_update && mi->skeleton.is_valid()) {
  830. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  831. if (sk && sk->version != mi->skeleton_version) {
  832. needs_update = true;
  833. }
  834. }
  835. if (needs_update) {
  836. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  837. }
  838. }
  839. void MeshStorage::mesh_instance_set_canvas_item_transform(RID p_mesh_instance, const Transform2D &p_transform) {
  840. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  841. mi->canvas_item_transform_2d = p_transform;
  842. }
  843. void MeshStorage::update_mesh_instances() {
  844. while (dirty_mesh_instance_weights.first()) {
  845. MeshInstance *mi = dirty_mesh_instance_weights.first()->self();
  846. if (mi->blend_weights_buffer.is_valid()) {
  847. RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr());
  848. }
  849. dirty_mesh_instance_weights.remove(&mi->weight_update_list);
  850. mi->weights_dirty = false;
  851. }
  852. if (dirty_mesh_instance_arrays.first() == nullptr) {
  853. return; //nothing to do
  854. }
  855. //process skeletons and blend shapes
  856. uint64_t frame = RSG::rasterizer->get_frame_number();
  857. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0);
  858. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  859. while (dirty_mesh_instance_arrays.first()) {
  860. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  861. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  862. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  863. if (mi->surfaces[i].uniform_set[0].is_null() || mi->mesh->surfaces[i]->uniform_set.is_null()) {
  864. // Skip over mesh instances that don't require their own uniform buffers.
  865. continue;
  866. }
  867. mi->surfaces[i].previous_buffer = mi->surfaces[i].current_buffer;
  868. if (uses_motion_vectors && (frame - mi->surfaces[i].last_change) == 1) {
  869. // Previous buffer's data can only be one frame old to be able to use motion vectors.
  870. uint32_t new_buffer_index = mi->surfaces[i].current_buffer ^ 1;
  871. if (mi->surfaces[i].uniform_set[new_buffer_index].is_null()) {
  872. // Create the new vertex buffer on demand where the result for the current frame will be stored.
  873. _mesh_instance_add_surface_buffer(mi, mi->mesh, &mi->surfaces[i], i, new_buffer_index);
  874. }
  875. mi->surfaces[i].current_buffer = new_buffer_index;
  876. }
  877. mi->surfaces[i].last_change = frame;
  878. RID mi_surface_uniform_set = mi->surfaces[i].uniform_set[mi->surfaces[i].current_buffer];
  879. if (mi_surface_uniform_set.is_null()) {
  880. continue;
  881. }
  882. bool array_is_2d = mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_2D_VERTICES;
  883. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, skeleton_shader.pipeline[array_is_2d ? SkeletonShader::SHADER_MODE_2D : SkeletonShader::SHADER_MODE_3D]);
  884. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi_surface_uniform_set, SkeletonShader::UNIFORM_SET_INSTANCE);
  885. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->mesh->surfaces[i]->uniform_set, SkeletonShader::UNIFORM_SET_SURFACE);
  886. if (sk && sk->uniform_set_mi.is_valid()) {
  887. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sk->uniform_set_mi, SkeletonShader::UNIFORM_SET_SKELETON);
  888. } else {
  889. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, skeleton_shader.default_skeleton_uniform_set, SkeletonShader::UNIFORM_SET_SKELETON);
  890. }
  891. SkeletonShader::PushConstant push_constant;
  892. push_constant.has_normal = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_NORMAL;
  893. push_constant.has_tangent = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_TANGENT;
  894. push_constant.has_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES);
  895. push_constant.has_blend_shape = mi->mesh->blend_shape_count > 0;
  896. push_constant.normal_tangent_stride = (push_constant.has_normal ? 1 : 0) + (push_constant.has_tangent ? 1 : 0);
  897. push_constant.vertex_count = mi->mesh->surfaces[i]->vertex_count;
  898. push_constant.vertex_stride = ((mi->mesh->surfaces[i]->vertex_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4) - push_constant.normal_tangent_stride;
  899. push_constant.skin_stride = (mi->mesh->surfaces[i]->skin_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  900. push_constant.skin_weight_offset = (mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? 4 : 2;
  901. Transform2D transform = Transform2D();
  902. if (sk && sk->use_2d) {
  903. transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
  904. }
  905. push_constant.skeleton_transform_x[0] = transform.columns[0][0];
  906. push_constant.skeleton_transform_x[1] = transform.columns[0][1];
  907. push_constant.skeleton_transform_y[0] = transform.columns[1][0];
  908. push_constant.skeleton_transform_y[1] = transform.columns[1][1];
  909. push_constant.skeleton_transform_offset[0] = transform.columns[2][0];
  910. push_constant.skeleton_transform_offset[1] = transform.columns[2][1];
  911. Transform2D inverse_transform = transform.affine_inverse();
  912. push_constant.inverse_transform_x[0] = inverse_transform.columns[0][0];
  913. push_constant.inverse_transform_x[1] = inverse_transform.columns[0][1];
  914. push_constant.inverse_transform_y[0] = inverse_transform.columns[1][0];
  915. push_constant.inverse_transform_y[1] = inverse_transform.columns[1][1];
  916. push_constant.inverse_transform_offset[0] = inverse_transform.columns[2][0];
  917. push_constant.inverse_transform_offset[1] = inverse_transform.columns[2][1];
  918. push_constant.blend_shape_count = mi->mesh->blend_shape_count;
  919. push_constant.normalized_blend_shapes = mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED;
  920. push_constant.pad1 = 0;
  921. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SkeletonShader::PushConstant));
  922. //dispatch without barrier, so all is done at the same time
  923. RD::get_singleton()->compute_list_dispatch_threads(compute_list, push_constant.vertex_count, 1, 1);
  924. }
  925. mi->dirty = false;
  926. if (sk) {
  927. mi->skeleton_version = sk->version;
  928. }
  929. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  930. }
  931. RD::get_singleton()->compute_list_end();
  932. }
  933. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint64_t p_input_mask, bool p_input_motion_vectors, MeshInstance::Surface *mis, uint32_t p_current_buffer, uint32_t p_previous_buffer) {
  934. Vector<RD::VertexAttribute> attributes;
  935. Vector<RID> buffers;
  936. Vector<uint64_t> offsets;
  937. uint32_t position_stride = 0;
