mesh_storage.cpp 78 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272
  1. /**************************************************************************/
  2. /* mesh_storage.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "mesh_storage.h"
  31. using namespace RendererRD;
  32. MeshStorage *MeshStorage::singleton = nullptr;
  33. MeshStorage *MeshStorage::get_singleton() {
  34. return singleton;
  35. }
  36. MeshStorage::MeshStorage() {
  37. singleton = this;
  38. default_rd_storage_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4);
  39. //default rd buffers
  40. {
  41. Vector<uint8_t> buffer;
  42. {
  43. buffer.resize(sizeof(float) * 3);
  44. {
  45. uint8_t *w = buffer.ptrw();
  46. float *fptr = reinterpret_cast<float *>(w);
  47. fptr[0] = 0.0;
  48. fptr[1] = 0.0;
  49. fptr[2] = 0.0;
  50. }
  51. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  52. }
  53. { //normal
  54. buffer.resize(sizeof(float) * 3);
  55. {
  56. uint8_t *w = buffer.ptrw();
  57. float *fptr = reinterpret_cast<float *>(w);
  58. fptr[0] = 1.0;
  59. fptr[1] = 0.0;
  60. fptr[2] = 0.0;
  61. }
  62. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  63. }
  64. { //tangent
  65. buffer.resize(sizeof(float) * 4);
  66. {
  67. uint8_t *w = buffer.ptrw();
  68. float *fptr = reinterpret_cast<float *>(w);
  69. fptr[0] = 1.0;
  70. fptr[1] = 0.0;
  71. fptr[2] = 0.0;
  72. fptr[3] = 0.0;
  73. }
  74. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  75. }
  76. { //color
  77. buffer.resize(sizeof(float) * 4);
  78. {
  79. uint8_t *w = buffer.ptrw();
  80. float *fptr = reinterpret_cast<float *>(w);
  81. fptr[0] = 1.0;
  82. fptr[1] = 1.0;
  83. fptr[2] = 1.0;
  84. fptr[3] = 1.0;
  85. }
  86. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  87. }
  88. { //tex uv 1
  89. buffer.resize(sizeof(float) * 2);
  90. {
  91. uint8_t *w = buffer.ptrw();
  92. float *fptr = reinterpret_cast<float *>(w);
  93. fptr[0] = 0.0;
  94. fptr[1] = 0.0;
  95. }
  96. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  97. }
  98. { //tex uv 2
  99. buffer.resize(sizeof(float) * 2);
  100. {
  101. uint8_t *w = buffer.ptrw();
  102. float *fptr = reinterpret_cast<float *>(w);
  103. fptr[0] = 0.0;
  104. fptr[1] = 0.0;
  105. }
  106. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  107. }
  108. for (int i = 0; i < RS::ARRAY_CUSTOM_COUNT; i++) {
  109. buffer.resize(sizeof(float) * 4);
  110. {
  111. uint8_t *w = buffer.ptrw();
  112. float *fptr = reinterpret_cast<float *>(w);
  113. fptr[0] = 0.0;
  114. fptr[1] = 0.0;
  115. fptr[2] = 0.0;
  116. fptr[3] = 0.0;
  117. }
  118. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_CUSTOM0 + i] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  119. }
  120. { //bones
  121. buffer.resize(sizeof(uint32_t) * 4);
  122. {
  123. uint8_t *w = buffer.ptrw();
  124. uint32_t *fptr = reinterpret_cast<uint32_t *>(w);
  125. fptr[0] = 0;
  126. fptr[1] = 0;
  127. fptr[2] = 0;
  128. fptr[3] = 0;
  129. }
  130. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  131. }
  132. { //weights
  133. buffer.resize(sizeof(float) * 4);
  134. {
  135. uint8_t *w = buffer.ptrw();
  136. float *fptr = reinterpret_cast<float *>(w);
  137. fptr[0] = 0.0;
  138. fptr[1] = 0.0;
  139. fptr[2] = 0.0;
  140. fptr[3] = 0.0;
  141. }
  142. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  143. }
  144. }
  145. {
  146. Vector<String> skeleton_modes;
  147. skeleton_modes.push_back("\n#define MODE_2D\n");
  148. skeleton_modes.push_back("");
  149. skeleton_shader.shader.initialize(skeleton_modes);
  150. skeleton_shader.version = skeleton_shader.shader.version_create();
  151. for (int i = 0; i < SkeletonShader::SHADER_MODE_MAX; i++) {
  152. skeleton_shader.version_shader[i] = skeleton_shader.shader.version_get_shader(skeleton_shader.version, i);
  153. skeleton_shader.pipeline[i] = RD::get_singleton()->compute_pipeline_create(skeleton_shader.version_shader[i]);
  154. }
  155. {
  156. Vector<RD::Uniform> uniforms;
  157. {
  158. RD::Uniform u;
  159. u.binding = 0;
  160. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  161. u.append_id(default_rd_storage_buffer);
  162. uniforms.push_back(u);
  163. }
  164. skeleton_shader.default_skeleton_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  165. }
  166. }
  167. }
  168. MeshStorage::~MeshStorage() {
  169. //def buffers
  170. for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) {
  171. RD::get_singleton()->free(mesh_default_rd_buffers[i]);
  172. }
  173. skeleton_shader.shader.version_free(skeleton_shader.version);
  174. RD::get_singleton()->free(default_rd_storage_buffer);
  175. singleton = nullptr;
  176. }
  177. bool MeshStorage::free(RID p_rid) {
  178. if (owns_mesh(p_rid)) {
  179. mesh_free(p_rid);
  180. return true;
  181. } else if (owns_mesh_instance(p_rid)) {
  182. mesh_instance_free(p_rid);
  183. return true;
  184. } else if (owns_multimesh(p_rid)) {
  185. multimesh_free(p_rid);
  186. return true;
  187. } else if (owns_skeleton(p_rid)) {
  188. skeleton_free(p_rid);
  189. return true;
  190. }
  191. return false;
  192. }
  193. /* MESH API */
  194. RID MeshStorage::mesh_allocate() {
  195. return mesh_owner.allocate_rid();
  196. }
  197. void MeshStorage::mesh_initialize(RID p_rid) {
  198. mesh_owner.initialize_rid(p_rid, Mesh());
  199. }
  200. void MeshStorage::mesh_free(RID p_rid) {
  201. mesh_clear(p_rid);
  202. mesh_set_shadow_mesh(p_rid, RID());
  203. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  204. ERR_FAIL_NULL(mesh);
  205. mesh->dependency.deleted_notify(p_rid);
  206. if (mesh->instances.size()) {
  207. ERR_PRINT("deleting mesh with active instances");
  208. }
  209. if (mesh->shadow_owners.size()) {
  210. for (Mesh *E : mesh->shadow_owners) {
  211. Mesh *shadow_owner = E;
  212. shadow_owner->shadow_mesh = RID();
  213. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  214. }
  215. }
  216. mesh_owner.free(p_rid);
  217. }
  218. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  219. ERR_FAIL_COND(p_blend_shape_count < 0);
  220. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  221. ERR_FAIL_NULL(mesh);
  222. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  223. mesh->blend_shape_count = p_blend_shape_count;
  224. }
  225. /// Returns stride
  226. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  227. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  228. ERR_FAIL_NULL(mesh);
  229. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  230. #ifdef DEBUG_ENABLED
  231. //do a validation, to catch errors first
  232. {
  233. uint32_t stride = 0;
  234. uint32_t attrib_stride = 0;
  235. uint32_t skin_stride = 0;
  236. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  237. if ((p_surface.format & (1ULL << i))) {
  238. switch (i) {
  239. case RS::ARRAY_VERTEX: {
  240. if ((p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) || (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  241. stride += sizeof(float) * 2;
  242. } else {
  243. stride += sizeof(float) * 3;
  244. }
  245. } break;
  246. case RS::ARRAY_NORMAL: {
  247. stride += sizeof(uint16_t) * 2;
  248. } break;
  249. case RS::ARRAY_TANGENT: {
  250. if (!(p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  251. stride += sizeof(uint16_t) * 2;
  252. }
  253. } break;
  254. case RS::ARRAY_COLOR: {
  255. attrib_stride += sizeof(uint32_t);
  256. } break;
  257. case RS::ARRAY_TEX_UV: {
  258. if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  259. attrib_stride += sizeof(uint16_t) * 2;
  260. } else {
  261. attrib_stride += sizeof(float) * 2;
  262. }
  263. } break;
  264. case RS::ARRAY_TEX_UV2: {
  265. if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  266. attrib_stride += sizeof(uint16_t) * 2;
  267. } else {
  268. attrib_stride += sizeof(float) * 2;
  269. }
  270. } break;
  271. case RS::ARRAY_CUSTOM0:
  272. case RS::ARRAY_CUSTOM1:
  273. case RS::ARRAY_CUSTOM2:
  274. case RS::ARRAY_CUSTOM3: {
  275. int idx = i - RS::ARRAY_CUSTOM0;
  276. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  277. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  278. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  279. attrib_stride += fmtsize[fmt];
  280. } break;
  281. case RS::ARRAY_WEIGHTS:
  282. case RS::ARRAY_BONES: {
  283. //uses a separate array
  284. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  285. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  286. } break;
  287. }
  288. }
  289. }
  290. int expected_size = stride * p_surface.vertex_count;
  291. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  292. int bs_expected_size = expected_size * mesh->blend_shape_count;
  293. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  294. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  295. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  296. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  297. expected_size = skin_stride * p_surface.vertex_count;
  298. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  299. }
  300. }
  301. #endif
  302. uint64_t surface_version = p_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  303. RS::SurfaceData new_surface = p_surface;
  304. #ifdef DISABLE_DEPRECATED
  305. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION, "Surface version provided (" + itos(int(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT)) + ") does not match current version (" + itos(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) + ")");
  306. #else
  307. if (surface_version != uint64_t(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION)) {
  308. RS::get_singleton()->fix_surface_compatibility(new_surface);
  309. surface_version = new_surface.format & (RS::ARRAY_FLAG_FORMAT_VERSION_MASK << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  310. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION,
  311. vformat("Surface version provided (%d) does not match current version (%d).",
  312. (surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK,
  313. (RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK));
  314. }
  315. #endif
  316. Mesh::Surface *s = memnew(Mesh::Surface);
  317. s->format = new_surface.format;
  318. s->primitive = new_surface.primitive;
  319. bool use_as_storage = (new_surface.skin_data.size() || mesh->blend_shape_count > 0);
  320. if (new_surface.vertex_data.size()) {
  321. // If we have an uncompressed surface that contains normals, but not tangents, we need to differentiate the array
  322. // from a compressed array in the shader. To do so, we allow the the normal to read 4 components out of the buffer
  323. // But only give it 2 components per normal. So essentially, each vertex reads the next normal in normal.zw.
