Преглед изворни кода

recast update

Added chunkytrimesh - this class splits up the geometry the navmesh is interested in into kdtree for fast traversal, makes the actual navmesh generation work with smaller chunks.

Now only 1 RecastPolylist per navmesh this can be saved out in a future commit.

This is a history commit, all functionality works same as it did before but it matches recasts recommended setup more closely. Future additions may break backwards compatibility.
marauder2k7 пре 2 месеци
родитељ
комит
d4d552e8e0

+ 3 - 0
Engine/source/gfx/gl/gfxGLDevice.cpp

@@ -704,6 +704,9 @@ inline void GFXGLDevice::postDrawPrimitive(U32 primitiveCount)
 {
    mDeviceStatistics.mDrawCalls++;
    mDeviceStatistics.mPolyCount += primitiveCount;
+
+   mVolatileVBs.clear();
+   mVolatilePBs.clear();
 }
 
 void GFXGLDevice::drawPrimitive( GFXPrimitiveType primType, U32 vertexStart, U32 primitiveCount )

+ 315 - 0
Engine/source/navigation/ChunkyTriMesh.cpp

@@ -0,0 +1,315 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen [email protected]
+//
+// This software is provided 'as-is', without any express or implied
+// warranty.  In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+//    claim that you wrote the original software. If you use this software
+//    in a product, an acknowledgment in the product documentation would be
+//    appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+//    misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#include "ChunkyTriMesh.h"
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+
+struct BoundsItem
+{
+	float bmin[2];
+	float bmax[2];
+	int i;
+};
+
+static int compareItemX(const void* va, const void* vb)
+{
+	const BoundsItem* a = (const BoundsItem*)va;
+	const BoundsItem* b = (const BoundsItem*)vb;
+	if (a->bmin[0] < b->bmin[0])
+		return -1;
+	if (a->bmin[0] > b->bmin[0])
+		return 1;
+	return 0;
+}
+
+static int compareItemY(const void* va, const void* vb)
+{
+	const BoundsItem* a = (const BoundsItem*)va;
+	const BoundsItem* b = (const BoundsItem*)vb;
+	if (a->bmin[1] < b->bmin[1])
+		return -1;
+	if (a->bmin[1] > b->bmin[1])
+		return 1;
+	return 0;
+}
+
+static void calcExtends(const BoundsItem* items, const int /*nitems*/,
+						const int imin, const int imax,
+						float* bmin, float* bmax)
+{
+	bmin[0] = items[imin].bmin[0];
+	bmin[1] = items[imin].bmin[1];
+	
+	bmax[0] = items[imin].bmax[0];
+	bmax[1] = items[imin].bmax[1];
+	
+	for (int i = imin+1; i < imax; ++i)
+	{
+		const BoundsItem& it = items[i];
+		if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0];
+		if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1];
+		
+		if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0];
+		if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1];
+	}
+}
+
+inline int longestAxis(float x, float y)
+{
+	return y > x ? 1 : 0;
+}
+
+static void subdivide(BoundsItem* items, int nitems, int imin, int imax, int trisPerChunk,
+					  int& curNode, rcChunkyTriMeshNode* nodes, const int maxNodes,
+					  int& curTri, int* outTris, const int* inTris)
+{
+	int inum = imax - imin;
+	int icur = curNode;
+	
+	if (curNode >= maxNodes)
+		return;
+
+	rcChunkyTriMeshNode& node = nodes[curNode++];
+	
+	if (inum <= trisPerChunk)
+	{
+		// Leaf
+		calcExtends(items, nitems, imin, imax, node.bmin, node.bmax);
+		
+		// Copy triangles.
+		node.i = curTri;
+		node.n = inum;
+		
+		for (int i = imin; i < imax; ++i)
+		{
+			const int* src = &inTris[items[i].i*3];
+			int* dst = &outTris[curTri*3];
+			curTri++;
+			dst[0] = src[0];
+			dst[1] = src[1];
+			dst[2] = src[2];
+		}
+	}
+	else
+	{
+		// Split
+		calcExtends(items, nitems, imin, imax, node.bmin, node.bmax);
+		
+		int	axis = longestAxis(node.bmax[0] - node.bmin[0],
+							   node.bmax[1] - node.bmin[1]);
+		
+		if (axis == 0)
+		{
+			// Sort along x-axis
+			qsort(items+imin, static_cast<size_t>(inum), sizeof(BoundsItem), compareItemX);
+		}
+		else if (axis == 1)
+		{
+			// Sort along y-axis
+			qsort(items+imin, static_cast<size_t>(inum), sizeof(BoundsItem), compareItemY);
+		}
+		
+		int isplit = imin+inum/2;
+		
+		// Left
+		subdivide(items, nitems, imin, isplit, trisPerChunk, curNode, nodes, maxNodes, curTri, outTris, inTris);
+		// Right
+		subdivide(items, nitems, isplit, imax, trisPerChunk, curNode, nodes, maxNodes, curTri, outTris, inTris);
+		
+		int iescape = curNode - icur;
+		// Negative index means escape.
+		node.i = -iescape;
+	}
+}
+
+bool rcCreateChunkyTriMesh(const float* verts, const int* tris, int ntris,
+						   int trisPerChunk, rcChunkyTriMesh* cm)
+{
+	int nchunks = (ntris + trisPerChunk-1) / trisPerChunk;
+
+	cm->nodes = new rcChunkyTriMeshNode[nchunks*4];
+	if (!cm->nodes)
+		return false;
+		
+	cm->tris = new int[ntris*3];
+	if (!cm->tris)
+		return false;
+		
+	cm->ntris = ntris;
+
+	// Build tree
+	BoundsItem* items = new BoundsItem[ntris];
+	if (!items)
+		return false;
+
+	for (int i = 0; i < ntris; i++)
+	{
+		const int* t = &tris[i*3];
+		BoundsItem& it = items[i];
+		it.i = i;
+		// Calc triangle XZ bounds.
+		it.bmin[0] = it.bmax[0] = verts[t[0]*3+0];
+		it.bmin[1] = it.bmax[1] = verts[t[0]*3+2];
+		for (int j = 1; j < 3; ++j)
+		{
+			const float* v = &verts[t[j]*3];
+			if (v[0] < it.bmin[0]) it.bmin[0] = v[0]; 
+			if (v[2] < it.bmin[1]) it.bmin[1] = v[2]; 
+
+			if (v[0] > it.bmax[0]) it.bmax[0] = v[0]; 
+			if (v[2] > it.bmax[1]) it.bmax[1] = v[2]; 
+		}
+	}
+
+	int curTri = 0;
+	int curNode = 0;
+	subdivide(items, ntris, 0, ntris, trisPerChunk, curNode, cm->nodes, nchunks*4, curTri, cm->tris, tris);
+	
+	delete [] items;
+	
+	cm->nnodes = curNode;
+	
+	// Calc max tris per node.
+	cm->maxTrisPerChunk = 0;
+	for (int i = 0; i < cm->nnodes; ++i)
+	{
+		rcChunkyTriMeshNode& node = cm->nodes[i];
+		const bool isLeaf = node.i >= 0;
+		if (!isLeaf) continue;
+		if (node.n > cm->maxTrisPerChunk)
+			cm->maxTrisPerChunk = node.n;
+	}
+	 
+	return true;
+}
+
+
+inline bool checkOverlapRect(const float amin[2], const float amax[2],
+							 const float bmin[2], const float bmax[2])
+{
+	bool overlap = true;
+	overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
+	overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
+	return overlap;
+}
+
+int rcGetChunksOverlappingRect(const rcChunkyTriMesh* cm,
+							   float bmin[2], float bmax[2],
+							   int* ids, const int maxIds)
+{
+	// Traverse tree
+	int i = 0;
+	int n = 0;
+	while (i < cm->nnodes)
+	{
+		const rcChunkyTriMeshNode* node = &cm->nodes[i];
+		const bool overlap = checkOverlapRect(bmin, bmax, node->bmin, node->bmax);
+		const bool isLeafNode = node->i >= 0;
+		
+		if (isLeafNode && overlap)
+		{
+			if (n < maxIds)
+			{
+				ids[n] = i;
+				n++;
+			}
+		}
+		
+		if (overlap || isLeafNode)
+			i++;
+		else
+		{
+			const int escapeIndex = -node->i;
+			i += escapeIndex;
+		}
+	}
+	
+	return n;
+}
+
+
+
+static bool checkOverlapSegment(const float p[2], const float q[2],
+								const float bmin[2], const float bmax[2])
+{
+	static const float EPSILON = 1e-6f;
+
+	float tmin = 0;
+	float tmax = 1;
+	float d[2];
+	d[0] = q[0] - p[0];
+	d[1] = q[1] - p[1];
+	
+	for (int i = 0; i < 2; i++)
+	{
+		if (fabsf(d[i]) < EPSILON)
+		{
+			// Ray is parallel to slab. No hit if origin not within slab
+			if (p[i] < bmin[i] || p[i] > bmax[i])
+				return false;
+		}
+		else
+		{
+			// Compute intersection t value of ray with near and far plane of slab
+			float ood = 1.0f / d[i];
+			float t1 = (bmin[i] - p[i]) * ood;
+			float t2 = (bmax[i] - p[i]) * ood;
+			if (t1 > t2) { float tmp = t1; t1 = t2; t2 = tmp; }
+			if (t1 > tmin) tmin = t1;
+			if (t2 < tmax) tmax = t2;
+			if (tmin > tmax) return false;
+		}
+	}
+	return true;
+}
+
+int rcGetChunksOverlappingSegment(const rcChunkyTriMesh* cm,
+								  float p[2], float q[2],
+								  int* ids, const int maxIds)
+{
+	// Traverse tree
+	int i = 0;
+	int n = 0;
+	while (i < cm->nnodes)
+	{
+		const rcChunkyTriMeshNode* node = &cm->nodes[i];
+		const bool overlap = checkOverlapSegment(p, q, node->bmin, node->bmax);
+		const bool isLeafNode = node->i >= 0;
+		
+		if (isLeafNode && overlap)
+		{
+			if (n < maxIds)
+			{
+				ids[n] = i;
+				n++;
+			}
+		}
+		
+		if (overlap || isLeafNode)
+			i++;
+		else
+		{
+			const int escapeIndex = -node->i;
+			i += escapeIndex;
+		}
+	}
+	
+	return n;
+}