  938. uint32_t normal_tangent_stride = 0;
  939. uint32_t attribute_stride = 0;
  940. uint32_t skin_stride = 0;
  941. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  942. RD::VertexAttribute vd;
  943. RID buffer;
  944. vd.location = i;
  945. uint64_t offset = 0;
  946. if (!(s->format & (1ULL << i))) {
  947. // Not supplied by surface, use default value
  948. buffer = mesh_default_rd_buffers[i];
  949. vd.stride = 0;
  950. switch (i) {
  951. case RS::ARRAY_VERTEX: {
  952. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  953. } break;
  954. case RS::ARRAY_NORMAL: {
  955. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  956. } break;
  957. case RS::ARRAY_TANGENT: {
  958. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  959. } break;
  960. case RS::ARRAY_COLOR: {
  961. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  962. } break;
  963. case RS::ARRAY_TEX_UV: {
  964. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  965. } break;
  966. case RS::ARRAY_TEX_UV2: {
  967. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  968. } break;
  969. case RS::ARRAY_CUSTOM0:
  970. case RS::ARRAY_CUSTOM1:
  971. case RS::ARRAY_CUSTOM2:
  972. case RS::ARRAY_CUSTOM3: {
  973. //assumed weights too
  974. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  975. } break;
  976. case RS::ARRAY_BONES: {
  977. //assumed weights too
  978. vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
  979. } break;
  980. case RS::ARRAY_WEIGHTS: {
  981. //assumed weights too
  982. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  983. } break;
  984. }
  985. } else {
  986. //Supplied, use it
  987. vd.stride = 1; //mark that it needs a stride set (default uses 0)
  988. switch (i) {
  989. case RS::ARRAY_VERTEX: {
  990. vd.offset = position_stride;
  991. if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  992. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  993. position_stride = sizeof(float) * 2;
  994. } else {
  995. if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  996. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  997. position_stride = sizeof(uint16_t) * 4;
  998. } else {
  999. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  1000. position_stride = sizeof(float) * 3;
  1001. }
  1002. }
  1003. if (mis) {
  1004. buffer = mis->vertex_buffer[p_current_buffer];
  1005. } else {
  1006. buffer = s->vertex_buffer;
  1007. }
  1008. } break;
  1009. case RS::ARRAY_NORMAL: {
  1010. vd.offset = 0;
  1011. offset = position_stride * s->vertex_count;
  1012. if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  1013. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1014. normal_tangent_stride += sizeof(uint16_t) * 2;
  1015. } else {
  1016. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1017. // A small trick here: if we are uncompressed and we have normals, but no tangents. We need
  1018. // the shader to think there are 4 components to "axis_tangent_attrib". So we give a size of 4,
  1019. // but a stride based on only having 2 elements.
  1020. if (!(s->format & RS::ARRAY_FORMAT_TANGENT)) {
  1021. normal_tangent_stride += sizeof(uint16_t) * 2;
  1022. } else {
  1023. normal_tangent_stride += sizeof(uint16_t) * 4;
  1024. }
  1025. }
  1026. if (mis) {
  1027. buffer = mis->vertex_buffer[p_current_buffer];
  1028. } else {
  1029. buffer = s->vertex_buffer;
  1030. }
  1031. } break;
  1032. case RS::ARRAY_TANGENT: {
  1033. buffer = mesh_default_rd_buffers[i];
  1034. vd.stride = 0;
  1035. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  1036. } break;
  1037. case RS::ARRAY_COLOR: {
  1038. vd.offset = attribute_stride;
  1039. vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  1040. attribute_stride += sizeof(int8_t) * 4;
  1041. buffer = s->attribute_buffer;
  1042. } break;
  1043. case RS::ARRAY_TEX_UV: {
  1044. vd.offset = attribute_stride;
  1045. if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  1046. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1047. attribute_stride += sizeof(uint16_t) * 2;
  1048. } else {
  1049. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1050. attribute_stride += sizeof(float) * 2;
  1051. }
  1052. buffer = s->attribute_buffer;
  1053. } break;
  1054. case RS::ARRAY_TEX_UV2: {
  1055. vd.offset = attribute_stride;
  1056. if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  1057. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1058. attribute_stride += sizeof(uint16_t) * 2;
  1059. } else {
  1060. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1061. attribute_stride += sizeof(float) * 2;
  1062. }
  1063. buffer = s->attribute_buffer;
  1064. } break;
  1065. case RS::ARRAY_CUSTOM0:
  1066. case RS::ARRAY_CUSTOM1:
  1067. case RS::ARRAY_CUSTOM2:
  1068. case RS::ARRAY_CUSTOM3: {
  1069. vd.offset = attribute_stride;
  1070. int idx = i - RS::ARRAY_CUSTOM0;
  1071. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  1072. uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  1073. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  1074. const RD::DataFormat fmtrd[RS::ARRAY_CUSTOM_MAX] = { RD::DATA_FORMAT_R8G8B8A8_UNORM, RD::DATA_FORMAT_R8G8B8A8_SNORM, RD::DATA_FORMAT_R16G16_SFLOAT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::DATA_FORMAT_R32_SFLOAT, RD::DATA_FORMAT_R32G32_SFLOAT, RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::DATA_FORMAT_R32G32B32A32_SFLOAT };
  1075. vd.format = fmtrd[fmt];
  1076. attribute_stride += fmtsize[fmt];
  1077. buffer = s->attribute_buffer;
  1078. } break;
  1079. case RS::ARRAY_BONES: {
  1080. vd.offset = skin_stride;
  1081. vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
  1082. skin_stride += sizeof(int16_t) * 4;
  1083. buffer = s->skin_buffer;
  1084. } break;
  1085. case RS::ARRAY_WEIGHTS: {
  1086. vd.offset = skin_stride;
  1087. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1088. skin_stride += sizeof(int16_t) * 4;
  1089. buffer = s->skin_buffer;
  1090. } break;
  1091. }
  1092. }
  1093. if (!(p_input_mask & (1ULL << i))) {
  1094. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  1095. }
  1096. attributes.push_back(vd);
  1097. buffers.push_back(buffer);
  1098. offsets.push_back(offset);
  1099. if (p_input_motion_vectors) {
  1100. // Since the previous vertex, normal and tangent can't be part of the vertex format but they are required when motion
  1101. // vectors are enabled, we opt to push a copy of the vertex attribute with a different location and buffer (if it's
  1102. // part of an instance that has one).