  324. // This allows us to avoid adding a shader permutation, and avoid passing dummy tangents. Since the stride is kept small
  325. // this should still be a net win for bandwidth.
  326. // If we do this, then the last normal will read past the end of the array. So we need to pad the array with dummy data.
  327. if (!(new_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (new_surface.format & RS::ARRAY_FORMAT_NORMAL) && !(new_surface.format & RS::ARRAY_FORMAT_TANGENT)) {
  328. // Unfortunately, we need to copy the buffer, which is fine as doing a resize triggers a CoW anyway.
  329. Vector<uint8_t> new_vertex_data;
  330. new_vertex_data.resize_zeroed(new_surface.vertex_data.size() + sizeof(uint16_t) * 2);
  331. memcpy(new_vertex_data.ptrw(), new_surface.vertex_data.ptr(), new_surface.vertex_data.size());
  332. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(new_vertex_data.size(), new_vertex_data, use_as_storage);
  333. s->vertex_buffer_size = new_vertex_data.size();
  334. } else {
  335. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.vertex_data.size(), new_surface.vertex_data, use_as_storage);
  336. s->vertex_buffer_size = new_surface.vertex_data.size();
  337. }
  338. }
  339. if (new_surface.attribute_data.size()) {
  340. s->attribute_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.attribute_data.size(), new_surface.attribute_data);
  341. }
  342. if (new_surface.skin_data.size()) {
  343. s->skin_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.skin_data.size(), new_surface.skin_data, use_as_storage);
  344. s->skin_buffer_size = new_surface.skin_data.size();
  345. }
  346. s->vertex_count = new_surface.vertex_count;
  347. if (new_surface.format & RS::ARRAY_FORMAT_BONES) {
  348. mesh->has_bone_weights = true;
  349. }
  350. if (new_surface.index_count) {
  351. bool is_index_16 = new_surface.vertex_count <= 65536 && new_surface.vertex_count > 0;
  352. s->index_buffer = RD::get_singleton()->index_buffer_create(new_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, new_surface.index_data, false);
  353. s->index_count = new_surface.index_count;
  354. s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count);
  355. if (new_surface.lods.size()) {
  356. s->lods = memnew_arr(Mesh::Surface::LOD, new_surface.lods.size());
  357. s->lod_count = new_surface.lods.size();
  358. for (int i = 0; i < new_surface.lods.size(); i++) {
  359. uint32_t indices = new_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  360. s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, new_surface.lods[i].index_data);
  361. s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices);
  362. s->lods[i].edge_length = new_surface.lods[i].edge_length;
  363. s->lods[i].index_count = indices;
  364. }
  365. }
  366. }
  367. ERR_FAIL_COND_MSG(!new_surface.index_count && !new_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  368. s->aabb = new_surface.aabb;
  369. s->bone_aabbs = new_surface.bone_aabbs; //only really useful for returning them.
  370. s->uv_scale = new_surface.uv_scale;
  371. if (mesh->blend_shape_count > 0) {
  372. s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(new_surface.blend_shape_data.size(), new_surface.blend_shape_data);
  373. }
  374. if (use_as_storage) {
  375. Vector<RD::Uniform> uniforms;
  376. {
  377. RD::Uniform u;
  378. u.binding = 0;
  379. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  380. if (s->vertex_buffer.is_valid()) {
  381. u.append_id(s->vertex_buffer);
  382. } else {
  383. u.append_id(default_rd_storage_buffer);
  384. }
  385. uniforms.push_back(u);
  386. }
  387. {
  388. RD::Uniform u;
  389. u.binding = 1;
  390. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  391. if (s->skin_buffer.is_valid()) {
  392. u.append_id(s->skin_buffer);
  393. } else {
  394. u.append_id(default_rd_storage_buffer);
  395. }
  396. uniforms.push_back(u);
  397. }
  398. {
  399. RD::Uniform u;
  400. u.binding = 2;
  401. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  402. if (s->blend_shape_buffer.is_valid()) {
  403. u.append_id(s->blend_shape_buffer);
  404. } else {
  405. u.append_id(default_rd_storage_buffer);
  406. }
  407. uniforms.push_back(u);
  408. }
  409. s->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SURFACE);
  410. }
  411. if (mesh->surface_count == 0) {
  412. mesh->aabb = new_surface.aabb;
  413. } else {
  414. mesh->aabb.merge_with(new_surface.aabb);
  415. }
  416. mesh->skeleton_aabb_version = 0;
  417. s->material = new_surface.material;
  418. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  419. mesh->surfaces[mesh->surface_count] = s;
  420. mesh->surface_count++;
  421. for (MeshInstance *mi : mesh->instances) {
  422. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  423. }
  424. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  425. for (Mesh *E : mesh->shadow_owners) {
  426. Mesh *shadow_owner = E;
  427. shadow_owner->shadow_mesh = RID();
  428. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  429. }
  430. mesh->material_cache.clear();
  431. }
  432. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  433. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  434. ERR_FAIL_NULL_V(mesh, -1);
  435. return mesh->blend_shape_count;
  436. }
  437. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  438. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  439. ERR_FAIL_NULL(mesh);
  440. ERR_FAIL_INDEX((int)p_mode, 2);
  441. mesh->blend_shape_mode = p_mode;
  442. }
  443. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  444. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  445. ERR_FAIL_NULL_V(mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  446. return mesh->blend_shape_mode;
  447. }
  448. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  449. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  450. ERR_FAIL_NULL(mesh);
  451. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  452. ERR_FAIL_COND(p_data.size() == 0);
  453. ERR_FAIL_COND(mesh->surfaces[p_surface]->vertex_buffer.is_null());
  454. uint64_t data_size = p_data.size();
  455. const uint8_t *r = p_data.ptr();
  456. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r);
  457. }
  458. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  459. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  460. ERR_FAIL_NULL(mesh);
  461. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  462. ERR_FAIL_COND(p_data.size() == 0);
  463. ERR_FAIL_COND(mesh->surfaces[p_surface]->attribute_buffer.is_null());
  464. uint64_t data_size = p_data.size();
  465. const uint8_t *r = p_data.ptr();
  466. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->attribute_buffer, p_offset, data_size, r);
  467. }
  468. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  469. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  470. ERR_FAIL_NULL(mesh);
  471. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  472. ERR_FAIL_COND(p_data.size() == 0);
  473. ERR_FAIL_COND(mesh->surfaces[p_surface]->skin_buffer.is_null());
  474. uint64_t data_size = p_data.size();
  475. const uint8_t *r = p_data.ptr();
  476. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->skin_buffer, p_offset, data_size, r);
  477. }
  478. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  479. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  480. ERR_FAIL_NULL(mesh);
  481. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  482. mesh->surfaces[p_surface]->material = p_material;
  483. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  484. mesh->material_cache.clear();
  485. }
  486. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  487. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  488. ERR_FAIL_NULL_V(mesh, RID());
  489. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  490. return mesh->surfaces[p_surface]->material;
  491. }
  492. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  493. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  494. ERR_FAIL_NULL_V(mesh, RS::SurfaceData());
  495. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  496. Mesh::Surface &s = *mesh->surfaces[p_surface];
  497. RS::SurfaceData sd;
  498. sd.format = s.format;
  499. if (s.vertex_buffer.is_valid()) {
  500. sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer);
  501. // When using an uncompressed buffer with normals, but without tangents, we have to trim the padding.