+ 59 - 0
Engine/source/navigation/ChunkyTriMesh.h

@@ -0,0 +1,59 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen [email protected]
+//
+// This software is provided 'as-is', without any express or implied
+// warranty.  In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+//    claim that you wrote the original software. If you use this software
+//    in a product, an acknowledgment in the product documentation would be
+//    appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+//    misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#ifndef CHUNKYTRIMESH_H
+#define CHUNKYTRIMESH_H
+
+struct rcChunkyTriMeshNode
+{
+	float bmin[2];
+	float bmax[2];
+	int i;
+	int n;
+};
+
+struct rcChunkyTriMesh
+{
+	inline rcChunkyTriMesh() : nodes(0), nnodes(0), tris(0), ntris(0), maxTrisPerChunk(0) {}
+	inline ~rcChunkyTriMesh() { delete [] nodes; delete [] tris; }
+
+	rcChunkyTriMeshNode* nodes;
+	int nnodes;
+	int* tris;
+	int ntris;
+	int maxTrisPerChunk;
+
+private:
+	// Explicitly disabled copy constructor and copy assignment operator.
+	rcChunkyTriMesh(const rcChunkyTriMesh&);
+	rcChunkyTriMesh& operator=(const rcChunkyTriMesh&);
+};
+
+/// Creates partitioned triangle mesh (AABB tree),
+/// where each node contains at max trisPerChunk triangles.
+bool rcCreateChunkyTriMesh(const float* verts, const int* tris, int ntris,
+						   int trisPerChunk, rcChunkyTriMesh* cm);
+
+/// Returns the chunk indices which overlap the input rectable.
+int rcGetChunksOverlappingRect(const rcChunkyTriMesh* cm, float bmin[2], float bmax[2], int* ids, const int maxIds);
+
+/// Returns the chunk indices which overlap the input segment.
+int rcGetChunksOverlappingSegment(const rcChunkyTriMesh* cm, float p[2], float q[2], int* ids, const int maxIds);
+
+
+#endif // CHUNKYTRIMESH_H