  1103. switch (i) {
  1104. case RS::ARRAY_VERTEX: {
  1105. vd.location = ATTRIBUTE_LOCATION_PREV_VERTEX;
  1106. } break;
  1107. case RS::ARRAY_NORMAL: {
  1108. vd.location = ATTRIBUTE_LOCATION_PREV_NORMAL;
  1109. } break;
  1110. case RS::ARRAY_TANGENT: {
  1111. vd.location = ATTRIBUTE_LOCATION_PREV_TANGENT;
  1112. } break;
  1113. }
  1114. if (int(vd.location) != i) {
  1115. if (mis && buffer != mesh_default_rd_buffers[i]) {
  1116. buffer = mis->vertex_buffer[p_previous_buffer];
  1117. }
  1118. attributes.push_back(vd);
  1119. buffers.push_back(buffer);
  1120. offsets.push_back(offset);
  1121. }
  1122. }
  1123. }
  1124. //update final stride
  1125. for (int i = 0; i < attributes.size(); i++) {
  1126. if (attributes[i].stride == 0) {
  1127. continue; //default location
  1128. }
  1129. int loc = attributes[i].location;
  1130. if (loc == RS::ARRAY_VERTEX || loc == ATTRIBUTE_LOCATION_PREV_VERTEX) {
  1131. attributes.write[i].stride = position_stride;
  1132. } else if ((loc < RS::ARRAY_COLOR) || ((loc >= ATTRIBUTE_LOCATION_PREV_NORMAL) && (loc <= ATTRIBUTE_LOCATION_PREV_TANGENT))) {
  1133. attributes.write[i].stride = normal_tangent_stride;
  1134. } else if (loc < RS::ARRAY_BONES) {
  1135. attributes.write[i].stride = attribute_stride;
  1136. } else {
  1137. attributes.write[i].stride = skin_stride;
  1138. }
  1139. }
  1140. v.input_mask = p_input_mask;
  1141. v.current_buffer = p_current_buffer;
  1142. v.previous_buffer = p_previous_buffer;
  1143. v.input_motion_vectors = p_input_motion_vectors;
  1144. v.vertex_format = RD::get_singleton()->vertex_format_create(attributes);
  1145. v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers, offsets);
  1146. }
  1147. ////////////////// MULTIMESH
  1148. RID MeshStorage::multimesh_allocate() {
  1149. return multimesh_owner.allocate_rid();
  1150. }
  1151. void MeshStorage::multimesh_initialize(RID p_rid) {
  1152. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  1153. }
  1154. void MeshStorage::multimesh_free(RID p_rid) {
  1155. _update_dirty_multimeshes();
  1156. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  1157. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  1158. multimesh->dependency.deleted_notify(p_rid);
  1159. multimesh_owner.free(p_rid);
  1160. }
  1161. void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
  1162. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1163. ERR_FAIL_NULL(multimesh);
  1164. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  1165. return;
  1166. }
  1167. if (multimesh->buffer.is_valid()) {
  1168. RD::get_singleton()->free(multimesh->buffer);
  1169. multimesh->buffer = RID();
  1170. multimesh->uniform_set_2d = RID(); //cleared by dependency
  1171. multimesh->uniform_set_3d = RID(); //cleared by dependency
  1172. }
  1173. if (multimesh->data_cache_dirty_regions) {
  1174. memdelete_arr(multimesh->data_cache_dirty_regions);
  1175. multimesh->data_cache_dirty_regions = nullptr;
  1176. multimesh->data_cache_dirty_region_count = 0;
  1177. }
  1178. if (multimesh->previous_data_cache_dirty_regions) {
  1179. memdelete_arr(multimesh->previous_data_cache_dirty_regions);
  1180. multimesh->previous_data_cache_dirty_regions = nullptr;
  1181. multimesh->previous_data_cache_dirty_region_count = 0;
  1182. }
  1183. multimesh->instances = p_instances;
  1184. multimesh->xform_format = p_transform_format;
  1185. multimesh->uses_colors = p_use_colors;
  1186. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1187. multimesh->uses_custom_data = p_use_custom_data;
  1188. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0);
  1189. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0);
  1190. multimesh->buffer_set = false;
  1191. //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances));
  1192. multimesh->data_cache = Vector<float>();
  1193. multimesh->aabb = AABB();
  1194. multimesh->aabb_dirty = false;
  1195. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1196. multimesh->motion_vectors_current_offset = 0;
  1197. multimesh->motion_vectors_previous_offset = 0;
  1198. multimesh->motion_vectors_last_change = -1;
  1199. if (multimesh->instances) {
  1200. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1201. if (multimesh->motion_vectors_enabled) {
  1202. buffer_size *= 2;
  1203. }
  1204. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1205. }
  1206. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1207. }
  1208. void MeshStorage::_multimesh_enable_motion_vectors(MultiMesh *multimesh) {
  1209. if (multimesh->motion_vectors_enabled) {
  1210. return;
  1211. }
  1212. multimesh->motion_vectors_enabled = true;
  1213. multimesh->motion_vectors_current_offset = 0;
  1214. multimesh->motion_vectors_previous_offset = 0;
  1215. multimesh->motion_vectors_last_change = -1;
  1216. if (!multimesh->data_cache.is_empty()) {
  1217. multimesh->data_cache.append_array(multimesh->data_cache);
  1218. }
  1219. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1220. uint32_t new_buffer_size = buffer_size * 2;
  1221. RID new_buffer = RD::get_singleton()->storage_buffer_create(new_buffer_size);
  1222. if (multimesh->buffer_set && multimesh->data_cache.is_empty()) {
  1223. // If the buffer was set but there's no data cached in the CPU, we copy the buffer directly on the GPU.
