canvas.glsl 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738
  1. #[vertex]
  2. #version 450
  3. #VERSION_DEFINES
  4. #ifdef USE_ATTRIBUTES
  5. layout(location = 0) in vec2 vertex_attrib;
  6. layout(location = 3) in vec4 color_attrib;
  7. layout(location = 4) in vec2 uv_attrib;
  8. layout(location = 10) in uvec4 bone_attrib;
  9. layout(location = 11) in vec4 weight_attrib;
  10. #endif
  11. #include "canvas_uniforms_inc.glsl"
  12. layout(location = 0) out vec2 uv_interp;
  13. layout(location = 1) out vec4 color_interp;
  14. layout(location = 2) out vec2 vertex_interp;
  15. #ifdef USE_NINEPATCH
  16. layout(location = 3) out vec2 pixel_size_interp;
  17. #endif
  18. #ifdef MATERIAL_UNIFORMS_USED
  19. layout(set = 1, binding = 0, std140) uniform MaterialUniforms{
  20. #MATERIAL_UNIFORMS
  21. } material;
  22. #endif
  23. #GLOBALS
  24. void main() {
  25. vec4 instance_custom = vec4(0.0);
  26. #ifdef USE_PRIMITIVE
  27. //weird bug,
  28. //this works
  29. vec2 vertex;
  30. vec2 uv;
  31. vec4 color;
  32. if (gl_VertexIndex == 0) {
  33. vertex = draw_data.points[0];
  34. uv = draw_data.uvs[0];
  35. color = vec4(unpackHalf2x16(draw_data.colors[0]), unpackHalf2x16(draw_data.colors[1]));
  36. } else if (gl_VertexIndex == 1) {
  37. vertex = draw_data.points[1];
  38. uv = draw_data.uvs[1];
  39. color = vec4(unpackHalf2x16(draw_data.colors[2]), unpackHalf2x16(draw_data.colors[3]));
  40. } else {
  41. vertex = draw_data.points[2];
  42. uv = draw_data.uvs[2];
  43. color = vec4(unpackHalf2x16(draw_data.colors[4]), unpackHalf2x16(draw_data.colors[5]));
  44. }
  45. uvec4 bones = uvec4(0, 0, 0, 0);
  46. vec4 bone_weights = vec4(0.0);
  47. #elif defined(USE_ATTRIBUTES)
  48. vec2 vertex = vertex_attrib;
  49. vec4 color = color_attrib * draw_data.modulation;
  50. vec2 uv = uv_attrib;
  51. uvec4 bones = bone_attrib;
  52. vec4 bone_weights = weight_attrib;
  53. #else
  54. vec2 vertex_base_arr[4] = vec2[](vec2(0.0, 0.0), vec2(0.0, 1.0), vec2(1.0, 1.0), vec2(1.0, 0.0));
  55. vec2 vertex_base = vertex_base_arr[gl_VertexIndex];
  56. vec2 uv = draw_data.src_rect.xy + abs(draw_data.src_rect.zw) * ((draw_data.flags & FLAGS_TRANSPOSE_RECT) != 0 ? vertex_base.yx : vertex_base.xy);
  57. vec4 color = draw_data.modulation;
  58. vec2 vertex = draw_data.dst_rect.xy + abs(draw_data.dst_rect.zw) * mix(vertex_base, vec2(1.0, 1.0) - vertex_base, lessThan(draw_data.src_rect.zw, vec2(0.0, 0.0)));
  59. uvec4 bones = uvec4(0, 0, 0, 0);
  60. #endif
  61. mat4 world_matrix = mat4(vec4(draw_data.world_x, 0.0, 0.0), vec4(draw_data.world_y, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(draw_data.world_ofs, 0.0, 1.0));
  62. #define FLAGS_INSTANCING_MASK 0x7F
  63. #define FLAGS_INSTANCING_HAS_COLORS (1 << 7)
  64. #define FLAGS_INSTANCING_HAS_CUSTOM_DATA (1 << 8)
  65. uint instancing = draw_data.flags & FLAGS_INSTANCING_MASK;
  66. #ifdef USE_ATTRIBUTES
  67. if (instancing > 1) {
  68. // trails
  69. uint stride = 2 + 1 + 1; //particles always uses this format
  70. uint trail_size = instancing;
  71. uint offset = trail_size * stride * gl_InstanceIndex;
  72. vec4 pcolor;
  73. vec2 new_vertex;
  74. {
  75. uint boffset = offset + bone_attrib.x * stride;
  76. new_vertex = (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.x;
  77. pcolor = transforms.data[boffset + 2] * weight_attrib.x;
  78. }
  79. if (weight_attrib.y > 0.001) {
  80. uint boffset = offset + bone_attrib.y * stride;
  81. new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.y;