+ 2 - 2
Engine/source/navigation/duDebugDrawTorque.cpp

@@ -51,7 +51,7 @@ duDebugDrawTorque::~duDebugDrawTorque()
 
 void duDebugDrawTorque::depthMask(bool state)
 {
-   mDesc.setZReadWrite(state, state);
+   mDesc.setZReadWrite(state, false);
 }
 
 void duDebugDrawTorque::texture(bool state)
@@ -94,7 +94,7 @@ void duDebugDrawTorque::begin(duDebugDrawPrimitives prim, float size)
    case DU_DRAW_QUADS:  mPrimType = GFXTriangleList; mQuadsMode = true; break;
    }
 
-   mDesc.setCullMode(GFXCullNone);
+   mDesc.setCullMode(GFXCullCW);
    mDesc.setBlend(true);
 }
 

+ 367 - 199
Engine/source/navigation/navMesh.cpp

@@ -173,6 +173,12 @@ DefineEngineFunction(NavMeshUpdateOne, void, (S32 meshid, S32 objid, bool remove
 }
 
 NavMesh::NavMesh()
+:  m_triareas(0),
+   m_solid(0),
+   m_chf(0),
+   m_cset(0),
+   m_pmesh(0),
+   m_dmesh(0)
 {
    mTypeMask |= StaticShapeObjectType | MarkerObjectType;
    mFileName = StringTable->EmptyString();
@@ -184,8 +190,7 @@ NavMesh::NavMesh()
 
    mWaterMethod = Ignore;
 
-   dMemset(&cfg, 0, sizeof(cfg));
-   mCellSize = mCellHeight = 0.2f;
+   mCellSize = mCellHeight = 0.01f;
    mWalkableHeight = 2.0f;
    mWalkableClimb = 0.3f;
    mWalkableRadius = 0.5f;
@@ -599,6 +604,13 @@ DefineEngineMethod(NavMesh, deleteLinks, void, (),,
    //object->eraseLinks();
 }
 
+static void buildCallback(SceneObject* object, void* key)
+{
+   SceneContainer::CallbackInfo* info = reinterpret_cast<SceneContainer::CallbackInfo*>(key);
+   if (!object->mPathfindingIgnore)
+      object->buildPolyList(info->context, info->polyList, info->boundingBox, info->boundingSphere);
+}
+
 bool NavMesh::build(bool background, bool saveIntermediates)
 {
    if(mBuilding)
@@ -622,14 +634,53 @@ bool NavMesh::build(bool background, bool saveIntermediates)
       return false;
    }
 
-   updateConfig();
+   Box3F worldBox = getWorldBox();
+   SceneContainer::CallbackInfo info;
+   info.context = PLC_Navigation;
+   info.boundingBox = worldBox;
+   m_geo = new RecastPolyList;
+   info.polyList = m_geo;
+   info.key = this;
+   getContainer()->findObjects(worldBox, StaticObjectType | DynamicShapeObjectType, buildCallback, &info);
+
+   // Parse water objects into the same list, but remember how much geometry was /not/ water.
+   U32 nonWaterVertCount = m_geo->getVertCount();
+   U32 nonWaterTriCount = m_geo->getTriCount();
+   if (mWaterMethod != Ignore)
+   {
+      getContainer()->findObjects(worldBox, WaterObjectType, buildCallback, &info);
+   }
+
+   // Check for no geometry.
+   if (!m_geo->getVertCount())
+   {
+      m_geo->clear();
+      return false;
+   }
+
+   m_geo->getChunkyMesh();
+
+   // Needed for the recast config and generation params.
+   Box3F rc_box = DTStoRC(getWorldBox());
+   S32 gw = 0, gh = 0;
+   rcCalcGridSize(rc_box.minExtents, rc_box.maxExtents, mCellSize, &gw, &gh);
+   const S32 ts = (S32)mTileSize;
+   const S32 tw = (gw + ts - 1) / ts;
+   const S32 th = (gh + ts - 1) / ts;
+   Con::printf("NavMesh::Build - Tiles %d x %d", tw, th);
+
+   U32 tileBits = mMin(getNextBinLog2(tw * th), 14);
+   if (tileBits > 14) tileBits = 14;
+   U32 maxTiles = 1 << tileBits;
+   U32 polyBits = 22 - tileBits;
+   mMaxPolysPerTile = 1 << polyBits;
 
    // Build navmesh parameters from console members.
    dtNavMeshParams params;
-   rcVcopy(params.orig, cfg.bmin);
-   params.tileWidth = cfg.tileSize * mCellSize;
-   params.tileHeight = cfg.tileSize * mCellSize;
-   params.maxTiles = mCeil(getWorldBox().len_x() / params.tileWidth) * mCeil(getWorldBox().len_y() / params.tileHeight);
+   rcVcopy(params.orig, rc_box.minExtents);
+   params.tileWidth = mTileSize * mCellSize;
+   params.tileHeight = mTileSize * mCellSize;
+   params.maxTiles = maxTiles;
    params.maxPolys = mMaxPolysPerTile;
 