  1224. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, 0, buffer_size);
  1225. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, buffer_size, buffer_size);
  1226. } else if (!multimesh->data_cache.is_empty()) {
  1227. // Simply upload the data cached in the CPU, which should already be doubled in size.
  1228. ERR_FAIL_COND(multimesh->data_cache.size() * sizeof(float) != size_t(new_buffer_size));
  1229. RD::get_singleton()->buffer_update(new_buffer, 0, new_buffer_size, multimesh->data_cache.ptr());
  1230. }
  1231. if (multimesh->buffer.is_valid()) {
  1232. RD::get_singleton()->free(multimesh->buffer);
  1233. }
  1234. multimesh->buffer = new_buffer;
  1235. multimesh->uniform_set_3d = RID(); // Cleared by dependency.
  1236. // Invalidate any references to the buffer that was released and the uniform set that was pointing to it.
  1237. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1238. }
  1239. void MeshStorage::_multimesh_get_motion_vectors_offsets(RID p_multimesh, uint32_t &r_current_offset, uint32_t &r_prev_offset) {
  1240. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1241. ERR_FAIL_NULL(multimesh);
  1242. r_current_offset = multimesh->motion_vectors_current_offset;
  1243. if (!_multimesh_uses_motion_vectors(multimesh)) {
  1244. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1245. }
  1246. r_prev_offset = multimesh->motion_vectors_previous_offset;
  1247. }
  1248. bool MeshStorage::_multimesh_uses_motion_vectors_offsets(RID p_multimesh) {
  1249. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1250. ERR_FAIL_NULL_V(multimesh, false);
  1251. return _multimesh_uses_motion_vectors(multimesh);
  1252. }
  1253. int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const {
  1254. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1255. ERR_FAIL_NULL_V(multimesh, 0);
  1256. return multimesh->instances;
  1257. }
  1258. void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1259. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1260. ERR_FAIL_NULL(multimesh);
  1261. if (multimesh->mesh == p_mesh) {
  1262. return;
  1263. }
  1264. multimesh->mesh = p_mesh;
  1265. if (multimesh->instances == 0) {
  1266. return;
  1267. }
  1268. if (multimesh->data_cache.size()) {
  1269. //we have a data cache, just mark it dirt
  1270. _multimesh_mark_all_dirty(multimesh, false, true);
  1271. } else if (multimesh->instances) {
  1272. //need to re-create AABB unfortunately, calling this has a penalty
  1273. if (multimesh->buffer_set) {
  1274. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1275. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1276. const float *data = reinterpret_cast<const float *>(r);
  1277. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1278. }
  1279. }
  1280. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1281. }
  1282. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1283. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1284. if (multimesh->data_cache.size() > 0) {
  1285. return; //already local
  1286. }
  1287. // this means that the user wants to load/save individual elements,
  1288. // for this, the data must reside on CPU, so just copy it there.