  82. pcolor += transforms.data[boffset + 2] * weight_attrib.y;
  83. }
  84. if (weight_attrib.z > 0.001) {
  85. uint boffset = offset + bone_attrib.z * stride;
  86. new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.z;
  87. pcolor += transforms.data[boffset + 2] * weight_attrib.z;
  88. }
  89. if (weight_attrib.w > 0.001) {
  90. uint boffset = offset + bone_attrib.w * stride;
  91. new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.w;
  92. pcolor += transforms.data[boffset + 2] * weight_attrib.w;
  93. }
  94. instance_custom = transforms.data[offset + 3];
  95. vertex = new_vertex;
  96. color *= pcolor;
  97. } else
  98. #endif // USE_ATTRIBUTES
  99. {
  100. if (instancing == 1) {
  101. uint stride = 2;
  102. {
  103. if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_COLORS)) {
  104. stride += 1;
  105. }
  106. if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_CUSTOM_DATA)) {
  107. stride += 1;
  108. }
  109. }
  110. uint offset = stride * gl_InstanceIndex;
  111. mat4 matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
  112. offset += 2;
  113. if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_COLORS)) {
  114. color *= transforms.data[offset];
  115. offset += 1;
  116. }
  117. if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_CUSTOM_DATA)) {
  118. instance_custom = transforms.data[offset];
  119. }
  120. matrix = transpose(matrix);
  121. world_matrix = world_matrix * matrix;
  122. }
  123. }
  124. #if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE)
  125. if (bool(draw_data.flags & FLAGS_USING_PARTICLES)) {
  126. //scale by texture size
  127. vertex /= draw_data.color_texture_pixel_size;
  128. }
  129. #endif
  130. #ifdef USE_POINT_SIZE
  131. float point_size = 1.0;
  132. #endif
  133. {
  134. #CODE : VERTEX
  135. }
  136. #ifdef USE_NINEPATCH
  137. pixel_size_interp = abs(draw_data.dst_rect.zw) * vertex_base;
  138. #endif
  139. #if !defined(SKIP_TRANSFORM_USED)
  140. vertex = (world_matrix * vec4(vertex, 0.0, 1.0)).xy;
  141. #endif
  142. color_interp = color;
  143. if (canvas_data.use_pixel_snap) {
  144. vertex = floor(vertex + 0.5);
  145. // precision issue on some hardware creates artifacts within texture
  146. // offset uv by a small amount to avoid
  147. uv += 1e-5;
  148. }
  149. #ifdef USE_ATTRIBUTES
  150. #if 0
  151. if (bool(draw_data.flags & FLAGS_USE_SKELETON) && bone_weights != vec4(0.0)) { //must be a valid bone
  152. //skeleton transform
  153. ivec4 bone_indicesi = ivec4(bone_indices);
  154. uvec2 tex_ofs = bone_indicesi.x * 2;
  155. mat2x4 m;
  156. m = mat2x4(
  157. texelFetch(skeleton_buffer, tex_ofs + 0),
  158. texelFetch(skeleton_buffer, tex_ofs + 1)) *
  159. bone_weights.x;
  160. tex_ofs = bone_indicesi.y * 2;
  161. m += mat2x4(
  162. texelFetch(skeleton_buffer, tex_ofs + 0),
  163. texelFetch(skeleton_buffer, tex_ofs + 1)) *
  164. bone_weights.y;
  165. tex_ofs = bone_indicesi.z * 2;
  166. m += mat2x4(
  167. texelFetch(skeleton_buffer, tex_ofs + 0),
  168. texelFetch(skeleton_buffer, tex_ofs + 1)) *
  169. bone_weights.z;
  170. tex_ofs = bone_indicesi.w * 2;
  171. m += mat2x4(
  172. texelFetch(skeleton_buffer, tex_ofs + 0),
  173. texelFetch(skeleton_buffer, tex_ofs + 1)) *
  174. bone_weights.w;
  175. mat4 bone_matrix = skeleton_data.skeleton_transform * transpose(mat4(m[0], m[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))) * skeleton_data.skeleton_transform_inverse;