    // Initialise our navmesh.
@@ -690,29 +741,29 @@ void NavMesh::inspectPostApply()
 
 void NavMesh::updateConfig()
 {
-   // Build rcConfig object from our console members.
-   dMemset(&cfg, 0, sizeof(cfg));
-   cfg.cs = mCellSize;
-   cfg.ch = mCellHeight;
-   Box3F box = DTStoRC(getWorldBox());
-   rcVcopy(cfg.bmin, box.minExtents);
-   rcVcopy(cfg.bmax, box.maxExtents);
-   rcCalcGridSize(cfg.bmin, cfg.bmax, cfg.cs, &cfg.width, &cfg.height);
-
-   cfg.walkableHeight = mCeil(mWalkableHeight / mCellHeight);
-   cfg.walkableClimb = mCeil(mWalkableClimb / mCellHeight);
-   cfg.walkableRadius = mCeil(mWalkableRadius / mCellSize);
-   cfg.walkableSlopeAngle = mWalkableSlope;
-   cfg.borderSize = cfg.walkableRadius + 3;
-
-   cfg.detailSampleDist = mDetailSampleDist;
-   cfg.detailSampleMaxError = mDetailSampleMaxError;
-   cfg.maxEdgeLen = mMaxEdgeLen;
-   cfg.maxSimplificationError = mMaxSimplificationError;
-   cfg.maxVertsPerPoly = mMaxVertsPerPoly;
-   cfg.minRegionArea = mMinRegionArea;
-   cfg.mergeRegionArea = mMergeRegionArea;
-   cfg.tileSize = mTileSize / cfg.cs;
+   //// Build rcConfig object from our console members.
+   //dMemset(&cfg, 0, sizeof(cfg));
+   //cfg.cs = mCellSize;
+   //cfg.ch = mCellHeight;
+   //Box3F box = DTStoRC(getWorldBox());
+   //rcVcopy(cfg.bmin, box.minExtents);
+   //rcVcopy(cfg.bmax, box.maxExtents);
+   //rcCalcGridSize(cfg.bmin, cfg.bmax, cfg.cs, &cfg.width, &cfg.height);
+
+   //cfg.walkableHeight = mCeil(mWalkableHeight / mCellHeight);
+   //cfg.walkableClimb = mCeil(mWalkableClimb / mCellHeight);
+   //cfg.walkableRadius = mCeil(mWalkableRadius / mCellSize);
+   //cfg.walkableSlopeAngle = mWalkableSlope;
+   //cfg.borderSize = cfg.walkableRadius + 3;
+
+   //cfg.detailSampleDist = mDetailSampleDist;
+   //cfg.detailSampleMaxError = mDetailSampleMaxError;
+   //cfg.maxEdgeLen = mMaxEdgeLen;
+   //cfg.maxSimplificationError = mMaxSimplificationError;
+   //cfg.maxVertsPerPoly = mMaxVertsPerPoly;
+   //cfg.minRegionArea = mMinRegionArea;
+   //cfg.mergeRegionArea = mMergeRegionArea;
+   //cfg.tileSize = mTileSize / cfg.cs;
 }
 
 S32 NavMesh::getTile(const Point3F& pos)
@@ -740,6 +791,36 @@ void NavMesh::updateTiles(bool dirty)
    if(!isProperlyAdded())
       return;
 
+   // this is just here so that load regens the mesh, we should be saving it out.
+   if (!m_geo)
+   {
+      Box3F worldBox = getWorldBox();
+      SceneContainer::CallbackInfo info;
+      info.context = PLC_Navigation;
+      info.boundingBox = worldBox;
+      m_geo = new RecastPolyList;
+      info.polyList = m_geo;
+      info.key = this;
+      getContainer()->findObjects(worldBox, StaticObjectType | DynamicShapeObjectType, buildCallback, &info);
+
+      // Parse water objects into the same list, but remember how much geometry was /not/ water.
+      U32 nonWaterVertCount = m_geo->getVertCount();
+      U32 nonWaterTriCount = m_geo->getTriCount();
+      if (mWaterMethod != Ignore)
+      {
+         getContainer()->findObjects(worldBox, WaterObjectType, buildCallback, &info);
+      }
+
+      // Check for no geometry.
+      if (!m_geo->getVertCount())
+      {
+         m_geo->clear();
+         return;
+      }
+
+      m_geo->getChunkyMesh();
+   }
+
    mTiles.clear();
    mTileData.clear();
    mDirtyTiles.clear();
@@ -748,13 +829,15 @@ void NavMesh::updateTiles(bool dirty)
    if(box.isEmpty())
       return;
 
-   updateConfig();
-
    // Calculate tile dimensions.
-   const U32 ts = cfg.tileSize;
-   const U32 tw = (cfg.width  + ts-1) / ts;
-   const U32 th = (cfg.height + ts-1) / ts;
-   const F32 tcs = cfg.tileSize * cfg.cs;
+   const F32* bmin = box.minExtents;
+   const F32* bmax = box.maxExtents;
+   S32 gw = 0, gh = 0;
+   rcCalcGridSize(bmin, bmax, mCellSize, &gw, &gh);
+   const S32 ts = (S32)mTileSize;
+   const S32 tw = (gw + ts - 1) / ts;
+   const S32 th = (gh + ts - 1) / ts;
+   const F32 tcs = mTileSize * mCellSize;
 
    // Iterate over tiles.
    F32 tileBmin[3], tileBmax[3];
@@ -762,13 +845,13 @@ void NavMesh::updateTiles(bool dirty)
    {
       for(U32 x = 0; x < tw; ++x)
       {
-         tileBmin[0] = cfg.bmin[0] + x*tcs;
-         tileBmin[1] = cfg.bmin[1];
-         tileBmin[2] = cfg.bmin[2] + y*tcs;
+         tileBmin[0] = bmin[0] + x*tcs;
+         tileBmin[1] = bmin[1];
+         tileBmin[2] = bmin[2] + y*tcs;
 
-         tileBmax[0] = cfg.bmin[0] + (x+1)*tcs;
-         tileBmax[1] = cfg.bmax[1];
-         tileBmax[2] = cfg.bmin[2] + (y+1)*tcs;
+         tileBmax[0] = bmin[0] + (x+1)*tcs;
+         tileBmax[1] = bmax[1];
+         tileBmax[2] = bmin[2] + (y+1)*tcs;
 
          mTiles.push_back(
             Tile(RCtoDTS(tileBmin, tileBmax),
@@ -846,112 +929,127 @@ void NavMesh::buildNextTile()
    }
 }
 
