|
@@ -135,117 +135,106 @@ MatrixF AssimpAppNode::getTransform(F32 time)
|
|
|
|
|
|
void AssimpAppNode::getAnimatedTransform(MatrixF& mat, F32 t, aiAnimation* animSeq)
|
|
|
{
|
|
|
- // Find the channel for this node
|
|
|
+ // Convert time `t` (in seconds) to a frame index
|
|
|
+ const F32 frameTime = (t * animSeq->mTicksPerSecond + 0.5f) + 1.0f;
|
|
|
+
|
|
|
+ // Loop through animation channels to find the matching node
|
|
|
for (U32 k = 0; k < animSeq->mNumChannels; ++k)
|
|
|
{
|
|
|
- if (dStrcmp(mName, animSeq->mChannels[k]->mNodeName.C_Str()) == 0)
|
|
|
+ const aiNodeAnim* nodeAnim = animSeq->mChannels[k];
|
|
|
+ if (dStrcmp(mName, nodeAnim->mNodeName.C_Str()) != 0)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ Point3F translation(Point3F::Zero);
|
|
|
+ QuatF rotation(QuatF::Identity);
|
|
|
+ Point3F scale(Point3F::One);
|
|
|
+
|
|
|
+ // Interpolate Translation Keys
|
|
|
+ if (nodeAnim->mNumPositionKeys > 0)
|
|
|
{
|
|
|
- aiNodeAnim *nodeAnim = animSeq->mChannels[k];
|
|
|
- Point3F trans(Point3F::Zero);
|
|
|
- Point3F scale(Point3F::One);
|
|
|
- QuatF rot;
|
|
|
- rot.identity();
|
|
|
- // T is in seconds, convert to frames.
|
|
|
- F32 frame = (t * animSeq->mTicksPerSecond + 0.5f) + 1.0f;
|
|
|
-
|
|
|
- // Transform
|
|
|
- if (nodeAnim->mNumPositionKeys == 1)
|
|
|
- trans.set(nodeAnim->mPositionKeys[0].mValue.x, nodeAnim->mPositionKeys[0].mValue.y, nodeAnim->mPositionKeys[0].mValue.z);
|
|
|
- else
|
|
|
- {
|
|
|
- Point3F curPos, lastPos;
|
|
|
- F32 lastT = 0.0;
|
|
|
- for (U32 key = 0; key < nodeAnim->mNumPositionKeys; ++key)
|
|
|
- {
|
|
|
- F32 curT = sTimeMultiplier * (F32)nodeAnim->mPositionKeys[key].mTime;
|
|
|
- curPos.set(nodeAnim->mPositionKeys[key].mValue.x, nodeAnim->mPositionKeys[key].mValue.y, nodeAnim->mPositionKeys[key].mValue.z);
|
|
|
- if ((curT > frame) && (key > 0))
|
|
|
- {
|
|
|
- F32 factor = (frame - lastT) / (curT - lastT);
|
|
|
- trans.interpolate(lastPos, curPos, factor);
|
|
|
- break;
|
|
|
- }
|
|
|
- else if ((curT >= frame) || (key == nodeAnim->mNumPositionKeys - 1))
|
|
|
- {
|
|
|
- trans = curPos;
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- lastT = curT;
|
|
|
- lastPos = curPos;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Rotation
|
|
|
- if (nodeAnim->mNumRotationKeys == 1)
|
|
|
- rot.set(nodeAnim->mRotationKeys[0].mValue.x, nodeAnim->mRotationKeys[0].mValue.y,
|
|
|
- nodeAnim->mRotationKeys[0].mValue.z, nodeAnim->mRotationKeys[0].mValue.w);
|
|
|
- else
|
|
|
- {
|
|
|
- QuatF curRot, lastRot;
|
|
|
- F32 lastT = 0.0;
|
|
|
- for (U32 key = 0; key < nodeAnim->mNumRotationKeys; ++key)
|
|
|
- {
|
|
|
- F32 curT = sTimeMultiplier * (F32)nodeAnim->mRotationKeys[key].mTime;
|
|
|
- curRot.set(nodeAnim->mRotationKeys[key].mValue.x, nodeAnim->mRotationKeys[key].mValue.y,
|
|
|
- nodeAnim->mRotationKeys[key].mValue.z, nodeAnim->mRotationKeys[key].mValue.w);
|
|
|
- if ((curT > frame) && (key > 0))
|
|
|
- {
|
|
|
- F32 factor = (frame - lastT) / (curT - lastT);
|
|
|
- rot.interpolate(lastRot, curRot, factor);
|
|
|
- break;
|
|
|
- }
|
|
|
- else if ((curT >= frame) || (key == nodeAnim->mNumRotationKeys - 1))
|
|
|
- {
|
|
|
- rot = curRot;
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- lastT = curT;
|
|
|
- lastRot = curRot;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Scale
|
|
|
- if (nodeAnim->mNumScalingKeys == 1)
|
|
|
- scale.set(nodeAnim->mScalingKeys[0].mValue.x, nodeAnim->mScalingKeys[0].mValue.y, nodeAnim->mScalingKeys[0].mValue.z);
|
|
|
- else
|
|
|
- {
|
|
|
- Point3F curScale, lastScale;
|
|
|
- F32 lastT = 0.0;
|
|
|
- for (U32 key = 0; key < nodeAnim->mNumScalingKeys; ++key)
|
|
|
- {
|
|
|
- F32 curT = sTimeMultiplier * (F32)nodeAnim->mScalingKeys[key].mTime;
|
|
|
- curScale.set(nodeAnim->mScalingKeys[key].mValue.x, nodeAnim->mScalingKeys[key].mValue.y, nodeAnim->mScalingKeys[key].mValue.z);
|
|
|
- if ((curT > frame) && (key > 0))
|
|
|
- {
|
|
|