  176. //outvec = bone_matrix * outvec;
  177. }
  178. #endif
  179. #endif
  180. vertex = (canvas_data.canvas_transform * vec4(vertex, 0.0, 1.0)).xy;
  181. vertex_interp = vertex;
  182. uv_interp = uv;
  183. gl_Position = canvas_data.screen_transform * vec4(vertex, 0.0, 1.0);
  184. #ifdef USE_POINT_SIZE
  185. gl_PointSize = point_size;
  186. #endif
  187. }
  188. #[fragment]
  189. #version 450
  190. #VERSION_DEFINES
  191. #include "canvas_uniforms_inc.glsl"
  192. layout(location = 0) in vec2 uv_interp;
  193. layout(location = 1) in vec4 color_interp;
  194. layout(location = 2) in vec2 vertex_interp;
  195. #ifdef USE_NINEPATCH
  196. layout(location = 3) in vec2 pixel_size_interp;
  197. #endif
  198. layout(location = 0) out vec4 frag_color;
  199. #ifdef MATERIAL_UNIFORMS_USED
  200. layout(set = 1, binding = 0, std140) uniform MaterialUniforms{
  201. #MATERIAL_UNIFORMS
  202. } material;
  203. #endif
  204. vec2 screen_uv_to_sdf(vec2 p_uv) {
  205. return canvas_data.screen_to_sdf * p_uv;
  206. }
  207. float texture_sdf(vec2 p_sdf) {
  208. vec2 uv = p_sdf * canvas_data.sdf_to_tex.xy + canvas_data.sdf_to_tex.zw;
  209. float d = texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv).r;
  210. d *= SDF_MAX_LENGTH;
  211. return d * canvas_data.tex_to_sdf;
  212. }
  213. vec2 texture_sdf_normal(vec2 p_sdf) {
  214. vec2 uv = p_sdf * canvas_data.sdf_to_tex.xy + canvas_data.sdf_to_tex.zw;
  215. const float EPSILON = 0.001;
  216. return normalize(vec2(
  217. texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv + vec2(EPSILON, 0.0)).r - texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv - vec2(EPSILON, 0.0)).r,
  218. texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv + vec2(0.0, EPSILON)).r - texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv - vec2(0.0, EPSILON)).r));
  219. }
  220. vec2 sdf_to_screen_uv(vec2 p_sdf) {
  221. return p_sdf * canvas_data.sdf_to_screen;
  222. }
  223. #GLOBALS
  224. #ifdef LIGHT_CODE_USED
  225. vec4 light_compute(
  226. vec3 light_vertex,
  227. vec3 light_position,
  228. vec3 normal,
  229. vec4 light_color,
  230. float light_energy,
  231. vec4 specular_shininess,
  232. inout vec4 shadow_modulate,
  233. vec2 screen_uv,
  234. vec2 uv,
  235. vec4 color, bool is_directional) {
  236. vec4 light = vec4(0.0);
  237. #CODE : LIGHT
  238. return light;
  239. }
  240. #endif
  241. #ifdef USE_NINEPATCH
  242. float map_ninepatch_axis(float pixel, float draw_size, float tex_pixel_size, float margin_begin, float margin_end, int np_repeat, inout int draw_center) {
  243. float tex_size = 1.0 / tex_pixel_size;
  244. if (pixel < margin_begin) {
  245. return pixel * tex_pixel_size;
  246. } else if (pixel >= draw_size - margin_end) {
  247. return (tex_size - (draw_size - pixel)) * tex_pixel_size;
  248. } else {
  249. if (!bool(draw_data.flags & FLAGS_NINEPACH_DRAW_CENTER)) {
  250. draw_center--;
  251. }
  252. // np_repeat is passed as uniform using NinePatchRect::AxisStretchMode enum.
  253. if (np_repeat == 0) { // Stretch.
  254. // Convert to ratio.
  255. float ratio = (pixel - margin_begin) / (draw_size - margin_begin - margin_end);
  256. // Scale to source texture.
  257. return (margin_begin + ratio * (tex_size - margin_begin - margin_end)) * tex_pixel_size;
  258. } else if (np_repeat == 1) { // Tile.
  259. // Convert to offset.
  260. float ofs = mod((pixel - margin_begin), tex_size - margin_begin - margin_end);
  261. // Scale to source texture.