  1289. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache;
  1290. if (multimesh->motion_vectors_enabled) {
  1291. buffer_size *= 2;
  1292. }
  1293. multimesh->data_cache.resize(buffer_size);
  1294. {
  1295. float *w = multimesh->data_cache.ptrw();
  1296. if (multimesh->buffer_set) {
  1297. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1298. {
  1299. const uint8_t *r = buffer.ptr();
  1300. memcpy(w, r, buffer.size());
  1301. }
  1302. } else {
  1303. memset(w, 0, buffer_size * sizeof(float));
  1304. }
  1305. }
  1306. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
  1307. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1308. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1309. multimesh->data_cache_dirty_region_count = 0;
  1310. multimesh->previous_data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1311. memset(multimesh->previous_data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1312. multimesh->previous_data_cache_dirty_region_count = 0;
  1313. }
  1314. void MeshStorage::_multimesh_update_motion_vectors_data_cache(MultiMesh *multimesh) {
  1315. ERR_FAIL_COND(multimesh->data_cache.is_empty());
  1316. if (!multimesh->motion_vectors_enabled) {
  1317. return;
  1318. }
  1319. uint32_t frame = RSG::rasterizer->get_frame_number();
  1320. if (multimesh->motion_vectors_last_change != frame) {
  1321. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1322. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1323. multimesh->motion_vectors_last_change = frame;
  1324. if (multimesh->previous_data_cache_dirty_region_count > 0) {
  1325. uint8_t *data = (uint8_t *)multimesh->data_cache.ptrw();
  1326. uint32_t current_ofs = multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1327. uint32_t previous_ofs = multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float);
  1328. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1329. uint32_t visible_region_count = visible_instances == 0 ? 0 : Math::division_round_up(visible_instances, (uint32_t)MULTIMESH_DIRTY_REGION_SIZE);
  1330. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1331. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1332. for (uint32_t i = 0; i < visible_region_count; i++) {
  1333. if (multimesh->previous_data_cache_dirty_regions[i]) {
  1334. uint32_t offset = i * region_size;
  1335. memcpy(data + current_ofs + offset, data + previous_ofs + offset, MIN(region_size, size - offset));
  1336. }
  1337. }
  1338. }
  1339. }
  1340. }
  1341. bool MeshStorage::_multimesh_uses_motion_vectors(MultiMesh *multimesh) {
  1342. return (RSG::rasterizer->get_frame_number() - multimesh->motion_vectors_last_change) < 2;
  1343. }
  1344. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1345. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1346. #ifdef DEBUG_ENABLED
  1347. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
  1348. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1349. #endif
  1350. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1351. multimesh->data_cache_dirty_regions[region_index] = true;
  1352. multimesh->data_cache_dirty_region_count++;
  1353. }
  1354. if (p_aabb) {
  1355. multimesh->aabb_dirty = true;
  1356. }
  1357. if (!multimesh->dirty) {
  1358. multimesh->dirty_list = multimesh_dirty_list;
  1359. multimesh_dirty_list = multimesh;
  1360. multimesh->dirty = true;
  1361. }
  1362. }
  1363. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1364. if (p_data) {
  1365. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
  1366. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1367. if (!multimesh->data_cache_dirty_regions[i]) {
  1368. multimesh->data_cache_dirty_regions[i] = true;
  1369. multimesh->data_cache_dirty_region_count++;
  1370. }
  1371. }
  1372. }
  1373. if (p_aabb) {
  1374. multimesh->aabb_dirty = true;
  1375. }
  1376. if (!multimesh->dirty) {
  1377. multimesh->dirty_list = multimesh_dirty_list;
  1378. multimesh_dirty_list = multimesh;
  1379. multimesh->dirty = true;
  1380. }
  1381. }
  1382. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1383. ERR_FAIL_COND(multimesh->mesh.is_null());
  1384. AABB aabb;
  1385. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1386. for (int i = 0; i < p_instances; i++) {
  1387. const float *data = p_data + multimesh->stride_cache * i;
  1388. Transform3D t;
  1389. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1390. t.basis.rows[0][0] = data[0];
  1391. t.basis.rows[0][1] = data[1];
  1392. t.basis.rows[0][2] = data[2];
  1393. t.origin.x = data[3];
  1394. t.basis.rows[1][0] = data[4];
  1395. t.basis.rows[1][1] = data[5];
  1396. t.basis.rows[1][2] = data[6];
  1397. t.origin.y = data[7];
  1398. t.basis.rows[2][0] = data[8];
  1399. t.basis.rows[2][1] = data[9];
  1400. t.basis.rows[2][2] = data[10];
  1401. t.origin.z = data[11];
  1402. } else {
  1403. t.basis.rows[0][0] = data[0];
  1404. t.basis.rows[0][1] = data[1];
  1405. t.origin.x = data[3];
  1406. t.basis.rows[1][0] = data[4];
  1407. t.basis.rows[1][1] = data[5];
  1408. t.origin.y = data[7];
  1409. }
  1410. if (i == 0) {
  1411. aabb = t.xform(mesh_aabb);
  1412. } else {
  1413. aabb.merge_with(t.xform(mesh_aabb));
  1414. }
  1415. }
  1416. multimesh->aabb = aabb;
  1417. }
  1418. void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1419. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1420. ERR_FAIL_NULL(multimesh);
  1421. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1422. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1423. _multimesh_make_local(multimesh);
  1424. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0);
  1425. if (uses_motion_vectors) {
  1426. _multimesh_enable_motion_vectors(multimesh);
  1427. }
  1428. _multimesh_update_motion_vectors_data_cache(multimesh);
  1429. {
  1430. float *w = multimesh->data_cache.ptrw();
  1431. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1432. dataptr[0] = p_transform.basis.rows[0][0];
  1433. dataptr[1] = p_transform.basis.rows[0][1];
  1434. dataptr[2] = p_transform.basis.rows[0][2];
  1435. dataptr[3] = p_transform.origin.x;
  1436. dataptr[4] = p_transform.basis.rows[1][0];
  1437. dataptr[5] = p_transform.basis.rows[1][1];
  1438. dataptr[6] = p_transform.basis.rows[1][2];
  1439. dataptr[7] = p_transform.origin.y;
  1440. dataptr[8] = p_transform.basis.rows[2][0];
  1441. dataptr[9] = p_transform.basis.rows[2][1];
  1442. dataptr[10] = p_transform.basis.rows[2][2];
  1443. dataptr[11] = p_transform.origin.z;
  1444. }
  1445. _multimesh_mark_dirty(multimesh, p_index, true);
  1446. }
  1447. void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1448. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1449. ERR_FAIL_NULL(multimesh);
  1450. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1451. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1452. _multimesh_make_local(multimesh);
  1453. _multimesh_update_motion_vectors_data_cache(multimesh);
  1454. {
  1455. float *w = multimesh->data_cache.ptrw();
  1456. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1457. dataptr[0] = p_transform.columns[0][0];
  1458. dataptr[1] = p_transform.columns[1][0];
  1459. dataptr[2] = 0;
  1460. dataptr[3] = p_transform.columns[2][0];
  1461. dataptr[4] = p_transform.columns[0][1];
  1462. dataptr[5] = p_transform.columns[1][1];
  1463. dataptr[6] = 0;
  1464. dataptr[7] = p_transform.columns[2][1];
  1465. }
  1466. _multimesh_mark_dirty(multimesh, p_index, true);
  1467. }