  502. if (!(s.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (s.format & RS::ARRAY_FORMAT_NORMAL) && !(s.format & RS::ARRAY_FORMAT_TANGENT)) {
  503. sd.vertex_data.resize(sd.vertex_data.size() - sizeof(uint16_t) * 2);
  504. }
  505. }
  506. if (s.attribute_buffer.is_valid()) {
  507. sd.attribute_data = RD::get_singleton()->buffer_get_data(s.attribute_buffer);
  508. }
  509. if (s.skin_buffer.is_valid()) {
  510. sd.skin_data = RD::get_singleton()->buffer_get_data(s.skin_buffer);
  511. }
  512. sd.vertex_count = s.vertex_count;
  513. sd.index_count = s.index_count;
  514. sd.primitive = s.primitive;
  515. if (sd.index_count) {
  516. sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer);
  517. }
  518. sd.aabb = s.aabb;
  519. sd.uv_scale = s.uv_scale;
  520. for (uint32_t i = 0; i < s.lod_count; i++) {
  521. RS::SurfaceData::LOD lod;
  522. lod.edge_length = s.lods[i].edge_length;
  523. lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
  524. sd.lods.push_back(lod);
  525. }
  526. sd.bone_aabbs = s.bone_aabbs;
  527. if (s.blend_shape_buffer.is_valid()) {
  528. sd.blend_shape_data = RD::get_singleton()->buffer_get_data(s.blend_shape_buffer);
  529. }
  530. return sd;
  531. }
  532. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  533. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  534. ERR_FAIL_NULL_V(mesh, 0);
  535. return mesh->surface_count;
  536. }
  537. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  538. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  539. ERR_FAIL_NULL(mesh);
  540. mesh->custom_aabb = p_aabb;
  541. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  542. }
  543. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  544. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  545. ERR_FAIL_NULL_V(mesh, AABB());
  546. return mesh->custom_aabb;
  547. }
  548. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  549. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  550. ERR_FAIL_NULL_V(mesh, AABB());
  551. if (mesh->custom_aabb != AABB()) {
  552. return mesh->custom_aabb;
  553. }
  554. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  555. if (!skeleton || skeleton->size == 0 || mesh->skeleton_aabb_version == skeleton->version) {
  556. return mesh->aabb;
  557. }
  558. AABB aabb;
  559. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  560. AABB laabb;
  561. if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) {
  562. int bs = mesh->surfaces[i]->bone_aabbs.size();
  563. const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr();
  564. int sbs = skeleton->size;
  565. ERR_CONTINUE(bs > sbs);
  566. const float *baseptr = skeleton->data.ptr();
  567. bool first = true;
  568. if (skeleton->use_2d) {
  569. for (int j = 0; j < bs; j++) {
  570. if (skbones[j].size == Vector3(-1, -1, -1)) {
  571. continue; //bone is unused
  572. }
  573. const float *dataptr = baseptr + j * 8;
  574. Transform3D mtx;
  575. mtx.basis.rows[0][0] = dataptr[0];
  576. mtx.basis.rows[0][1] = dataptr[1];
  577. mtx.origin.x = dataptr[3];
  578. mtx.basis.rows[1][0] = dataptr[4];
  579. mtx.basis.rows[1][1] = dataptr[5];
  580. mtx.origin.y = dataptr[7];
  581. AABB baabb = mtx.xform(skbones[j]);
  582. if (first) {
  583. laabb = baabb;
  584. first = false;
  585. } else {
  586. laabb.merge_with(baabb);
  587. }
  588. }
  589. } else {
  590. for (int j = 0; j < bs; j++) {
  591. if (skbones[j].size == Vector3(-1, -1, -1)) {
  592. continue; //bone is unused
  593. }
  594. const float *dataptr = baseptr + j * 12;
  595. Transform3D mtx;
  596. mtx.basis.rows[0][0] = dataptr[0];
  597. mtx.basis.rows[0][1] = dataptr[1];
  598. mtx.basis.rows[0][2] = dataptr[2];
  599. mtx.origin.x = dataptr[3];
  600. mtx.basis.rows[1][0] = dataptr[4];
  601. mtx.basis.rows[1][1] = dataptr[5];
  602. mtx.basis.rows[1][2] = dataptr[6];
  603. mtx.origin.y = dataptr[7];
  604. mtx.basis.rows[2][0] = dataptr[8];
  605. mtx.basis.rows[2][1] = dataptr[9];
  606. mtx.basis.rows[2][2] = dataptr[10];
  607. mtx.origin.z = dataptr[11];
  608. AABB baabb = mtx.xform(skbones[j]);
  609. if (first) {
  610. laabb = baabb;
  611. first = false;
  612. } else {
  613. laabb.merge_with(baabb);
  614. }
  615. }
  616. }
  617. if (laabb.size == Vector3()) {
  618. laabb = mesh->surfaces[i]->aabb;
  619. }
  620. } else {
  621. laabb = mesh->surfaces[i]->aabb;
  622. }
  623. if (i == 0) {
  624. aabb = laabb;
  625. } else {
  626. aabb.merge_with(laabb);
  627. }
  628. }
  629. mesh->aabb = aabb;
  630. mesh->skeleton_aabb_version = skeleton->version;
  631. return aabb;
  632. }
  633. void MeshStorage::mesh_set_path(RID p_mesh, const String &p_path) {
  634. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  635. ERR_FAIL_NULL(mesh);
  636. mesh->path = p_path;
  637. }
  638. String MeshStorage::mesh_get_path(RID p_mesh) const {
  639. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  640. ERR_FAIL_NULL_V(mesh, String());
  641. return mesh->path;
  642. }
  643. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  644. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  645. ERR_FAIL_NULL(mesh);
  646. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  647. if (shadow_mesh) {
  648. shadow_mesh->shadow_owners.erase(mesh);
  649. }
  650. mesh->shadow_mesh = p_shadow_mesh;
  651. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  652. if (shadow_mesh) {
  653. shadow_mesh->shadow_owners.insert(mesh);
  654. }
  655. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  656. }
  657. void MeshStorage::mesh_clear(RID p_mesh) {
  658. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  659. ERR_FAIL_NULL(mesh);
  660. // Clear instance data before mesh data.
  661. for (MeshInstance *mi : mesh->instances) {
  662. _mesh_instance_clear(mi);
  663. }
  664. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  665. Mesh::Surface &s = *mesh->surfaces[i];
  666. if (s.vertex_buffer.is_valid()) {
  667. RD::get_singleton()->free(s.vertex_buffer); //clears arrays as dependency automatically, including all versions
  668. }
  669. if (s.attribute_buffer.is_valid()) {
  670. RD::get_singleton()->free(s.attribute_buffer);
  671. }
  672. if (s.skin_buffer.is_valid()) {
  673. RD::get_singleton()->free(s.skin_buffer);
  674. }
  675. if (s.versions) {
  676. memfree(s.versions); //reallocs, so free with memfree.
  677. }
  678. if (s.index_buffer.is_valid()) {
  679. RD::get_singleton()->free(s.index_buffer);
  680. }
  681. if (s.lod_count) {
  682. for (uint32_t j = 0; j < s.lod_count; j++) {
  683. RD::get_singleton()->free(s.lods[j].index_buffer);
  684. }
  685. memdelete_arr(s.lods);
  686. }
  687. if (s.blend_shape_buffer.is_valid()) {
  688. RD::get_singleton()->free(s.blend_shape_buffer);
  689. }
  690. memdelete(mesh->surfaces[i]);
  691. }
  692. if (mesh->surfaces) {
  693. memfree(mesh->surfaces);
  694. }
  695. mesh->surfaces = nullptr;
  696. mesh->surface_count = 0;
  697. mesh->material_cache.clear();
  698. mesh->has_bone_weights = false;
  699. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  700. for (Mesh *E : mesh->shadow_owners) {
  701. Mesh *shadow_owner = E;
  702. shadow_owner->shadow_mesh = RID();
  703. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  704. }
  705. }
  706. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  707. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  708. ERR_FAIL_NULL_V(mesh, false);
  709. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  710. }
  711. Dependency *MeshStorage::mesh_get_dependency(RID p_mesh) const {
  712. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  713. ERR_FAIL_NULL_V(mesh, nullptr);
  714. return &mesh->dependency;
  715. }
  716. /* MESH INSTANCE */
  717. RID MeshStorage::mesh_instance_create(RID p_base) {
  718. Mesh *mesh = mesh_owner.get_or_null(p_base);
  719. ERR_FAIL_NULL_V(mesh, RID());
  720. RID rid = mesh_instance_owner.make_rid();
  721. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  722. mi->mesh = mesh;
  723. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  724. _mesh_instance_add_surface(mi, mesh, i);
  725. }
  726. mi->I = mesh->instances.push_back(mi);
  727. mi->dirty = true;
  728. return rid;
  729. }
  730. void MeshStorage::mesh_instance_free(RID p_rid) {
  731. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  732. _mesh_instance_clear(mi);
  733. mi->mesh->instances.erase(mi->I);
  734. mi->I = nullptr;
  735. mesh_instance_owner.free(p_rid);
  736. }
  737. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  738. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  739. if (mi->skeleton == p_skeleton) {
  740. return;
  741. }
  742. mi->skeleton = p_skeleton;
  743. mi->skeleton_version = 0;
  744. mi->dirty = true;
  745. }
  746. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  747. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  748. ERR_FAIL_NULL(mi);
  749. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  750. mi->blend_weights[p_shape] = p_weight;
  751. mi->weights_dirty = true;
  752. //will be eventually updated
  753. }
  754. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  755. for (const RendererRD::MeshStorage::MeshInstance::Surface &surface : mi->surfaces) {
  756. if (surface.versions) {
  757. for (uint32_t j = 0; j < surface.version_count; j++) {
  758. RD::get_singleton()->free(surface.versions[j].vertex_array);
  759. }
  760. memfree(surface.versions);
  761. }
  762. for (uint32_t i = 0; i < 2; i++) {
  763. if (surface.vertex_buffer[i].is_valid()) {
  764. RD::get_singleton()->free(surface.vertex_buffer[i]);
  765. }
  766. }
  767. }
  768. mi->surfaces.clear();
  769. if (mi->blend_weights_buffer.is_valid()) {
  770. RD::get_singleton()->free(mi->blend_weights_buffer);
  771. mi->blend_weights_buffer = RID();
  772. }
  773. mi->blend_weights.clear();
  774. mi->weights_dirty = false;
  775. mi->skeleton_version = 0;
  776. }
  777. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  778. if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer.is_null()) {
  779. mi->blend_weights.resize(mesh->blend_shape_count);
  780. for (float &weight : mi->blend_weights) {
  781. weight = 0;
  782. }
  783. mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array());
  784. mi->weights_dirty = true;
  785. }
  786. MeshInstance::Surface s;
  787. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  788. _mesh_instance_add_surface_buffer(mi, mesh, &s, p_surface, 0);
  789. }
  790. mi->surfaces.push_back(s);
  791. mi->dirty = true;
  792. }
  793. void MeshStorage::_mesh_instance_add_surface_buffer(MeshInstance *mi, Mesh *mesh, MeshInstance::Surface *s, uint32_t p_surface, uint32_t p_buffer_index) {