  262. return (margin_begin + ofs) * tex_pixel_size;
  263. } else if (np_repeat == 2) { // Tile Fit.
  264. // Calculate scale.
  265. float src_area = draw_size - margin_begin - margin_end;
  266. float dst_area = tex_size - margin_begin - margin_end;
  267. float scale = max(1.0, floor(src_area / max(dst_area, 0.0000001) + 0.5));
  268. // Convert to ratio.
  269. float ratio = (pixel - margin_begin) / src_area;
  270. ratio = mod(ratio * scale, 1.0);
  271. // Scale to source texture.
  272. return (margin_begin + ratio * dst_area) * tex_pixel_size;
  273. } else { // Shouldn't happen, but silences compiler warning.
  274. return 0.0;
  275. }
  276. }
  277. }
  278. #endif
  279. #ifdef USE_LIGHTING
  280. vec3 light_normal_compute(vec3 light_vec, vec3 normal, vec3 base_color, vec3 light_color, vec4 specular_shininess, bool specular_shininess_used) {
  281. float cNdotL = max(0.0, dot(normal, light_vec));
  282. if (specular_shininess_used) {
  283. //blinn
  284. vec3 view = vec3(0.0, 0.0, 1.0); // not great but good enough
  285. vec3 half_vec = normalize(view + light_vec);
  286. float cNdotV = max(dot(normal, view), 0.0);
  287. float cNdotH = max(dot(normal, half_vec), 0.0);
  288. float cVdotH = max(dot(view, half_vec), 0.0);
  289. float cLdotH = max(dot(light_vec, half_vec), 0.0);
  290. float shininess = exp2(15.0 * specular_shininess.a + 1.0) * 0.25;
  291. float blinn = pow(cNdotH, shininess);
  292. blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
  293. float s = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
  294. return specular_shininess.rgb * light_color * s + light_color * base_color * cNdotL;
  295. } else {
  296. return light_color * base_color * cNdotL;
  297. }
  298. }
  299. //float distance = length(shadow_pos);
  300. vec4 light_shadow_compute(uint light_base, vec4 light_color, vec4 shadow_uv
  301. #ifdef LIGHT_CODE_USED
  302. ,
  303. vec3 shadow_modulate
  304. #endif
  305. ) {
  306. float shadow;
  307. uint shadow_mode = light_array.data[light_base].flags & LIGHT_FLAGS_FILTER_MASK;
  308. if (shadow_mode == LIGHT_FLAGS_SHADOW_NEAREST) {
  309. shadow = textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv, 0.0).x;
  310. } else if (shadow_mode == LIGHT_FLAGS_SHADOW_PCF5) {
  311. vec4 shadow_pixel_size = vec4(light_array.data[light_base].shadow_pixel_size, 0.0, 0.0, 0.0);
  312. shadow = 0.0;
  313. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 2.0, 0.0).x;
  314. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size, 0.0).x;
  315. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv, 0.0).x;
  316. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size, 0.0).x;
  317. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 2.0, 0.0).x;
  318. shadow /= 5.0;
  319. } else { //PCF13
  320. vec4 shadow_pixel_size = vec4(light_array.data[light_base].shadow_pixel_size, 0.0, 0.0, 0.0);
  321. shadow = 0.0;
  322. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 6.0, 0.0).x;
  323. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 5.0, 0.0).x;
  324. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 4.0, 0.0).x;
  325. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 3.0, 0.0).x;
  326. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 2.0, 0.0).x;
  327. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size, 0.0).x;
  328. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv, 0.0).x;
  329. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size, 0.0).x;
  330. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 2.0, 0.0).x;
  331. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 3.0, 0.0).x;
  332. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 4.0, 0.0).x;
  333. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 5.0, 0.0).x;