-static void buildCallback(SceneObject* object,void *key)
-{
-   SceneContainer::CallbackInfo* info = reinterpret_cast<SceneContainer::CallbackInfo*>(key);
-   if (!object->mPathfindingIgnore)
-   object->buildPolyList(info->context,info->polyList,info->boundingBox,info->boundingSphere);
-}
-
 unsigned char *NavMesh::buildTileData(const Tile &tile, TileData &data, U32 &dataSize)
 {
+
+   cleanup();
+
+   const rcChunkyTriMesh* chunkyMesh = m_geo->getChunkyMesh();
+
    // Push out tile boundaries a bit.
    F32 tileBmin[3], tileBmax[3];
    rcVcopy(tileBmin, tile.bmin);
    rcVcopy(tileBmax, tile.bmax);
-   tileBmin[0] -= cfg.borderSize * cfg.cs;
-   tileBmin[2] -= cfg.borderSize * cfg.cs;
-   tileBmax[0] += cfg.borderSize * cfg.cs;
-   tileBmax[2] += cfg.borderSize * cfg.cs;
-
-   // Parse objects from level into RC-compatible format.
-   Box3F box = RCtoDTS(tileBmin, tileBmax);
-   SceneContainer::CallbackInfo info;
-   info.context = PLC_Navigation;
-   info.boundingBox = box;
-   data.geom.clear();
-   info.polyList = &data.geom;
-   info.key = this;
-   getContainer()->findObjects(box, StaticObjectType | DynamicShapeObjectType, buildCallback, &info);
-
-   // Parse water objects into the same list, but remember how much geometry was /not/ water.
-   U32 nonWaterVertCount = data.geom.getVertCount();
-   U32 nonWaterTriCount = data.geom.getTriCount();
-   if(mWaterMethod != Ignore)
-   {
-      getContainer()->findObjects(box, WaterObjectType, buildCallback, &info);
-   }
-
-   // Check for no geometry.
-   if (!data.geom.getVertCount())
-   {
-      data.geom.clear();
-      return NULL;
-   }
-
-   // Figure out voxel dimensions of this tile.
-   U32 width = 0, height = 0;
-   width = cfg.tileSize + cfg.borderSize * 2;
-   height = cfg.tileSize + cfg.borderSize * 2;
+   // Setup our rcConfig
+   dMemset(&m_cfg, 0, sizeof(m_cfg));
+   m_cfg.cs = mCellSize;
+   m_cfg.ch = mCellHeight;
+   m_cfg.walkableSlopeAngle = mWalkableSlope;
+   m_cfg.walkableHeight = (S32)mCeil(mWalkableHeight / m_cfg.ch);
+   m_cfg.walkableClimb = (S32)mFloor(mWalkableClimb / m_cfg.ch);
+   m_cfg.walkableRadius = (S32)mCeil(mWalkableRadius / m_cfg.cs);
+   m_cfg.maxEdgeLen = (S32)(mMaxEdgeLen / mCellSize);
+   m_cfg.maxSimplificationError = mMaxSimplificationError;
+   m_cfg.minRegionArea = (S32)mSquared((F32)mMinRegionArea);
+   m_cfg.mergeRegionArea = (S32)mSquared((F32)mMergeRegionArea);
+   m_cfg.maxVertsPerPoly = (S32)mMaxVertsPerPoly;
+   m_cfg.tileSize = (S32)mTileSize;
+   m_cfg.borderSize = mMax(m_cfg.walkableRadius + 3, mBorderSize); // use the border size if it is bigger.
+   m_cfg.width = m_cfg.tileSize + m_cfg.borderSize * 2;
+   m_cfg.height = m_cfg.tileSize + m_cfg.borderSize * 2;
+   m_cfg.detailSampleDist = mDetailSampleDist < 0.9f ? 0 : mCellSize * mDetailSampleDist;
+   m_cfg.detailSampleMaxError = mCellHeight * mDetailSampleMaxError;
+   rcVcopy(m_cfg.bmin, tileBmin);
+   rcVcopy(m_cfg.bmax, tileBmax);
+   m_cfg.bmin[0] -= m_cfg.borderSize * m_cfg.cs;
+   m_cfg.bmin[2] -= m_cfg.borderSize * m_cfg.cs;
+   m_cfg.bmax[0] += m_cfg.borderSize * m_cfg.cs;
+   m_cfg.bmax[2] += m_cfg.borderSize * m_cfg.cs;
 
    // Create a heightfield to voxelise our input geometry.
-   data.hf = rcAllocHeightfield();
-   if(!data.hf)
+   m_solid = rcAllocHeightfield();
+   if(!m_solid)
    {
       Con::errorf("Out of memory (rcHeightField) for NavMesh %s", getIdString());
       return NULL;
    }
-   if(!rcCreateHeightfield(ctx, *data.hf, width, height, tileBmin, tileBmax, cfg.cs, cfg.ch))
+   if (!rcCreateHeightfield(ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch))
    {
       Con::errorf("Could not generate rcHeightField for NavMesh %s", getIdString());
       return NULL;
    }
 
-   unsigned char *areas = new unsigned char[data.geom.getTriCount()];
+   m_triareas = new unsigned char[chunkyMesh->maxTrisPerChunk];
+   if (!m_triareas)
+   {
+      Con::errorf("NavMesh::buildTileData: Out of memory 'm_triareas' (%d).", chunkyMesh->maxTrisPerChunk);
+      return NULL;
+   }
 
-   dMemset(areas, 0, data.geom.getTriCount() * sizeof(unsigned char));
+   F32 tbmin[2], tbmax[2];
+   tbmin[0] = m_cfg.bmin[0];
+   tbmin[1] = m_cfg.bmin[2];
+   tbmax[0] = m_cfg.bmax[0];
+   tbmax[1] = m_cfg.bmax[2];
+   int cid[512];
+   const int ncid = rcGetChunksOverlappingRect(chunkyMesh, tbmin, tbmax, cid, 512);
+   if (!ncid)
+      return 0;
 