  794. s->vertex_buffer[p_buffer_index] = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector<uint8_t>(), true);
  795. Vector<RD::Uniform> uniforms;
  796. {
  797. RD::Uniform u;
  798. u.binding = 1;
  799. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  800. u.append_id(s->vertex_buffer[p_buffer_index]);
  801. uniforms.push_back(u);
  802. }
  803. {
  804. RD::Uniform u;
  805. u.binding = 2;
  806. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  807. if (mi->blend_weights_buffer.is_valid()) {
  808. u.append_id(mi->blend_weights_buffer);
  809. } else {
  810. u.append_id(default_rd_storage_buffer);
  811. }
  812. uniforms.push_back(u);
  813. }
  814. s->uniform_set[p_buffer_index] = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_INSTANCE);
  815. }
  816. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  817. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  818. bool needs_update = mi->dirty;
  819. if (mi->weights_dirty && !mi->weight_update_list.in_list()) {
  820. dirty_mesh_instance_weights.add(&mi->weight_update_list);
  821. needs_update = true;
  822. }
  823. if (mi->array_update_list.in_list()) {
  824. return;
  825. }
  826. if (!needs_update && mi->skeleton.is_valid()) {
  827. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  828. if (sk && sk->version != mi->skeleton_version) {
  829. needs_update = true;
  830. }
  831. }
  832. if (needs_update) {
  833. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  834. }
  835. }
  836. void MeshStorage::mesh_instance_set_canvas_item_transform(RID p_mesh_instance, const Transform2D &p_transform) {
  837. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  838. mi->canvas_item_transform_2d = p_transform;
  839. }
  840. void MeshStorage::update_mesh_instances() {
  841. while (dirty_mesh_instance_weights.first()) {
  842. MeshInstance *mi = dirty_mesh_instance_weights.first()->self();
  843. if (mi->blend_weights_buffer.is_valid()) {
  844. RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr());
  845. }
  846. dirty_mesh_instance_weights.remove(&mi->weight_update_list);
  847. mi->weights_dirty = false;
  848. }
  849. if (dirty_mesh_instance_arrays.first() == nullptr) {
  850. return; //nothing to do
  851. }
  852. //process skeletons and blend shapes
  853. uint64_t frame = RSG::rasterizer->get_frame_number();
  854. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0);
  855. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  856. while (dirty_mesh_instance_arrays.first()) {
  857. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  858. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  859. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  860. if (mi->surfaces[i].uniform_set[0].is_null() || mi->mesh->surfaces[i]->uniform_set.is_null()) {
  861. // Skip over mesh instances that don't require their own uniform buffers.
  862. continue;
  863. }
  864. mi->surfaces[i].previous_buffer = mi->surfaces[i].current_buffer;
  865. if (uses_motion_vectors && (frame - mi->surfaces[i].last_change) == 1) {
  866. // Previous buffer's data can only be one frame old to be able to use motion vectors.
  867. uint32_t new_buffer_index = mi->surfaces[i].current_buffer ^ 1;
  868. if (mi->surfaces[i].uniform_set[new_buffer_index].is_null()) {
  869. // Create the new vertex buffer on demand where the result for the current frame will be stored.
  870. _mesh_instance_add_surface_buffer(mi, mi->mesh, &mi->surfaces[i], i, new_buffer_index);
  871. }
  872. mi->surfaces[i].current_buffer = new_buffer_index;
  873. }
  874. mi->surfaces[i].last_change = frame;
  875. RID mi_surface_uniform_set = mi->surfaces[i].uniform_set[mi->surfaces[i].current_buffer];
  876. if (mi_surface_uniform_set.is_null()) {
  877. continue;
  878. }
  879. bool array_is_2d = mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_2D_VERTICES;
  880. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, skeleton_shader.pipeline[array_is_2d ? SkeletonShader::SHADER_MODE_2D : SkeletonShader::SHADER_MODE_3D]);
  881. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi_surface_uniform_set, SkeletonShader::UNIFORM_SET_INSTANCE);
  882. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->mesh->surfaces[i]->uniform_set, SkeletonShader::UNIFORM_SET_SURFACE);
  883. if (sk && sk->uniform_set_mi.is_valid()) {
  884. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sk->uniform_set_mi, SkeletonShader::UNIFORM_SET_SKELETON);
  885. } else {
  886. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, skeleton_shader.default_skeleton_uniform_set, SkeletonShader::UNIFORM_SET_SKELETON);
  887. }
  888. SkeletonShader::PushConstant push_constant;
  889. push_constant.has_normal = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_NORMAL;
  890. push_constant.has_tangent = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_TANGENT;
  891. push_constant.has_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES);
  892. push_constant.has_blend_shape = mi->mesh->blend_shape_count > 0;
  893. push_constant.normal_tangent_stride = (push_constant.has_normal ? 1 : 0) + (push_constant.has_tangent ? 1 : 0);
  894. push_constant.vertex_count = mi->mesh->surfaces[i]->vertex_count;
  895. push_constant.vertex_stride = ((mi->mesh->surfaces[i]->vertex_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4) - push_constant.normal_tangent_stride;
  896. push_constant.skin_stride = (mi->mesh->surfaces[i]->skin_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  897. push_constant.skin_weight_offset = (mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? 4 : 2;
  898. Transform2D transform = Transform2D();
  899. if (sk && sk->use_2d) {
  900. transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
  901. }
  902. push_constant.skeleton_transform_x[0] = transform.columns[0][0];
  903. push_constant.skeleton_transform_x[1] = transform.columns[0][1];
  904. push_constant.skeleton_transform_y[0] = transform.columns[1][0];
  905. push_constant.skeleton_transform_y[1] = transform.columns[1][1];
  906. push_constant.skeleton_transform_offset[0] = transform.columns[2][0];
  907. push_constant.skeleton_transform_offset[1] = transform.columns[2][1];
  908. Transform2D inverse_transform = transform.affine_inverse();
  909. push_constant.inverse_transform_x[0] = inverse_transform.columns[0][0];
  910. push_constant.inverse_transform_x[1] = inverse_transform.columns[0][1];
  911. push_constant.inverse_transform_y[0] = inverse_transform.columns[1][0];
  912. push_constant.inverse_transform_y[1] = inverse_transform.columns[1][1];
  913. push_constant.inverse_transform_offset[0] = inverse_transform.columns[2][0];
  914. push_constant.inverse_transform_offset[1] = inverse_transform.columns[2][1];
  915. push_constant.blend_shape_count = mi->mesh->blend_shape_count;
  916. push_constant.normalized_blend_shapes = mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED;
  917. push_constant.pad1 = 0;
  918. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SkeletonShader::PushConstant));
  919. //dispatch without barrier, so all is done at the same time
  920. RD::get_singleton()->compute_list_dispatch_threads(compute_list, push_constant.vertex_count, 1, 1);
  921. }
  922. mi->dirty = false;
  923. if (sk) {
  924. mi->skeleton_version = sk->version;
  925. }
  926. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  927. }
  928. RD::get_singleton()->compute_list_end();
  929. }
  930. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint64_t p_input_mask, bool p_input_motion_vectors, MeshInstance::Surface *mis, uint32_t p_current_buffer, uint32_t p_previous_buffer) {
  931. Vector<RD::VertexAttribute> attributes;
  932. Vector<RID> buffers;
  933. Vector<uint64_t> offsets;
  934. uint32_t position_stride = 0;
  935. uint32_t normal_tangent_stride = 0;
  936. uint32_t attribute_stride = 0;
  937. uint32_t skin_stride = 0;
  938. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  939. RD::VertexAttribute vd;
  940. RID buffer;
  941. vd.location = i;
  942. uint64_t offset = 0;
  943. if (!(s->format & (1ULL << i))) {
  944. // Not supplied by surface, use default value
  945. buffer = mesh_default_rd_buffers[i];
  946. vd.stride = 0;
  947. switch (i) {
  948. case RS::ARRAY_VERTEX: {
  949. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  950. } break;
  951. case RS::ARRAY_NORMAL: {
  952. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  953. } break;
  954. case RS::ARRAY_TANGENT: {
  955. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  956. } break;
  957. case RS::ARRAY_COLOR: {
  958. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  959. } break;
  960. case RS::ARRAY_TEX_UV: {
  961. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  962. } break;
  963. case RS::ARRAY_TEX_UV2: {
  964. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  965. } break;
  966. case RS::ARRAY_CUSTOM0:
  967. case RS::ARRAY_CUSTOM1:
  968. case RS::ARRAY_CUSTOM2:
  969. case RS::ARRAY_CUSTOM3: {
  970. //assumed weights too
  971. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  972. } break;
  973. case RS::ARRAY_BONES: {
  974. //assumed weights too
  975. vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
  976. } break;
  977. case RS::ARRAY_WEIGHTS: {
  978. //assumed weights too
  979. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  980. } break;
  981. }
  982. } else {
  983. //Supplied, use it
  984. vd.stride = 1; //mark that it needs a stride set (default uses 0)
  985. switch (i) {
  986. case RS::ARRAY_VERTEX: {
  987. vd.offset = position_stride;
  988. if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  989. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  990. position_stride = sizeof(float) * 2;
  991. } else {
  992. if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  993. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  994. position_stride = sizeof(uint16_t) * 4;
  995. } else {
  996. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  997. position_stride = sizeof(float) * 3;
  998. }
  999. }
  1000. if (mis) {
  1001. buffer = mis->vertex_buffer[p_current_buffer];
  1002. } else {
  1003. buffer = s->vertex_buffer;
  1004. }
  1005. } break;
  1006. case RS::ARRAY_NORMAL: {
  1007. vd.offset = 0;
  1008. offset = position_stride * s->vertex_count;
  1009. if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  1010. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1011. normal_tangent_stride += sizeof(uint16_t) * 2;
  1012. } else {
  1013. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1014. // A small trick here: if we are uncompressed and we have normals, but no tangents. We need
  1015. // the shader to think there are 4 components to "axis_tangent_attrib". So we give a size of 4,
  1016. // but a stride based on only having 2 elements.