  334. shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 6.0, 0.0).x;
  335. shadow /= 13.0;
  336. }
  337. vec4 shadow_color = unpackUnorm4x8(light_array.data[light_base].shadow_color);
  338. #ifdef LIGHT_CODE_USED
  339. shadow_color.rgb *= shadow_modulate;
  340. #endif
  341. shadow_color.a *= light_color.a; //respect light alpha
  342. return mix(light_color, shadow_color, shadow);
  343. }
  344. void light_blend_compute(uint light_base, vec4 light_color, inout vec3 color) {
  345. uint blend_mode = light_array.data[light_base].flags & LIGHT_FLAGS_BLEND_MASK;
  346. switch (blend_mode) {
  347. case LIGHT_FLAGS_BLEND_MODE_ADD: {
  348. color.rgb += light_color.rgb * light_color.a;
  349. } break;
  350. case LIGHT_FLAGS_BLEND_MODE_SUB: {
  351. color.rgb -= light_color.rgb * light_color.a;
  352. } break;
  353. case LIGHT_FLAGS_BLEND_MODE_MIX: {
  354. color.rgb = mix(color.rgb, light_color.rgb, light_color.a);
  355. } break;
  356. }
  357. }
  358. #endif
  359. float msdf_median(float r, float g, float b, float a) {
  360. return min(max(min(r, g), min(max(r, g), b)), a);
  361. }
  362. vec2 msdf_map(vec2 value, vec2 in_min, vec2 in_max, vec2 out_min, vec2 out_max) {
  363. return out_min + (out_max - out_min) * (value - in_min) / (in_max - in_min);
  364. }
  365. void main() {
  366. vec4 color = color_interp;
  367. vec2 uv = uv_interp;
  368. vec2 vertex = vertex_interp;
  369. #if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE)
  370. #ifdef USE_NINEPATCH
  371. int draw_center = 2;
  372. uv = vec2(
  373. map_ninepatch_axis(pixel_size_interp.x, abs(draw_data.dst_rect.z), draw_data.color_texture_pixel_size.x, draw_data.ninepatch_margins.x, draw_data.ninepatch_margins.z, int(draw_data.flags >> FLAGS_NINEPATCH_H_MODE_SHIFT) & 0x3, draw_center),
  374. map_ninepatch_axis(pixel_size_interp.y, abs(draw_data.dst_rect.w), draw_data.color_texture_pixel_size.y, draw_data.ninepatch_margins.y, draw_data.ninepatch_margins.w, int(draw_data.flags >> FLAGS_NINEPATCH_V_MODE_SHIFT) & 0x3, draw_center));
  375. if (draw_center == 0) {
  376. color.a = 0.0;
  377. }
  378. uv = uv * draw_data.src_rect.zw + draw_data.src_rect.xy; //apply region if needed
  379. #endif
  380. if (bool(draw_data.flags & FLAGS_CLIP_RECT_UV)) {
  381. uv = clamp(uv, draw_data.src_rect.xy, draw_data.src_rect.xy + abs(draw_data.src_rect.zw));
  382. }
  383. #endif
  384. #ifndef USE_PRIMITIVE
  385. if (bool(draw_data.flags & FLAGS_USE_MSDF)) {
  386. float px_range = draw_data.ninepatch_margins.x;
  387. float outline_thickness = draw_data.ninepatch_margins.y;
  388. //float reserved1 = draw_data.ninepatch_margins.z;
  389. //float reserved2 = draw_data.ninepatch_margins.w;
  390. vec4 msdf_sample = texture(sampler2D(color_texture, texture_sampler), uv);
  391. vec2 msdf_size = vec2(textureSize(sampler2D(color_texture, texture_sampler), 0));
  392. vec2 dest_size = vec2(1.0) / fwidth(uv);
  393. float px_size = max(0.5 * dot((vec2(px_range) / msdf_size), dest_size), 1.0);
  394. float d = msdf_median(msdf_sample.r, msdf_sample.g, msdf_sample.b, msdf_sample.a) - 0.5;
  395. if (outline_thickness > 0) {
  396. float cr = clamp(outline_thickness, 0.0, px_range / 2) / px_range;
  397. float a = clamp((d + cr) * px_size, 0.0, 1.0);
  398. color.a = a * color.a;
  399. } else {
  400. float a = clamp(d * px_size + 0.5, 0.0, 1.0);
  401. color.a = a * color.a;
  402. }
  403. } else {
  404. #else
  405. {
  406. #endif
  407. color *= texture(sampler2D(color_texture, texture_sampler), uv);
  408. }
  409. uint light_count = (draw_data.flags >> FLAGS_LIGHT_COUNT_SHIFT) & 0xF; //max 16 lights
  410. bool using_light = light_count > 0 || canvas_data.directional_light_count > 0;
  411. vec3 normal;