-   // Mark walkable triangles with the appropriate area flags, and rasterize.
-   if(mWaterMethod == Solid)
+   for (int i = 0; i < ncid; ++i)
    {
-      // Treat water as solid: i.e. mark areas as walkable based on angle.
-      rcMarkWalkableTriangles(ctx, cfg.walkableSlopeAngle,
-         data.geom.getVerts(), data.geom.getVertCount(),
-         data.geom.getTris(), data.geom.getTriCount(), areas);
+      const rcChunkyTriMeshNode& node = chunkyMesh->nodes[cid[i]];
+      const int* ctris = &chunkyMesh->tris[node.i * 3];
+      const int nctris = node.n;
+
+      memset(m_triareas, 0, nctris * sizeof(unsigned char));
+      rcMarkWalkableTriangles(ctx, m_cfg.walkableSlopeAngle,
+         m_geo->getVerts(), m_geo->getVertCount(), ctris, nctris, m_triareas);
+
+      if (!rcRasterizeTriangles(ctx, m_geo->getVerts(), m_geo->getVertCount(), ctris, m_triareas, nctris, *m_solid, m_cfg.walkableClimb))
+         return NULL;
    }
-   else
+
+   if (!mSaveIntermediates)
    {
-      // Treat water as impassable: leave all area flags 0.
-      rcMarkWalkableTriangles(ctx, cfg.walkableSlopeAngle,
-         data.geom.getVerts(), nonWaterVertCount,
-         data.geom.getTris(), nonWaterTriCount, areas);
+      delete[] m_triareas;
+      m_triareas = 0;
    }
-   rcRasterizeTriangles(ctx,
-      data.geom.getVerts(), data.geom.getVertCount(),
-      data.geom.getTris(), areas, data.geom.getTriCount(),
-      *data.hf, cfg.walkableClimb);
 
-   delete[] areas;
+   // these should be optional.
+   //if (m_filterLowHangingObstacles)
+      rcFilterLowHangingWalkableObstacles(ctx, m_cfg.walkableClimb, *m_solid);
+   //if (m_filterLedgeSpans)
+      rcFilterLedgeSpans(ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid);
+   //if (m_filterWalkableLowHeightSpans)
+      rcFilterWalkableLowHeightSpans(ctx, m_cfg.walkableHeight, *m_solid);
 
-   // Filter out areas with low ceilings and other stuff.
-   rcFilterLowHangingWalkableObstacles(ctx, cfg.walkableClimb, *data.hf);
-   rcFilterLedgeSpans(ctx, cfg.walkableHeight, cfg.walkableClimb, *data.hf);
-   rcFilterWalkableLowHeightSpans(ctx, cfg.walkableHeight, *data.hf);
 
-   data.chf = rcAllocCompactHeightfield();
-   if(!data.chf)
+   // Compact the heightfield so that it is faster to handle from now on.
+   // This will result more cache coherent data as well as the neighbours
+   // between walkable cells will be calculated.
+   m_chf = rcAllocCompactHeightfield();
+   if (!m_chf)
    {
-      Con::errorf("Out of memory (rcCompactHeightField) for NavMesh %s", getIdString());
+      Con::errorf("NavMesh::buildTileData: Out of memory 'chf'.");
       return NULL;
    }
-   if(!rcBuildCompactHeightfield(ctx, cfg.walkableHeight, cfg.walkableClimb, *data.hf, *data.chf))
+   if (!rcBuildCompactHeightfield(ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf))
    {
-      Con::errorf("Could not generate rcCompactHeightField for NavMesh %s", getIdString());
+      Con::errorf("NavMesh::buildTileData: Could not build compact data.");
       return NULL;
    }
-   if(!rcErodeWalkableArea(ctx, cfg.walkableRadius, *data.chf))
+
+   if (!mSaveIntermediates)
+   {
+      rcFreeHeightField(m_solid);
+      m_solid = NULL;
+   }
+
+   // Erode the walkable area by agent radius.
+   if (!rcErodeWalkableArea(ctx, m_cfg.walkableRadius, *m_chf))
    {
-      Con::errorf("Could not erode walkable area for NavMesh %s", getIdString());
+      Con::errorf("NavMesh::buildTileData: Could not erode.");
       return NULL;
    }
 
@@ -962,132 +1060,186 @@ unsigned char *NavMesh::buildTileData(const Tile &tile, TileData &data, U32 &dat
       //rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf);
    //--------------------------
 
-   if(false)
-   {
-      if(!rcBuildRegionsMonotone(ctx, *data.chf, cfg.borderSize, cfg.minRegionArea, cfg.mergeRegionArea))
+   // Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas.
+   // There are 3 martitioning methods, each with some pros and cons:
+   // These should be implemented.
+   // 1) Watershed partitioning
+   //   - the classic Recast partitioning
+   //   - creates the nicest tessellation
+   //   - usually slowest
+   //   - partitions the heightfield into nice regions without holes or overlaps
+   //   - the are some corner cases where this method creates produces holes and overlaps
+   //      - holes may appear when a small obstacles is close to large open area (triangulation can handle this)
+   //      - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail
+   //   * generally the best choice if you precompute the nacmesh, use this if you have large open areas
+   // 2) Monotone partioning
+   //   - fastest
+   //   - partitions the heightfield into regions without holes and overlaps (guaranteed)
+   //   - creates long thin polygons, which sometimes causes paths with detours
+   //   * use this if you want fast navmesh generation
+   // 3) Layer partitoining
+   //   - quite fast
+   //   - partitions the heighfield into non-overlapping regions
+   //   - relies on the triangulation code to cope with holes (thus slower than monotone partitioning)
+   //   - produces better triangles than monotone partitioning
+   //   - does not have the corner cases of watershed partitioning
+   //   - can be slow and create a bit ugly tessellation (still better than monotone)
+   //     if you have large open areas with small obstacles (not a problem if you use tiles)
+   //   * good choice to use for tiled navmesh with medium and small sized tiles
+
+
+   if (/*m_partitionType == SAMPLE_PARTITION_WATERSHED*/ true)
+   {
+      // Prepare for region partitioning, by calculating distance field along the walkable surface.
+      if (!rcBuildDistanceField(ctx, *m_chf))
+      {
+         Con::errorf("NavMesh::buildTileData: Could not build distance field.");
+         return 0;
+      }
+
+      // Partition the walkable surface into simple regions without holes.
+      if (!rcBuildRegions(ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
       {
-         Con::errorf("Could not build regions for NavMesh %s", getIdString());
+         Con::errorf("NavMesh::buildTileData: Could not build watershed regions.");
          return NULL;
       }
    }
-   else
+   else if (/*m_partitionType == SAMPLE_PARTITION_MONOTONE*/ false)
    {
-      if(!rcBuildDistanceField(ctx, *data.chf))
+      // Partition the walkable surface into simple regions without holes.
+      // Monotone partitioning does not need distancefield.
+      if (!rcBuildRegionsMonotone(ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
       {
-         Con::errorf("Could not build distance field for NavMesh %s", getIdString());
+         Con::errorf("NavMesh::buildTileData: Could not build monotone regions.");
          return NULL;
       }
-      if(!rcBuildRegions(ctx, *data.chf, cfg.borderSize, cfg.minRegionArea, cfg.mergeRegionArea))
+   }
+   else // SAMPLE_PARTITION_LAYERS
+   {
+      // Partition the walkable surface into simple regions without holes.
+      if (!rcBuildLayerRegions(ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea))
       {
-         Con::errorf("Could not build regions for NavMesh %s", getIdString());
+         Con::errorf("NavMesh::buildTileData: Could not build layer regions.");
          return NULL;
       }
    }
 