  1017. if (!(s->format & RS::ARRAY_FORMAT_TANGENT)) {
  1018. normal_tangent_stride += sizeof(uint16_t) * 2;
  1019. } else {
  1020. normal_tangent_stride += sizeof(uint16_t) * 4;
  1021. }
  1022. }
  1023. if (mis) {
  1024. buffer = mis->vertex_buffer[p_current_buffer];
  1025. } else {
  1026. buffer = s->vertex_buffer;
  1027. }
  1028. } break;
  1029. case RS::ARRAY_TANGENT: {
  1030. buffer = mesh_default_rd_buffers[i];
  1031. vd.stride = 0;
  1032. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  1033. } break;
  1034. case RS::ARRAY_COLOR: {
  1035. vd.offset = attribute_stride;
  1036. vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  1037. attribute_stride += sizeof(int8_t) * 4;
  1038. buffer = s->attribute_buffer;
  1039. } break;
  1040. case RS::ARRAY_TEX_UV: {
  1041. vd.offset = attribute_stride;
  1042. if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  1043. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1044. attribute_stride += sizeof(uint16_t) * 2;
  1045. } else {
  1046. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1047. attribute_stride += sizeof(float) * 2;
  1048. }
  1049. buffer = s->attribute_buffer;
  1050. } break;
  1051. case RS::ARRAY_TEX_UV2: {
  1052. vd.offset = attribute_stride;
  1053. if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  1054. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1055. attribute_stride += sizeof(uint16_t) * 2;
  1056. } else {
  1057. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1058. attribute_stride += sizeof(float) * 2;
  1059. }
  1060. buffer = s->attribute_buffer;
  1061. } break;
  1062. case RS::ARRAY_CUSTOM0:
  1063. case RS::ARRAY_CUSTOM1:
  1064. case RS::ARRAY_CUSTOM2:
  1065. case RS::ARRAY_CUSTOM3: {
  1066. vd.offset = attribute_stride;
  1067. int idx = i - RS::ARRAY_CUSTOM0;
  1068. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  1069. uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  1070. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  1071. const RD::DataFormat fmtrd[RS::ARRAY_CUSTOM_MAX] = { RD::DATA_FORMAT_R8G8B8A8_UNORM, RD::DATA_FORMAT_R8G8B8A8_SNORM, RD::DATA_FORMAT_R16G16_SFLOAT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::DATA_FORMAT_R32_SFLOAT, RD::DATA_FORMAT_R32G32_SFLOAT, RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::DATA_FORMAT_R32G32B32A32_SFLOAT };
  1072. vd.format = fmtrd[fmt];
  1073. attribute_stride += fmtsize[fmt];
  1074. buffer = s->attribute_buffer;
  1075. } break;
  1076. case RS::ARRAY_BONES: {
  1077. vd.offset = skin_stride;
  1078. vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
  1079. skin_stride += sizeof(int16_t) * 4;
  1080. buffer = s->skin_buffer;
  1081. } break;
  1082. case RS::ARRAY_WEIGHTS: {
  1083. vd.offset = skin_stride;
  1084. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1085. skin_stride += sizeof(int16_t) * 4;
  1086. buffer = s->skin_buffer;
  1087. } break;
  1088. }
  1089. }
  1090. if (!(p_input_mask & (1ULL << i))) {
  1091. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  1092. }
  1093. attributes.push_back(vd);
  1094. buffers.push_back(buffer);
  1095. offsets.push_back(offset);
  1096. if (p_input_motion_vectors) {
  1097. // Since the previous vertex, normal and tangent can't be part of the vertex format but they are required when motion
  1098. // vectors are enabled, we opt to push a copy of the vertex attribute with a different location and buffer (if it's
  1099. // part of an instance that has one).
  1100. switch (i) {
  1101. case RS::ARRAY_VERTEX: {
  1102. vd.location = ATTRIBUTE_LOCATION_PREV_VERTEX;
  1103. } break;
  1104. case RS::ARRAY_NORMAL: {
  1105. vd.location = ATTRIBUTE_LOCATION_PREV_NORMAL;
  1106. } break;
  1107. case RS::ARRAY_TANGENT: {
  1108. vd.location = ATTRIBUTE_LOCATION_PREV_TANGENT;
  1109. } break;
  1110. }
  1111. if (int(vd.location) != i) {
  1112. if (mis && buffer != mesh_default_rd_buffers[i]) {
  1113. buffer = mis->vertex_buffer[p_previous_buffer];
  1114. }
  1115. attributes.push_back(vd);
  1116. buffers.push_back(buffer);
  1117. offsets.push_back(offset);
  1118. }
  1119. }
  1120. }
  1121. //update final stride
  1122. for (int i = 0; i < attributes.size(); i++) {
  1123. if (attributes[i].stride == 0) {
  1124. continue; //default location
  1125. }
  1126. int loc = attributes[i].location;
  1127. if (loc == RS::ARRAY_VERTEX || loc == ATTRIBUTE_LOCATION_PREV_VERTEX) {
  1128. attributes.write[i].stride = position_stride;
  1129. } else if ((loc < RS::ARRAY_COLOR) || ((loc >= ATTRIBUTE_LOCATION_PREV_NORMAL) && (loc <= ATTRIBUTE_LOCATION_PREV_TANGENT))) {
  1130. attributes.write[i].stride = normal_tangent_stride;
  1131. } else if (loc < RS::ARRAY_BONES) {
  1132. attributes.write[i].stride = attribute_stride;
  1133. } else {
  1134. attributes.write[i].stride = skin_stride;
  1135. }
  1136. }
  1137. v.input_mask = p_input_mask;
  1138. v.current_buffer = p_current_buffer;
  1139. v.previous_buffer = p_previous_buffer;
  1140. v.input_motion_vectors = p_input_motion_vectors;
  1141. v.vertex_format = RD::get_singleton()->vertex_format_create(attributes);
  1142. v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers, offsets);
  1143. }
  1144. ////////////////// MULTIMESH
  1145. RID MeshStorage::multimesh_allocate() {
  1146. return multimesh_owner.allocate_rid();
  1147. }
  1148. void MeshStorage::multimesh_initialize(RID p_rid) {
  1149. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  1150. }
  1151. void MeshStorage::multimesh_free(RID p_rid) {
  1152. _update_dirty_multimeshes();
  1153. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  1154. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  1155. multimesh->dependency.deleted_notify(p_rid);
  1156. multimesh_owner.free(p_rid);
  1157. }
  1158. void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
  1159. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1160. ERR_FAIL_NULL(multimesh);
  1161. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  1162. return;
  1163. }
  1164. if (multimesh->buffer.is_valid()) {
  1165. RD::get_singleton()->free(multimesh->buffer);
  1166. multimesh->buffer = RID();
  1167. multimesh->uniform_set_2d = RID(); //cleared by dependency
  1168. multimesh->uniform_set_3d = RID(); //cleared by dependency
  1169. }
  1170. if (multimesh->data_cache_dirty_regions) {
  1171. memdelete_arr(multimesh->data_cache_dirty_regions);
  1172. multimesh->data_cache_dirty_regions = nullptr;
  1173. multimesh->data_cache_dirty_region_count = 0;
  1174. }
  1175. if (multimesh->previous_data_cache_dirty_regions) {
  1176. memdelete_arr(multimesh->previous_data_cache_dirty_regions);
  1177. multimesh->previous_data_cache_dirty_regions = nullptr;
  1178. multimesh->previous_data_cache_dirty_region_count = 0;
  1179. }
  1180. multimesh->instances = p_instances;
  1181. multimesh->xform_format = p_transform_format;
  1182. multimesh->uses_colors = p_use_colors;
  1183. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1184. multimesh->uses_custom_data = p_use_custom_data;
  1185. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0);
  1186. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0);
  1187. multimesh->buffer_set = false;
  1188. //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances));
  1189. multimesh->data_cache = Vector<float>();
  1190. multimesh->aabb = AABB();
  1191. multimesh->aabb_dirty = false;
  1192. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1193. multimesh->motion_vectors_current_offset = 0;
  1194. multimesh->motion_vectors_previous_offset = 0;
  1195. multimesh->motion_vectors_last_change = -1;
  1196. if (multimesh->instances) {
  1197. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1198. if (multimesh->motion_vectors_enabled) {
  1199. buffer_size *= 2;
  1200. }
  1201. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1202. }
  1203. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1204. }
  1205. void MeshStorage::_multimesh_enable_motion_vectors(MultiMesh *multimesh) {
  1206. if (multimesh->motion_vectors_enabled) {
  1207. return;
  1208. }
  1209. multimesh->motion_vectors_enabled = true;
  1210. multimesh->motion_vectors_current_offset = 0;
  1211. multimesh->motion_vectors_previous_offset = 0;
  1212. multimesh->motion_vectors_last_change = -1;
  1213. if (!multimesh->data_cache.is_empty()) {
  1214. multimesh->data_cache.append_array(multimesh->data_cache);
  1215. }
  1216. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1217. uint32_t new_buffer_size = buffer_size * 2;
  1218. RID new_buffer = RD::get_singleton()->storage_buffer_create(new_buffer_size);
  1219. if (multimesh->buffer_set && multimesh->data_cache.is_empty()) {
  1220. // If the buffer was set but there's no data cached in the CPU, we copy the buffer directly on the GPU.