- F32 factor = (frame - lastT) / (curT - lastT);
|
|
|
- scale.interpolate(lastScale, curScale, factor);
|
|
|
- break;
|
|
|
- }
|
|
|
- else if ((curT >= frame) || (key == nodeAnim->mNumScalingKeys - 1))
|
|
|
- {
|
|
|
- scale = curScale;
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- lastT = curT;
|
|
|
- lastScale = curScale;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- rot.setMatrix(&mat);
|
|
|
- mat.inverse();
|
|
|
- mat.setPosition(trans);
|
|
|
- mat.scale(scale);
|
|
|
- return;
|
|
|
+ translation = interpolateVectorKey(nodeAnim->mPositionKeys, nodeAnim->mNumPositionKeys, frameTime);
|
|
|
}
|
|
|
+
|
|
|
+ // Interpolate Rotation Keys
|
|
|
+ if (nodeAnim->mNumRotationKeys > 0)
|
|
|
+ {
|
|
|
+ rotation = interpolateQuaternionKey(nodeAnim->mRotationKeys, nodeAnim->mNumRotationKeys, frameTime);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Interpolate Scaling Keys
|
|
|
+ if (nodeAnim->mNumScalingKeys > 0)
|
|
|
+ {
|
|
|
+ scale = interpolateVectorKey(nodeAnim->mScalingKeys, nodeAnim->mNumScalingKeys, frameTime);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Apply the interpolated transform components to the matrix
|
|
|
+ rotation.setMatrix(&mat);
|
|
|
+ mat.inverse();
|
|
|
+ mat.setPosition(translation);
|
|
|
+ mat.scale(scale);
|
|
|
+
|
|
|
+ return; // Exit after processing the matching node
|
|
|
}
|
|
|
|
|
|
- // Node not found in the animation channels
|
|
|
+ // Default to the static node transformation if no animation data is found
|
|
|
mat = mNodeTransform;
|
|
|
}
|
|
|
|
|
|
+Point3F AssimpAppNode::interpolateVectorKey(const aiVectorKey* keys, U32 numKeys, F32 frameTime)
|
|
|
+{
|
|
|
+ if (numKeys == 1) // Single keyframe: use it directly
|
|
|
+ return Point3F(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z);
|
|
|
+
|
|
|
+ // Clamp frameTime to the bounds of the keyframes
|
|
|
+ if (frameTime <= keys[0].mTime) {
|
|
|
+ // Before the first keyframe, return the first key
|
|
|
+ return Point3F(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z);
|
|
|
+ }
|
|
|
+ if (frameTime >= keys[numKeys - 1].mTime) {
|
|
|
+ // After the last keyframe, return the last key
|
|
|
+ return Point3F(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Interpolate between the two nearest keyframes
|
|
|
+ for (U32 i = 1; i < numKeys; ++i)
|
|
|
+ {
|
|
|
+ if (frameTime < keys[i].mTime)
|
|
|
+ {
|
|
|
+ const F32 factor = (frameTime - keys[i - 1].mTime) / (keys[i].mTime - keys[i - 1].mTime);
|
|
|
+ Point3F start(keys[i - 1].mValue.x, keys[i - 1].mValue.y, keys[i - 1].mValue.z);
|
|
|
+ Point3F end(keys[i].mValue.x, keys[i].mValue.y, keys[i].mValue.z);
|
|
|
+ Point3F result;
|
|
|
+ result.interpolate(start, end, factor);
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Default to the last keyframe
|
|
|
+ return Point3F(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z);
|
|
|
+}
|
|
|
+
|
|
|
+QuatF AssimpAppNode::interpolateQuaternionKey(const aiQuatKey* keys, U32 numKeys, F32 frameTime)
|
|
|
+{
|
|
|
+ if (numKeys == 1) // Single keyframe: use it directly
|
|
|
+ return QuatF(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z, keys[0].mValue.w);
|
|
|
+
|
|
|
+ for (U32 i = 1; i < numKeys; ++i)
|
|
|
+ {
|
|
|
+ if (frameTime < keys[i].mTime)
|
|
|
+ {
|
|
|
+ const F32 factor = (frameTime - keys[i - 1].mTime) / (keys[i].mTime - keys[i - 1].mTime);
|
|
|
+ QuatF start(keys[i - 1].mValue.x, keys[i - 1].mValue.y, keys[i - 1].mValue.z, keys[i - 1].mValue.w);
|
|
|
+ QuatF end(keys[i].mValue.x, keys[i].mValue.y, keys[i].mValue.z, keys[i].mValue.w);
|
|
|
+ QuatF result;
|
|
|
+ result.interpolate(start, end, factor);
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Default to the last keyframe
|
|
|
+ return QuatF(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z, keys[numKeys - 1].mValue.w);
|
|
|
+}
|
|
|
+
|
|
|
bool AssimpAppNode::animatesTransform(const AppSequence* appSeq)
|
|
|
{
|
|
|
return false;
|