  412. #if defined(NORMAL_USED)
  413. bool normal_used = true;
  414. #else
  415. bool normal_used = false;
  416. #endif
  417. if (normal_used || (using_light && bool(draw_data.flags & FLAGS_DEFAULT_NORMAL_MAP_USED))) {
  418. normal.xy = texture(sampler2D(normal_texture, texture_sampler), uv).xy * vec2(2.0, -2.0) - vec2(1.0, -1.0);
  419. normal.z = sqrt(1.0 - dot(normal.xy, normal.xy));
  420. normal_used = true;
  421. } else {
  422. normal = vec3(0.0, 0.0, 1.0);
  423. }
  424. vec4 specular_shininess;
  425. #if defined(SPECULAR_SHININESS_USED)
  426. bool specular_shininess_used = true;
  427. #else
  428. bool specular_shininess_used = false;
  429. #endif
  430. if (specular_shininess_used || (using_light && normal_used && bool(draw_data.flags & FLAGS_DEFAULT_SPECULAR_MAP_USED))) {
  431. specular_shininess = texture(sampler2D(specular_texture, texture_sampler), uv);
  432. specular_shininess *= unpackUnorm4x8(draw_data.specular_shininess);
  433. specular_shininess_used = true;
  434. } else {
  435. specular_shininess = vec4(1.0);
  436. }
  437. #if defined(SCREEN_UV_USED)
  438. vec2 screen_uv = gl_FragCoord.xy * canvas_data.screen_pixel_size;
  439. #else
  440. vec2 screen_uv = vec2(0.0);
  441. #endif
  442. vec3 light_vertex = vec3(vertex, 0.0);
  443. vec2 shadow_vertex = vertex;
  444. {
  445. float normal_map_depth = 1.0;
  446. #if defined(NORMAL_MAP_USED)
  447. vec3 normal_map = vec3(0.0, 0.0, 1.0);
  448. normal_used = true;
  449. #endif
  450. #CODE : FRAGMENT
  451. #if defined(NORMAL_MAP_USED)
  452. normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_map_depth);
  453. #endif
  454. }
  455. if (normal_used) {
  456. //convert by item transform
  457. normal.xy = mat2(normalize(draw_data.world_x), normalize(draw_data.world_y)) * normal.xy;
  458. //convert by canvas transform
  459. normal = normalize((canvas_data.canvas_normal_transform * vec4(normal, 0.0)).xyz);
  460. }
  461. vec3 base_color = color.rgb;
  462. if (bool(draw_data.flags & FLAGS_USING_LIGHT_MASK)) {
  463. color = vec4(0.0); //invisible by default due to using light mask
  464. }
  465. #ifdef MODE_LIGHT_ONLY
  466. color = vec4(0.0);
  467. #else
  468. color *= canvas_data.canvas_modulation;
  469. #endif
  470. #if defined(USE_LIGHTING) && !defined(MODE_UNSHADED)
  471. // Directional Lights
  472. for (uint i = 0; i < canvas_data.directional_light_count; i++) {
  473. uint light_base = i;
  474. vec2 direction = light_array.data[light_base].position;
  475. vec4 light_color = light_array.data[light_base].color;
  476. #ifdef LIGHT_CODE_USED
  477. vec4 shadow_modulate = vec4(1.0);
  478. light_color = light_compute(light_vertex, vec3(direction, light_array.data[light_base].height), normal, light_color, light_color.a, specular_shininess, shadow_modulate, screen_uv, uv, color, true);
  479. #else
  480. if (normal_used) {
  481. vec3 light_vec = normalize(mix(vec3(direction, 0.0), vec3(0, 0, 1), light_array.data[light_base].height));
  482. light_color.rgb = light_normal_compute(light_vec, normal, base_color, light_color.rgb, specular_shininess, specular_shininess_used);
  483. }
  484. #endif
  485. if (bool(light_array.data[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) {
  486. vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_array.data[light_base].shadow_matrix[0], light_array.data[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
  487. vec4 shadow_uv = vec4(shadow_pos.x, light_array.data[light_base].shadow_y_ofs, shadow_pos.y * light_array.data[light_base].shadow_zfar_inv, 1.0);
  488. light_color = light_shadow_compute(light_base, light_color, shadow_uv
  489. #ifdef LIGHT_CODE_USED
  490. ,
  491. shadow_modulate.rgb
  492. #endif
  493. );
  494. }
  495. light_blend_compute(light_base, light_color, color.rgb);