  1221. RD::get_singleton()->barrier();
  1222. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, 0, buffer_size, RD::BARRIER_MASK_NO_BARRIER);
  1223. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, buffer_size, buffer_size);
  1224. } else if (!multimesh->data_cache.is_empty()) {
  1225. // Simply upload the data cached in the CPU, which should already be doubled in size.
  1226. ERR_FAIL_COND(multimesh->data_cache.size() * sizeof(float) != size_t(new_buffer_size));
  1227. RD::get_singleton()->buffer_update(new_buffer, 0, new_buffer_size, multimesh->data_cache.ptr());
  1228. }
  1229. if (multimesh->buffer.is_valid()) {
  1230. RD::get_singleton()->free(multimesh->buffer);
  1231. }
  1232. multimesh->buffer = new_buffer;
  1233. multimesh->uniform_set_3d = RID(); // Cleared by dependency.
  1234. // Invalidate any references to the buffer that was released and the uniform set that was pointing to it.
  1235. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1236. }
  1237. void MeshStorage::_multimesh_get_motion_vectors_offsets(RID p_multimesh, uint32_t &r_current_offset, uint32_t &r_prev_offset) {
  1238. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1239. ERR_FAIL_NULL(multimesh);
  1240. r_current_offset = multimesh->motion_vectors_current_offset;
  1241. if (!_multimesh_uses_motion_vectors(multimesh)) {
  1242. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1243. }
  1244. r_prev_offset = multimesh->motion_vectors_previous_offset;
  1245. }
  1246. bool MeshStorage::_multimesh_uses_motion_vectors_offsets(RID p_multimesh) {
  1247. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1248. ERR_FAIL_NULL_V(multimesh, false);
  1249. return _multimesh_uses_motion_vectors(multimesh);
  1250. }
  1251. int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const {
  1252. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1253. ERR_FAIL_NULL_V(multimesh, 0);
  1254. return multimesh->instances;
  1255. }
  1256. void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1257. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1258. ERR_FAIL_NULL(multimesh);
  1259. if (multimesh->mesh == p_mesh) {
  1260. return;
  1261. }
  1262. multimesh->mesh = p_mesh;
  1263. if (multimesh->instances == 0) {
  1264. return;
  1265. }
  1266. if (multimesh->data_cache.size()) {
  1267. //we have a data cache, just mark it dirt
  1268. _multimesh_mark_all_dirty(multimesh, false, true);
  1269. } else if (multimesh->instances) {
  1270. //need to re-create AABB unfortunately, calling this has a penalty
  1271. if (multimesh->buffer_set) {
  1272. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1273. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1274. const float *data = reinterpret_cast<const float *>(r);
  1275. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1276. }
  1277. }
  1278. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1279. }
  1280. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1281. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1282. if (multimesh->data_cache.size() > 0) {
  1283. return; //already local
  1284. }
  1285. // this means that the user wants to load/save individual elements,
  1286. // for this, the data must reside on CPU, so just copy it there.
  1287. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache;
  1288. if (multimesh->motion_vectors_enabled) {
  1289. buffer_size *= 2;
  1290. }
  1291. multimesh->data_cache.resize(buffer_size);
  1292. {
  1293. float *w = multimesh->data_cache.ptrw();
  1294. if (multimesh->buffer_set) {
  1295. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1296. {
  1297. const uint8_t *r = buffer.ptr();
  1298. memcpy(w, r, buffer.size());
  1299. }
  1300. } else {
  1301. memset(w, 0, buffer_size * sizeof(float));
  1302. }
  1303. }
  1304. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1305. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1306. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1307. multimesh->data_cache_dirty_region_count = 0;
  1308. multimesh->previous_data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1309. memset(multimesh->previous_data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1310. multimesh->previous_data_cache_dirty_region_count = 0;
  1311. }
  1312. void MeshStorage::_multimesh_update_motion_vectors_data_cache(MultiMesh *multimesh) {
  1313. ERR_FAIL_COND(multimesh->data_cache.is_empty());
  1314. if (!multimesh->motion_vectors_enabled) {
  1315. return;
  1316. }
  1317. uint32_t frame = RSG::rasterizer->get_frame_number();
  1318. if (multimesh->motion_vectors_last_change != frame) {
  1319. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1320. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1321. multimesh->motion_vectors_last_change = frame;
  1322. if (multimesh->previous_data_cache_dirty_region_count > 0) {
  1323. uint8_t *data = (uint8_t *)multimesh->data_cache.ptrw();
  1324. uint32_t current_ofs = multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1325. uint32_t previous_ofs = multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float);
  1326. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1327. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1328. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1329. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1330. for (uint32_t i = 0; i < visible_region_count; i++) {
  1331. if (multimesh->previous_data_cache_dirty_regions[i]) {
  1332. uint32_t offset = i * region_size;
  1333. memcpy(data + current_ofs + offset, data + previous_ofs + offset, MIN(region_size, size - offset));
  1334. }
  1335. }
  1336. }
  1337. }
  1338. }
  1339. bool MeshStorage::_multimesh_uses_motion_vectors(MultiMesh *multimesh) {
  1340. return (RSG::rasterizer->get_frame_number() - multimesh->motion_vectors_last_change) < 2;
  1341. }
  1342. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1343. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1344. #ifdef DEBUG_ENABLED
  1345. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1346. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1347. #endif
  1348. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1349. multimesh->data_cache_dirty_regions[region_index] = true;
  1350. multimesh->data_cache_dirty_region_count++;
  1351. }
  1352. if (p_aabb) {
  1353. multimesh->aabb_dirty = true;
  1354. }
  1355. if (!multimesh->dirty) {
  1356. multimesh->dirty_list = multimesh_dirty_list;
  1357. multimesh_dirty_list = multimesh;
  1358. multimesh->dirty = true;
  1359. }
  1360. }
  1361. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1362. if (p_data) {
  1363. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1364. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1365. if (!multimesh->data_cache_dirty_regions[i]) {
  1366. multimesh->data_cache_dirty_regions[i] = true;
  1367. multimesh->data_cache_dirty_region_count++;
  1368. }
  1369. }
  1370. }
  1371. if (p_aabb) {
  1372. multimesh->aabb_dirty = true;
  1373. }
  1374. if (!multimesh->dirty) {
  1375. multimesh->dirty_list = multimesh_dirty_list;
  1376. multimesh_dirty_list = multimesh;
  1377. multimesh->dirty = true;
  1378. }
  1379. }
  1380. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1381. ERR_FAIL_COND(multimesh->mesh.is_null());
  1382. AABB aabb;
  1383. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1384. for (int i = 0; i < p_instances; i++) {
  1385. const float *data = p_data + multimesh->stride_cache * i;
  1386. Transform3D t;
  1387. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1388. t.basis.rows[0][0] = data[0];
  1389. t.basis.rows[0][1] = data[1];
  1390. t.basis.rows[0][2] = data[2];
  1391. t.origin.x = data[3];
  1392. t.basis.rows[1][0] = data[4];
  1393. t.basis.rows[1][1] = data[5];
  1394. t.basis.rows[1][2] = data[6];
  1395. t.origin.y = data[7];
  1396. t.basis.rows[2][0] = data[8];
  1397. t.basis.rows[2][1] = data[9];
  1398. t.basis.rows[2][2] = data[10];
  1399. t.origin.z = data[11];
  1400. } else {
  1401. t.basis.rows[0][0] = data[0];
  1402. t.basis.rows[0][1] = data[1];
  1403. t.origin.x = data[3];
  1404. t.basis.rows[1][0] = data[4];
  1405. t.basis.rows[1][1] = data[5];
  1406. t.origin.y = data[7];
  1407. }
  1408. if (i == 0) {
  1409. aabb = t.xform(mesh_aabb);
  1410. } else {
  1411. aabb.merge_with(t.xform(mesh_aabb));
  1412. }
  1413. }
  1414. multimesh->aabb = aabb;
  1415. }
  1416. void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1417. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1418. ERR_FAIL_NULL(multimesh);
  1419. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1420. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1421. _multimesh_make_local(multimesh);
  1422. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0);
  1423. if (uses_motion_vectors) {
  1424. _multimesh_enable_motion_vectors(multimesh);
  1425. }
  1426. _multimesh_update_motion_vectors_data_cache(multimesh);
  1427. {
  1428. float *w = multimesh->data_cache.ptrw();
  1429. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1430. dataptr[0] = p_transform.basis.rows[0][0];