-   data.cs = rcAllocContourSet();
-   if(!data.cs)
+   m_cset = rcAllocContourSet();
+   if (!m_cset)
    {
-      Con::errorf("Out of memory (rcContourSet) for NavMesh %s", getIdString());
+      Con::errorf("NavMesh::buildTileData: Out of memory 'cset'");
       return NULL;
    }
-   if(!rcBuildContours(ctx, *data.chf, cfg.maxSimplificationError, cfg.maxEdgeLen, *data.cs))
+
+   if (!rcBuildContours(ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset))
    {
-      Con::errorf("Could not construct rcContourSet for NavMesh %s", getIdString());
+      Con::errorf("NavMesh::buildTileData: Could not create contours");
       return NULL;
    }
-   if(data.cs->nconts <= 0)
-   {
-      Con::errorf("No contours in rcContourSet for NavMesh %s", getIdString());
+
+   if (m_cset->nconts == 0)
       return NULL;
-   }
 
-   data.pm = rcAllocPolyMesh();
-   if(!data.pm)
+   // Build polygon navmesh from the contours.
+   m_pmesh = rcAllocPolyMesh();
+   if (!m_pmesh)
    {
-      Con::errorf("Out of memory (rcPolyMesh) for NavMesh %s", getIdString());
+      Con::errorf("NavMesh::buildTileData: Out of memory 'pmesh'.");
       return NULL;
    }
-   if(!rcBuildPolyMesh(ctx, *data.cs, cfg.maxVertsPerPoly, *data.pm))
+   if (!rcBuildPolyMesh(ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh))
    {
-      Con::errorf("Could not construct rcPolyMesh for NavMesh %s", getIdString());
+      Con::errorf("NavMesh::buildTileData: Could not triangulate contours.");
       return NULL;
    }
 
-   data.pmd = rcAllocPolyMeshDetail();
-   if(!data.pmd)
-   {
-      Con::errorf("Out of memory (rcPolyMeshDetail) for NavMesh %s", getIdString());
-      return NULL;
-   }
-   if(!rcBuildPolyMeshDetail(ctx, *data.pm, *data.chf, cfg.detailSampleDist, cfg.detailSampleMaxError, *data.pmd))
+   // Build detail mesh.
+   m_dmesh = rcAllocPolyMeshDetail();
+   if (!m_dmesh)
    {
-      Con::errorf("Could not construct rcPolyMeshDetail for NavMesh %s", getIdString());
+      Con::errorf("NavMesh::buildTileData: Out of memory 'dmesh'.");
       return NULL;
    }
 
-   if(data.pm->nverts >= 0xffff)
+   if (!rcBuildPolyMeshDetail(ctx, *m_pmesh, *m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, *m_dmesh))
    {
-      Con::errorf("Too many vertices in rcPolyMesh for NavMesh %s", getIdString());
+      Con::errorf("NavMesh::buildTileData: Could build polymesh detail.");
       return NULL;
    }
-   for(U32 i = 0; i < data.pm->npolys; i++)
-   {
-      if(data.pm->areas[i] == RC_WALKABLE_AREA)
-         data.pm->areas[i] = GroundArea;
 
-      if(data.pm->areas[i] == GroundArea)
-         data.pm->flags[i] |= WalkFlag;
-      if(data.pm->areas[i] == WaterArea)
-         data.pm->flags[i] |= SwimFlag;
+   if (!mSaveIntermediates)
+   {
+      rcFreeCompactHeightfield(m_chf);
+      m_chf = 0;
+      rcFreeContourSet(m_cset);
+      m_cset = 0;
    }
 
    unsigned char* navData = 0;
    int navDataSize = 0;
+   if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
+   {
+      if (m_pmesh->nverts >= 0xffff)
+      {
+         // The vertex indices are ushorts, and cannot point to more than 0xffff vertices.
+         Con::errorf("NavMesh::buildTileData: Too many vertices per tile %d (max: %d).", m_pmesh->nverts, 0xffff);
+         return NULL;
+      }
 