  1468. void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1469. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1470. ERR_FAIL_NULL(multimesh);
  1471. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1472. ERR_FAIL_COND(!multimesh->uses_colors);
  1473. _multimesh_make_local(multimesh);
  1474. _multimesh_update_motion_vectors_data_cache(multimesh);
  1475. {
  1476. float *w = multimesh->data_cache.ptrw();
  1477. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1478. dataptr[0] = p_color.r;
  1479. dataptr[1] = p_color.g;
  1480. dataptr[2] = p_color.b;
  1481. dataptr[3] = p_color.a;
  1482. }
  1483. _multimesh_mark_dirty(multimesh, p_index, false);
  1484. }
  1485. void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1486. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1487. ERR_FAIL_NULL(multimesh);
  1488. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1489. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1490. _multimesh_make_local(multimesh);
  1491. _multimesh_update_motion_vectors_data_cache(multimesh);
  1492. {
  1493. float *w = multimesh->data_cache.ptrw();
  1494. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1495. dataptr[0] = p_color.r;
  1496. dataptr[1] = p_color.g;
  1497. dataptr[2] = p_color.b;
  1498. dataptr[3] = p_color.a;
  1499. }
  1500. _multimesh_mark_dirty(multimesh, p_index, false);
  1501. }
  1502. RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const {
  1503. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1504. ERR_FAIL_NULL_V(multimesh, RID());
  1505. return multimesh->mesh;
  1506. }
  1507. Dependency *MeshStorage::multimesh_get_dependency(RID p_multimesh) const {
  1508. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1509. ERR_FAIL_NULL_V(multimesh, nullptr);
  1510. return &multimesh->dependency;
  1511. }
  1512. Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1513. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1514. ERR_FAIL_NULL_V(multimesh, Transform3D());
  1515. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1516. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1517. _multimesh_make_local(multimesh);
  1518. Transform3D t;
  1519. {
  1520. const float *r = multimesh->data_cache.ptr();
  1521. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1522. t.basis.rows[0][0] = dataptr[0];
  1523. t.basis.rows[0][1] = dataptr[1];
  1524. t.basis.rows[0][2] = dataptr[2];
  1525. t.origin.x = dataptr[3];
  1526. t.basis.rows[1][0] = dataptr[4];
  1527. t.basis.rows[1][1] = dataptr[5];
  1528. t.basis.rows[1][2] = dataptr[6];
  1529. t.origin.y = dataptr[7];
  1530. t.basis.rows[2][0] = dataptr[8];
  1531. t.basis.rows[2][1] = dataptr[9];
  1532. t.basis.rows[2][2] = dataptr[10];
  1533. t.origin.z = dataptr[11];
  1534. }
  1535. return t;
  1536. }
  1537. Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1538. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1539. ERR_FAIL_NULL_V(multimesh, Transform2D());
  1540. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1541. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1542. _multimesh_make_local(multimesh);
  1543. Transform2D t;
  1544. {
  1545. const float *r = multimesh->data_cache.ptr();
  1546. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1547. t.columns[0][0] = dataptr[0];
  1548. t.columns[1][0] = dataptr[1];
  1549. t.columns[2][0] = dataptr[3];
  1550. t.columns[0][1] = dataptr[4];
  1551. t.columns[1][1] = dataptr[5];
  1552. t.columns[2][1] = dataptr[7];
  1553. }
  1554. return t;
  1555. }
  1556. Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1557. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1558. ERR_FAIL_NULL_V(multimesh, Color());
  1559. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1560. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1561. _multimesh_make_local(multimesh);
  1562. Color c;
  1563. {
  1564. const float *r = multimesh->data_cache.ptr();
  1565. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1566. c.r = dataptr[0];
  1567. c.g = dataptr[1];
  1568. c.b = dataptr[2];
  1569. c.a = dataptr[3];
  1570. }
  1571. return c;
  1572. }
  1573. Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1574. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1575. ERR_FAIL_NULL_V(multimesh, Color());
  1576. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1577. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1578. _multimesh_make_local(multimesh);
  1579. Color c;
  1580. {
  1581. const float *r = multimesh->data_cache.ptr();
  1582. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1583. c.r = dataptr[0];
  1584. c.g = dataptr[1];
  1585. c.b = dataptr[2];
  1586. c.a = dataptr[3];
  1587. }
  1588. return c;
  1589. }
  1590. void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1591. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1592. ERR_FAIL_NULL(multimesh);
  1593. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1594. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0);
  1595. if (uses_motion_vectors) {
  1596. _multimesh_enable_motion_vectors(multimesh);
  1597. }
  1598. if (multimesh->motion_vectors_enabled) {
  1599. uint32_t frame = RSG::rasterizer->get_frame_number();
  1600. if (multimesh->motion_vectors_last_change != frame) {
  1601. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1602. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1603. multimesh->motion_vectors_last_change = frame;
  1604. }
  1605. }
  1606. {
  1607. const float *r = p_buffer.ptr();
  1608. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1609. multimesh->buffer_set = true;
  1610. }
  1611. if (multimesh->data_cache.size()) {
  1612. float *cache_data = multimesh->data_cache.ptrw();
  1613. memcpy(cache_data + (multimesh->motion_vectors_current_offset * multimesh->stride_cache), p_buffer.ptr(), p_buffer.size() * sizeof(float));
  1614. _multimesh_mark_all_dirty(multimesh, true, true); //update AABB
  1615. } else if (multimesh->mesh.is_valid()) {
  1616. //if we have a mesh set, we need to re-generate the AABB from the new data
  1617. const float *data = p_buffer.ptr();
  1618. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1619. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1620. }
  1621. }
  1622. Vector<float> MeshStorage::multimesh_get_buffer(RID p_multimesh) const {
  1623. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1624. ERR_FAIL_NULL_V(multimesh, Vector<float>());
  1625. if (multimesh->buffer.is_null()) {
  1626. return Vector<float>();
  1627. } else {
  1628. Vector<float> ret;
  1629. ret.resize(multimesh->instances * multimesh->stride_cache);
  1630. float *w = ret.ptrw();
  1631. if (multimesh->data_cache.size()) {
  1632. const uint8_t *r = (uint8_t *)multimesh->data_cache.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1633. memcpy(w, r, ret.size() * sizeof(float));
  1634. } else {
  1635. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1636. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1637. memcpy(w, r, ret.size() * sizeof(float));
  1638. }
  1639. return ret;
  1640. }
  1641. }
  1642. void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1643. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1644. ERR_FAIL_NULL(multimesh);
  1645. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1646. if (multimesh->visible_instances == p_visible) {
  1647. return;
  1648. }
  1649. if (multimesh->data_cache.size()) {
  1650. // There is a data cache, but we may need to update some sections.