  1431. dataptr[1] = p_transform.basis.rows[0][1];
  1432. dataptr[2] = p_transform.basis.rows[0][2];
  1433. dataptr[3] = p_transform.origin.x;
  1434. dataptr[4] = p_transform.basis.rows[1][0];
  1435. dataptr[5] = p_transform.basis.rows[1][1];
  1436. dataptr[6] = p_transform.basis.rows[1][2];
  1437. dataptr[7] = p_transform.origin.y;
  1438. dataptr[8] = p_transform.basis.rows[2][0];
  1439. dataptr[9] = p_transform.basis.rows[2][1];
  1440. dataptr[10] = p_transform.basis.rows[2][2];
  1441. dataptr[11] = p_transform.origin.z;
  1442. }
  1443. _multimesh_mark_dirty(multimesh, p_index, true);
  1444. }
  1445. void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1446. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1447. ERR_FAIL_NULL(multimesh);
  1448. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1449. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1450. _multimesh_make_local(multimesh);
  1451. _multimesh_update_motion_vectors_data_cache(multimesh);
  1452. {
  1453. float *w = multimesh->data_cache.ptrw();
  1454. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1455. dataptr[0] = p_transform.columns[0][0];
  1456. dataptr[1] = p_transform.columns[1][0];
  1457. dataptr[2] = 0;
  1458. dataptr[3] = p_transform.columns[2][0];
  1459. dataptr[4] = p_transform.columns[0][1];
  1460. dataptr[5] = p_transform.columns[1][1];
  1461. dataptr[6] = 0;
  1462. dataptr[7] = p_transform.columns[2][1];
  1463. }
  1464. _multimesh_mark_dirty(multimesh, p_index, true);
  1465. }
  1466. void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1467. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1468. ERR_FAIL_NULL(multimesh);
  1469. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1470. ERR_FAIL_COND(!multimesh->uses_colors);
  1471. _multimesh_make_local(multimesh);
  1472. _multimesh_update_motion_vectors_data_cache(multimesh);
  1473. {
  1474. float *w = multimesh->data_cache.ptrw();
  1475. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1476. dataptr[0] = p_color.r;
  1477. dataptr[1] = p_color.g;
  1478. dataptr[2] = p_color.b;
  1479. dataptr[3] = p_color.a;
  1480. }
  1481. _multimesh_mark_dirty(multimesh, p_index, false);
  1482. }
  1483. void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1484. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1485. ERR_FAIL_NULL(multimesh);
  1486. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1487. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1488. _multimesh_make_local(multimesh);
  1489. _multimesh_update_motion_vectors_data_cache(multimesh);
  1490. {
  1491. float *w = multimesh->data_cache.ptrw();
  1492. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1493. dataptr[0] = p_color.r;
  1494. dataptr[1] = p_color.g;
  1495. dataptr[2] = p_color.b;
  1496. dataptr[3] = p_color.a;
  1497. }
  1498. _multimesh_mark_dirty(multimesh, p_index, false);
  1499. }
  1500. RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const {
  1501. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1502. ERR_FAIL_NULL_V(multimesh, RID());
  1503. return multimesh->mesh;
  1504. }
  1505. Dependency *MeshStorage::multimesh_get_dependency(RID p_multimesh) const {
  1506. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1507. ERR_FAIL_NULL_V(multimesh, nullptr);
  1508. return &multimesh->dependency;
  1509. }
  1510. Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1511. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1512. ERR_FAIL_NULL_V(multimesh, Transform3D());
  1513. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1514. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1515. _multimesh_make_local(multimesh);
  1516. Transform3D t;
  1517. {
  1518. const float *r = multimesh->data_cache.ptr();
  1519. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1520. t.basis.rows[0][0] = dataptr[0];
  1521. t.basis.rows[0][1] = dataptr[1];
  1522. t.basis.rows[0][2] = dataptr[2];
  1523. t.origin.x = dataptr[3];
  1524. t.basis.rows[1][0] = dataptr[4];
  1525. t.basis.rows[1][1] = dataptr[5];
  1526. t.basis.rows[1][2] = dataptr[6];
  1527. t.origin.y = dataptr[7];
  1528. t.basis.rows[2][0] = dataptr[8];
  1529. t.basis.rows[2][1] = dataptr[9];
  1530. t.basis.rows[2][2] = dataptr[10];
  1531. t.origin.z = dataptr[11];
  1532. }
  1533. return t;
  1534. }
  1535. Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1536. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1537. ERR_FAIL_NULL_V(multimesh, Transform2D());
  1538. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1539. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1540. _multimesh_make_local(multimesh);
  1541. Transform2D t;
  1542. {
  1543. const float *r = multimesh->data_cache.ptr();
  1544. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1545. t.columns[0][0] = dataptr[0];
  1546. t.columns[1][0] = dataptr[1];
  1547. t.columns[2][0] = dataptr[3];
  1548. t.columns[0][1] = dataptr[4];
  1549. t.columns[1][1] = dataptr[5];
  1550. t.columns[2][1] = dataptr[7];
  1551. }
  1552. return t;
  1553. }
  1554. Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1555. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1556. ERR_FAIL_NULL_V(multimesh, Color());
  1557. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1558. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1559. _multimesh_make_local(multimesh);
  1560. Color c;
  1561. {
  1562. const float *r = multimesh->data_cache.ptr();
  1563. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1564. c.r = dataptr[0];
  1565. c.g = dataptr[1];
  1566. c.b = dataptr[2];
  1567. c.a = dataptr[3];
  1568. }
  1569. return c;
  1570. }
  1571. Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1572. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1573. ERR_FAIL_NULL_V(multimesh, Color());
  1574. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1575. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1576. _multimesh_make_local(multimesh);
  1577. Color c;
  1578. {
  1579. const float *r = multimesh->data_cache.ptr();
  1580. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1581. c.r = dataptr[0];
  1582. c.g = dataptr[1];
  1583. c.b = dataptr[2];
  1584. c.a = dataptr[3];
  1585. }
  1586. return c;
  1587. }
  1588. void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1589. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1590. ERR_FAIL_NULL(multimesh);
  1591. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1592. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0);
  1593. if (uses_motion_vectors) {
  1594. _multimesh_enable_motion_vectors(multimesh);
  1595. }
  1596. if (multimesh->motion_vectors_enabled) {
  1597. uint32_t frame = RSG::rasterizer->get_frame_number();
  1598. if (multimesh->motion_vectors_last_change != frame) {
  1599. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1600. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1601. multimesh->motion_vectors_last_change = frame;
  1602. }
  1603. }
  1604. {
  1605. const float *r = p_buffer.ptr();
  1606. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1607. multimesh->buffer_set = true;
  1608. }
  1609. if (multimesh->data_cache.size()) {
  1610. float *cache_data = multimesh->data_cache.ptrw();
  1611. memcpy(cache_data + (multimesh->motion_vectors_current_offset * multimesh->stride_cache), p_buffer.ptr(), p_buffer.size() * sizeof(float));
  1612. _multimesh_mark_all_dirty(multimesh, true, true); //update AABB
  1613. } else if (multimesh->mesh.is_valid()) {
  1614. //if we have a mesh set, we need to re-generate the AABB from the new data
  1615. const float *data = p_buffer.ptr();
  1616. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1617. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1618. }
  1619. }
  1620. Vector<float> MeshStorage::multimesh_get_buffer(RID p_multimesh) const {
  1621. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1622. ERR_FAIL_NULL_V(multimesh, Vector<float>());
  1623. if (multimesh->buffer.is_null()) {
  1624. return Vector<float>();
  1625. } else {
  1626. Vector<float> ret;
  1627. ret.resize(multimesh->instances * multimesh->stride_cache);
  1628. float *w = ret.ptrw();
  1629. if (multimesh->data_cache.size()) {
  1630. const uint8_t *r = (uint8_t *)multimesh->data_cache.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1631. memcpy(w, r, ret.size() * sizeof(float));
  1632. } else {
  1633. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1634. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1635. memcpy(w, r, ret.size() * sizeof(float));
  1636. }
  1637. return ret;
  1638. }
  1639. }
  1640. void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1641. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1642. ERR_FAIL_NULL(multimesh);
  1643. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1644. if (multimesh->visible_instances == p_visible) {
  1645. return;
  1646. }
  1647. if (multimesh->data_cache.size()) {
  1648. // There is a data cache, but we may need to update some sections.