  496. }
  497. // Positional Lights
  498. for (uint i = 0; i < MAX_LIGHTS_PER_ITEM; i++) {
  499. if (i >= light_count) {
  500. break;
  501. }
  502. uint light_base;
  503. if (i < 8) {
  504. if (i < 4) {
  505. light_base = draw_data.lights[0];
  506. } else {
  507. light_base = draw_data.lights[1];
  508. }
  509. } else {
  510. if (i < 12) {
  511. light_base = draw_data.lights[2];
  512. } else {
  513. light_base = draw_data.lights[3];
  514. }
  515. }
  516. light_base >>= (i & 3) * 8;
  517. light_base &= 0xFF;
  518. vec2 tex_uv = (vec4(vertex, 0.0, 1.0) * mat4(light_array.data[light_base].texture_matrix[0], light_array.data[light_base].texture_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
  519. vec2 tex_uv_atlas = tex_uv * light_array.data[light_base].atlas_rect.zw + light_array.data[light_base].atlas_rect.xy;
  520. vec4 light_color = textureLod(sampler2D(atlas_texture, texture_sampler), tex_uv_atlas, 0.0);
  521. vec4 light_base_color = light_array.data[light_base].color;
  522. #ifdef LIGHT_CODE_USED
  523. vec4 shadow_modulate = vec4(1.0);
  524. vec3 light_position = vec3(light_array.data[light_base].position, light_array.data[light_base].height);
  525. light_color.rgb *= light_base_color.rgb;
  526. light_color = light_compute(light_vertex, light_position, normal, light_color, light_base_color.a, specular_shininess, shadow_modulate, screen_uv, uv, color, false);
  527. #else
  528. light_color.rgb *= light_base_color.rgb * light_base_color.a;
  529. if (normal_used) {
  530. vec3 light_pos = vec3(light_array.data[light_base].position, light_array.data[light_base].height);
  531. vec3 pos = light_vertex;
  532. vec3 light_vec = normalize(light_pos - pos);
  533. float cNdotL = max(0.0, dot(normal, light_vec));
  534. light_color.rgb = light_normal_compute(light_vec, normal, base_color, light_color.rgb, specular_shininess, specular_shininess_used);
  535. }
  536. #endif
  537. if (any(lessThan(tex_uv, vec2(0.0, 0.0))) || any(greaterThanEqual(tex_uv, vec2(1.0, 1.0)))) {
  538. //if outside the light texture, light color is zero
  539. light_color.a = 0.0;
  540. }
  541. if (bool(light_array.data[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) {
  542. vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_array.data[light_base].shadow_matrix[0], light_array.data[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
  543. vec2 pos_norm = normalize(shadow_pos);
  544. vec2 pos_abs = abs(pos_norm);
  545. vec2 pos_box = pos_norm / max(pos_abs.x, pos_abs.y);
  546. vec2 pos_rot = pos_norm * mat2(vec2(0.7071067811865476, -0.7071067811865476), vec2(0.7071067811865476, 0.7071067811865476)); //is there a faster way to 45 degrees rot?
  547. float tex_ofs;
  548. float distance;
  549. if (pos_rot.y > 0) {
  550. if (pos_rot.x > 0) {
  551. tex_ofs = pos_box.y * 0.125 + 0.125;
  552. distance = shadow_pos.x;
  553. } else {
  554. tex_ofs = pos_box.x * -0.125 + (0.25 + 0.125);
  555. distance = shadow_pos.y;
  556. }
  557. } else {
  558. if (pos_rot.x < 0) {
  559. tex_ofs = pos_box.y * -0.125 + (0.5 + 0.125);
  560. distance = -shadow_pos.x;
  561. } else {
  562. tex_ofs = pos_box.x * 0.125 + (0.75 + 0.125);
  563. distance = -shadow_pos.y;
  564. }
  565. }
  566. distance *= light_array.data[light_base].shadow_zfar_inv;
  567. //float distance = length(shadow_pos);
  568. vec4 shadow_uv = vec4(tex_ofs, light_array.data[light_base].shadow_y_ofs, distance, 1.0);
  569. light_color = light_shadow_compute(light_base, light_color, shadow_uv
  570. #ifdef LIGHT_CODE_USED
  571. ,
  572. shadow_modulate.rgb
  573. #endif
  574. );
  575. }
  576. light_blend_compute(light_base, light_color, color.rgb);
  577. }
  578. #endif
  579. frag_color = color;
  580. }