  1651. _multimesh_mark_all_dirty(multimesh, false, true);
  1652. int start = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1653. for (int i = start; i < p_visible; i++) {
  1654. _multimesh_mark_dirty(multimesh, i, true);
  1655. }
  1656. }
  1657. multimesh->visible_instances = p_visible;
  1658. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1659. }
  1660. int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const {
  1661. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1662. ERR_FAIL_NULL_V(multimesh, 0);
  1663. return multimesh->visible_instances;
  1664. }
  1665. AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const {
  1666. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1667. ERR_FAIL_NULL_V(multimesh, AABB());
  1668. if (multimesh->aabb_dirty) {
  1669. const_cast<MeshStorage *>(this)->_update_dirty_multimeshes();
  1670. }
  1671. return multimesh->aabb;
  1672. }
  1673. void MeshStorage::_update_dirty_multimeshes() {
  1674. while (multimesh_dirty_list) {
  1675. MultiMesh *multimesh = multimesh_dirty_list;
  1676. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1677. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1678. uint32_t buffer_offset = multimesh->motion_vectors_current_offset * multimesh->stride_cache;
  1679. const float *data = multimesh->data_cache.ptr() + buffer_offset;
  1680. uint32_t total_dirty_regions = multimesh->data_cache_dirty_region_count + multimesh->previous_data_cache_dirty_region_count;
  1681. if (total_dirty_regions != 0) {
  1682. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, (int)MULTIMESH_DIRTY_REGION_SIZE);
  1683. uint32_t visible_region_count = visible_instances == 0 ? 0 : Math::division_round_up(visible_instances, (uint32_t)MULTIMESH_DIRTY_REGION_SIZE);
  1684. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1685. if (total_dirty_regions > 32 || total_dirty_regions > visible_region_count / 2) {
  1686. //if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1687. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float), MIN(visible_region_count * region_size, multimesh->instances * (uint32_t)multimesh->stride_cache * (uint32_t)sizeof(float)), data);
  1688. } else {
  1689. //not that many regions? update them all
  1690. for (uint32_t i = 0; i < visible_region_count; i++) {
  1691. if (multimesh->data_cache_dirty_regions[i] || multimesh->previous_data_cache_dirty_regions[i]) {
  1692. uint32_t offset = i * region_size;
  1693. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1694. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1695. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float) + offset, MIN(region_size, size - offset), &data[region_start_index]);
  1696. }
  1697. }
  1698. }
  1699. memcpy(multimesh->previous_data_cache_dirty_regions, multimesh->data_cache_dirty_regions, data_cache_dirty_region_count * sizeof(bool));
  1700. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1701. multimesh->previous_data_cache_dirty_region_count = multimesh->data_cache_dirty_region_count;
  1702. multimesh->data_cache_dirty_region_count = 0;
  1703. }
  1704. if (multimesh->aabb_dirty) {
  1705. //aabb is dirty..