  1649. _multimesh_mark_all_dirty(multimesh, false, true);
  1650. int start = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1651. for (int i = start; i < p_visible; i++) {
  1652. _multimesh_mark_dirty(multimesh, i, true);
  1653. }
  1654. }
  1655. multimesh->visible_instances = p_visible;
  1656. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1657. }
  1658. int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const {
  1659. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1660. ERR_FAIL_NULL_V(multimesh, 0);
  1661. return multimesh->visible_instances;
  1662. }
  1663. AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const {
  1664. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1665. ERR_FAIL_NULL_V(multimesh, AABB());
  1666. if (multimesh->aabb_dirty) {
  1667. const_cast<MeshStorage *>(this)->_update_dirty_multimeshes();
  1668. }
  1669. return multimesh->aabb;
  1670. }
  1671. void MeshStorage::_update_dirty_multimeshes() {
  1672. while (multimesh_dirty_list) {
  1673. MultiMesh *multimesh = multimesh_dirty_list;
  1674. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1675. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1676. uint32_t buffer_offset = multimesh->motion_vectors_current_offset * multimesh->stride_cache;
  1677. const float *data = multimesh->data_cache.ptr() + buffer_offset;
  1678. uint32_t total_dirty_regions = multimesh->data_cache_dirty_region_count + multimesh->previous_data_cache_dirty_region_count;
  1679. if (total_dirty_regions != 0) {
  1680. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1681. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1682. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1683. if (total_dirty_regions > 32 || total_dirty_regions > visible_region_count / 2) {
  1684. //if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1685. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float), MIN(visible_region_count * region_size, multimesh->instances * (uint32_t)multimesh->stride_cache * (uint32_t)sizeof(float)), data);
  1686. } else {
  1687. //not that many regions? update them all
  1688. for (uint32_t i = 0; i < visible_region_count; i++) {
  1689. if (multimesh->data_cache_dirty_regions[i] || multimesh->previous_data_cache_dirty_regions[i]) {
  1690. uint32_t offset = i * region_size;
  1691. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1692. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1693. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float) + offset, MIN(region_size, size - offset), &data[region_start_index], RD::BARRIER_MASK_NO_BARRIER);
  1694. }
  1695. }
  1696. RD::get_singleton()->barrier(RD::BARRIER_MASK_NO_BARRIER, RD::BARRIER_MASK_ALL_BARRIERS);
  1697. }
  1698. memcpy(multimesh->previous_data_cache_dirty_regions, multimesh->data_cache_dirty_regions, data_cache_dirty_region_count * sizeof(bool));
  1699. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1700. multimesh->previous_data_cache_dirty_region_count = multimesh->data_cache_dirty_region_count;
  1701. multimesh->data_cache_dirty_region_count = 0;
  1702. }
  1703. if (multimesh->aabb_dirty) {
  1704. //aabb is dirty..
  1705. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1706. multimesh->aabb_dirty = false;
  1707. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1708. }
  1709. }
  1710. multimesh_dirty_list = multimesh->dirty_list;
  1711. multimesh->dirty_list = nullptr;
  1712. multimesh->dirty = false;
  1713. }
  1714. multimesh_dirty_list = nullptr;
  1715. }
  1716. /* SKELETON API */
  1717. RID MeshStorage::skeleton_allocate() {
  1718. return skeleton_owner.allocate_rid();
  1719. }
  1720. void MeshStorage::skeleton_initialize(RID p_rid) {
  1721. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1722. }
  1723. void MeshStorage::skeleton_free(RID p_rid) {
  1724. _update_dirty_skeletons();
  1725. skeleton_allocate_data(p_rid, 0);
  1726. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1727. skeleton->dependency.deleted_notify(p_rid);
  1728. skeleton_owner.free(p_rid);
  1729. }
  1730. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1731. if (!skeleton->dirty) {
  1732. skeleton->dirty = true;
  1733. skeleton->dirty_list = skeleton_dirty_list;
  1734. skeleton_dirty_list = skeleton;
  1735. }
  1736. }
  1737. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1738. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1739. ERR_FAIL_NULL(skeleton);
  1740. ERR_FAIL_COND(p_bones < 0);
  1741. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1742. return;
  1743. }
  1744. skeleton->size = p_bones;
  1745. skeleton->use_2d = p_2d_skeleton;
  1746. skeleton->uniform_set_3d = RID();
  1747. if (skeleton->buffer.is_valid()) {
  1748. RD::get_singleton()->free(skeleton->buffer);
  1749. skeleton->buffer = RID();
  1750. skeleton->data.clear();
  1751. skeleton->uniform_set_mi = RID();
  1752. }
  1753. if (skeleton->size) {
  1754. skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12));
  1755. skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float));
  1756. memset(skeleton->data.ptrw(), 0, skeleton->data.size() * sizeof(float));
  1757. _skeleton_make_dirty(skeleton);
  1758. {
  1759. Vector<RD::Uniform> uniforms;
  1760. {
  1761. RD::Uniform u;
  1762. u.binding = 0;
  1763. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1764. u.append_id(skeleton->buffer);
  1765. uniforms.push_back(u);
  1766. }
  1767. skeleton->uniform_set_mi = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  1768. }
  1769. }
  1770. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1771. }
  1772. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1773. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1774. ERR_FAIL_NULL_V(skeleton, 0);
  1775. return skeleton->size;
  1776. }
  1777. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1778. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1779. ERR_FAIL_NULL(skeleton);
  1780. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1781. ERR_FAIL_COND(skeleton->use_2d);
  1782. float *dataptr = skeleton->data.ptrw() + p_bone * 12;
  1783. dataptr[0] = p_transform.basis.rows[0][0];
  1784. dataptr[1] = p_transform.basis.rows[0][1];
  1785. dataptr[2] = p_transform.basis.rows[0][2];
  1786. dataptr[3] = p_transform.origin.x;
  1787. dataptr[4] = p_transform.basis.rows[1][0];
  1788. dataptr[5] = p_transform.basis.rows[1][1];
  1789. dataptr[6] = p_transform.basis.rows[1][2];
  1790. dataptr[7] = p_transform.origin.y;
  1791. dataptr[8] = p_transform.basis.rows[2][0];
  1792. dataptr[9] = p_transform.basis.rows[2][1];
  1793. dataptr[10] = p_transform.basis.rows[2][2];
  1794. dataptr[11] = p_transform.origin.z;
  1795. _skeleton_make_dirty(skeleton);
  1796. }
  1797. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1798. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1799. ERR_FAIL_NULL_V(skeleton, Transform3D());
  1800. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1801. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1802. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1803. Transform3D t;
  1804. t.basis.rows[0][0] = dataptr[0];
  1805. t.basis.rows[0][1] = dataptr[1];
  1806. t.basis.rows[0][2] = dataptr[2];
  1807. t.origin.x = dataptr[3];
  1808. t.basis.rows[1][0] = dataptr[4];
  1809. t.basis.rows[1][1] = dataptr[5];
  1810. t.basis.rows[1][2] = dataptr[6];
  1811. t.origin.y = dataptr[7];
  1812. t.basis.rows[2][0] = dataptr[8];
  1813. t.basis.rows[2][1] = dataptr[9];
  1814. t.basis.rows[2][2] = dataptr[10];
  1815. t.origin.z = dataptr[11];
  1816. return t;
  1817. }
  1818. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1819. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1820. ERR_FAIL_NULL(skeleton);
  1821. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1822. ERR_FAIL_COND(!skeleton->use_2d);
  1823. float *dataptr = skeleton->data.ptrw() + p_bone * 8;
  1824. dataptr[0] = p_transform.columns[0][0];
  1825. dataptr[1] = p_transform.columns[1][0];
  1826. dataptr[2] = 0;
  1827. dataptr[3] = p_transform.columns[2][0];
  1828. dataptr[4] = p_transform.columns[0][1];
  1829. dataptr[5] = p_transform.columns[1][1];
  1830. dataptr[6] = 0;
  1831. dataptr[7] = p_transform.columns[2][1];
  1832. _skeleton_make_dirty(skeleton);
  1833. }
  1834. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1835. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1836. ERR_FAIL_NULL_V(skeleton, Transform2D());
  1837. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  1838. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  1839. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1840. Transform2D t;
  1841. t.columns[0][0] = dataptr[0];
  1842. t.columns[1][0] = dataptr[1];
  1843. t.columns[2][0] = dataptr[3];
  1844. t.columns[0][1] = dataptr[4];
  1845. t.columns[1][1] = dataptr[5];
  1846. t.columns[2][1] = dataptr[7];
  1847. return t;
  1848. }
  1849. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  1850. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1851. ERR_FAIL_NULL(skeleton);
  1852. ERR_FAIL_COND(!skeleton->use_2d);
  1853. skeleton->base_transform_2d = p_base_transform;
  1854. }
  1855. void MeshStorage::_update_dirty_skeletons() {
  1856. while (skeleton_dirty_list) {
  1857. Skeleton *skeleton = skeleton_dirty_list;
  1858. if (skeleton->size) {
  1859. RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr());
  1860. }
  1861. skeleton_dirty_list = skeleton->dirty_list;
  1862. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  1863. skeleton->version++;
  1864. skeleton->dirty = false;
  1865. skeleton->dirty_list = nullptr;
  1866. }
  1867. skeleton_dirty_list = nullptr;
  1868. }
  1869. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  1870. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1871. ERR_FAIL_NULL(skeleton);
  1872. p_instance->update_dependency(&skeleton->dependency);
  1873. }