  1706. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1707. multimesh->aabb_dirty = false;
  1708. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1709. }
  1710. }
  1711. multimesh_dirty_list = multimesh->dirty_list;
  1712. multimesh->dirty_list = nullptr;
  1713. multimesh->dirty = false;
  1714. }
  1715. multimesh_dirty_list = nullptr;
  1716. }
  1717. /* SKELETON API */
  1718. RID MeshStorage::skeleton_allocate() {
  1719. return skeleton_owner.allocate_rid();
  1720. }
  1721. void MeshStorage::skeleton_initialize(RID p_rid) {
  1722. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1723. }
  1724. void MeshStorage::skeleton_free(RID p_rid) {
  1725. _update_dirty_skeletons();
  1726. skeleton_allocate_data(p_rid, 0);
  1727. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1728. skeleton->dependency.deleted_notify(p_rid);
  1729. skeleton_owner.free(p_rid);
  1730. }
  1731. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1732. if (!skeleton->dirty) {
  1733. skeleton->dirty = true;
  1734. skeleton->dirty_list = skeleton_dirty_list;
  1735. skeleton_dirty_list = skeleton;
  1736. }
  1737. }
  1738. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1739. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1740. ERR_FAIL_NULL(skeleton);
  1741. ERR_FAIL_COND(p_bones < 0);
  1742. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1743. return;
  1744. }
  1745. skeleton->size = p_bones;
  1746. skeleton->use_2d = p_2d_skeleton;
  1747. skeleton->uniform_set_3d = RID();
  1748. if (skeleton->buffer.is_valid()) {
  1749. RD::get_singleton()->free(skeleton->buffer);
  1750. skeleton->buffer = RID();
  1751. skeleton->data.clear();
  1752. skeleton->uniform_set_mi = RID();
  1753. }
  1754. if (skeleton->size) {
  1755. skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12));
  1756. skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float));
  1757. memset(skeleton->data.ptrw(), 0, skeleton->data.size() * sizeof(float));
  1758. _skeleton_make_dirty(skeleton);
  1759. {
  1760. Vector<RD::Uniform> uniforms;
  1761. {
  1762. RD::Uniform u;
  1763. u.binding = 0;
  1764. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1765. u.append_id(skeleton->buffer);
  1766. uniforms.push_back(u);
  1767. }
  1768. skeleton->uniform_set_mi = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  1769. }
  1770. }
  1771. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1772. }
  1773. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1774. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1775. ERR_FAIL_NULL_V(skeleton, 0);
  1776. return skeleton->size;
  1777. }
  1778. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1779. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1780. ERR_FAIL_NULL(skeleton);
  1781. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1782. ERR_FAIL_COND(skeleton->use_2d);
  1783. float *dataptr = skeleton->data.ptrw() + p_bone * 12;
  1784. dataptr[0] = p_transform.basis.rows[0][0];
  1785. dataptr[1] = p_transform.basis.rows[0][1];
  1786. dataptr[2] = p_transform.basis.rows[0][2];
  1787. dataptr[3] = p_transform.origin.x;
  1788. dataptr[4] = p_transform.basis.rows[1][0];
  1789. dataptr[5] = p_transform.basis.rows[1][1];
  1790. dataptr[6] = p_transform.basis.rows[1][2];
  1791. dataptr[7] = p_transform.origin.y;
  1792. dataptr[8] = p_transform.basis.rows[2][0];
  1793. dataptr[9] = p_transform.basis.rows[2][1];
  1794. dataptr[10] = p_transform.basis.rows[2][2];
  1795. dataptr[11] = p_transform.origin.z;
  1796. _skeleton_make_dirty(skeleton);
  1797. }
  1798. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1799. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1800. ERR_FAIL_NULL_V(skeleton, Transform3D());
  1801. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1802. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1803. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1804. Transform3D t;
  1805. t.basis.rows[0][0] = dataptr[0];
  1806. t.basis.rows[0][1] = dataptr[1];
  1807. t.basis.rows[0][2] = dataptr[2];
  1808. t.origin.x = dataptr[3];
  1809. t.basis.rows[1][0] = dataptr[4];
  1810. t.basis.rows[1][1] = dataptr[5];
  1811. t.basis.rows[1][2] = dataptr[6];
  1812. t.origin.y = dataptr[7];
  1813. t.basis.rows[2][0] = dataptr[8];
  1814. t.basis.rows[2][1] = dataptr[9];
  1815. t.basis.rows[2][2] = dataptr[10];
  1816. t.origin.z = dataptr[11];
  1817. return t;
  1818. }
  1819. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1820. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1821. ERR_FAIL_NULL(skeleton);
  1822. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1823. ERR_FAIL_COND(!skeleton->use_2d);
  1824. float *dataptr = skeleton->data.ptrw() + p_bone * 8;
  1825. dataptr[0] = p_transform.columns[0][0];
  1826. dataptr[1] = p_transform.columns[1][0];
  1827. dataptr[2] = 0;
  1828. dataptr[3] = p_transform.columns[2][0];
  1829. dataptr[4] = p_transform.columns[0][1];
  1830. dataptr[5] = p_transform.columns[1][1];
  1831. dataptr[6] = 0;
  1832. dataptr[7] = p_transform.columns[2][1];
  1833. _skeleton_make_dirty(skeleton);
  1834. }
  1835. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1836. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1837. ERR_FAIL_NULL_V(skeleton, Transform2D());
  1838. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  1839. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  1840. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1841. Transform2D t;
  1842. t.columns[0][0] = dataptr[0];
  1843. t.columns[1][0] = dataptr[1];
  1844. t.columns[2][0] = dataptr[3];
  1845. t.columns[0][1] = dataptr[4];
  1846. t.columns[1][1] = dataptr[5];
  1847. t.columns[2][1] = dataptr[7];
  1848. return t;
  1849. }
  1850. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  1851. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1852. ERR_FAIL_NULL(skeleton);
  1853. ERR_FAIL_COND(!skeleton->use_2d);
  1854. skeleton->base_transform_2d = p_base_transform;
  1855. }
  1856. void MeshStorage::_update_dirty_skeletons() {
  1857. while (skeleton_dirty_list) {
  1858. Skeleton *skeleton = skeleton_dirty_list;
  1859. if (skeleton->size) {
  1860. RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr());
  1861. }
  1862. skeleton_dirty_list = skeleton->dirty_list;
  1863. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  1864. skeleton->version++;
  1865. skeleton->dirty = false;
  1866. skeleton->dirty_list = nullptr;
  1867. }
  1868. skeleton_dirty_list = nullptr;
  1869. }
  1870. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  1871. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1872. ERR_FAIL_NULL(skeleton);
  1873. p_instance->update_dependency(&skeleton->dependency);
  1874. }