-   dtNavMeshCreateParams params;
-   dMemset(&params, 0, sizeof(params));
-
-   params.verts = data.pm->verts;
-   params.vertCount = data.pm->nverts;
-   params.polys = data.pm->polys;
-   params.polyAreas = data.pm->areas;
-   params.polyFlags = data.pm->flags;
-   params.polyCount = data.pm->npolys;
-   params.nvp = data.pm->nvp;
-
-   params.detailMeshes = data.pmd->meshes;
-   params.detailVerts = data.pmd->verts;
-   params.detailVertsCount = data.pmd->nverts;
-   params.detailTris = data.pmd->tris;
-   params.detailTriCount = data.pmd->ntris;
-
-   params.offMeshConVerts = mLinkVerts.address();
-   params.offMeshConRad = mLinkRads.address();
-   params.offMeshConDir = mLinkDirs.address();
-   params.offMeshConAreas = mLinkAreas.address();
-   params.offMeshConFlags = mLinkFlags.address();
-   params.offMeshConUserID = mLinkIDs.address();
-   params.offMeshConCount = mLinkIDs.size();
-
-   params.walkableHeight = mWalkableHeight;
-   params.walkableRadius = mWalkableRadius;
-   params.walkableClimb = mWalkableClimb;
-   params.tileX = tile.x;
-   params.tileY = tile.y;
-   params.tileLayer = 0;
-   rcVcopy(params.bmin, data.pm->bmin);
-   rcVcopy(params.bmax, data.pm->bmax);
-   params.cs = cfg.cs;
-   params.ch = cfg.ch;
-   params.buildBvTree = true;
-
-   if(!dtCreateNavMeshData(&params, &navData, &navDataSize))
-   {
-      Con::errorf("Could not create dtNavMeshData for tile (%d, %d) of NavMesh %s",
-         tile.x, tile.y, getIdString());
-      return NULL;
-   }
+      for (U32 i = 0; i < m_pmesh->npolys; i++)
+      {
+         if (m_pmesh->areas[i] == RC_WALKABLE_AREA)
+            m_pmesh->areas[i] = GroundArea;
+
+         if (m_pmesh->areas[i] == GroundArea)
+            m_pmesh->flags[i] |= WalkFlag;
+         if (m_pmesh->areas[i] == WaterArea)
+            m_pmesh->flags[i] |= SwimFlag;
+      }
 
+      dtNavMeshCreateParams params;
+      dMemset(&params, 0, sizeof(params));
+
+      params.verts = m_pmesh->verts;
+      params.vertCount = m_pmesh->nverts;
+      params.polys = m_pmesh->polys;
+      params.polyAreas = m_pmesh->areas;
+      params.polyFlags = m_pmesh->flags;
+      params.polyCount = m_pmesh->npolys;
+      params.nvp = m_pmesh->nvp;
+
+      params.detailMeshes = m_dmesh->meshes;
+      params.detailVerts = m_dmesh->verts;
+      params.detailVertsCount = m_dmesh->nverts;
+      params.detailTris = m_dmesh->tris;
+      params.detailTriCount = m_dmesh->ntris;
+
+      params.offMeshConVerts = mLinkVerts.address();
+      params.offMeshConRad = mLinkRads.address();
+      params.offMeshConDir = mLinkDirs.address();
+      params.offMeshConAreas = mLinkAreas.address();
+      params.offMeshConFlags = mLinkFlags.address();
+      params.offMeshConUserID = mLinkIDs.address();
+      params.offMeshConCount = mLinkIDs.size();
+
+      params.walkableHeight = mWalkableHeight;
+      params.walkableRadius = mWalkableRadius;
+      params.walkableClimb = mWalkableClimb;
+      params.tileX = tile.x;
+      params.tileY = tile.y;
+      params.tileLayer = 0;
+      rcVcopy(params.bmin, m_pmesh->bmin);
+      rcVcopy(params.bmax, m_pmesh->bmax);
+      params.cs = m_cfg.cs;
+      params.ch = m_cfg.ch;
+      params.buildBvTree = true;
+
+      if (!dtCreateNavMeshData(&params, &navData, &navDataSize))
+      {
+         Con::errorf("NavMesh::buildTileData: Could not build Detour navmesh.");
+         return NULL;
+      }
+   }
    dataSize = navDataSize;
 
    return navData;
@@ -1331,6 +1483,22 @@ void NavMesh::renderToDrawer()
 {
 }
 
+void NavMesh::cleanup()
+{
+   delete[] m_triareas;
+   m_triareas = 0;
+   rcFreeHeightField(m_solid);
+   m_solid = 0;
+   rcFreeCompactHeightfield(m_chf);
+   m_chf = 0;
+   rcFreeContourSet(m_cset);
+   m_cset = 0;
+   rcFreePolyMesh(m_pmesh);
+   m_pmesh = 0;
+   rcFreePolyMeshDetail(m_dmesh);
+   m_dmesh = 0;
+}
+
 void NavMesh::prepRenderImage(SceneRenderState *state)
 {
    ObjectRenderInst *ri = state->getRenderPass()->allocInst<ObjectRenderInst>();

+ 12 - 3
Engine/source/navigation/navMesh.h

@@ -366,9 +366,6 @@ private:
    /// @name Intermediate data
    /// @{
 
-   /// Config struct.
-   rcConfig cfg;
-
    /// Updates our config from console members.
    void updateConfig();
 
@@ -419,6 +416,18 @@ private:
 
    /// Use this object to manage update events.
    static SimObjectPtr<EventManager> smEventManager;
+
+protected:
+   RecastPolyList* m_geo;
+   unsigned char* m_triareas;
+   rcHeightfield* m_solid;
+   rcCompactHeightfield* m_chf;
+   rcContourSet* m_cset;
+   rcPolyMesh* m_pmesh;
+   rcPolyMeshDetail* m_dmesh;
+   rcConfig m_cfg;
+
+   void cleanup();
 };
 
 typedef NavMesh::WaterMethod NavMeshWaterMethod;

+ 23 - 1
Engine/source/navigation/recastPolyList.cpp

@@ -27,7 +27,7 @@
 #include "gfx/primBuilder.h"
 #include "gfx/gfxStateBlock.h"
 
-RecastPolyList::RecastPolyList()
+RecastPolyList::RecastPolyList() : mChunkyMesh(0)
 {
    nverts = 0;
    verts = NULL;
@@ -44,6 +44,28 @@ RecastPolyList::~RecastPolyList()
    clear();
 }
 
+rcChunkyTriMesh* RecastPolyList::getChunkyMesh()
+{
+   if (!mChunkyMesh)
+   {
+      mChunkyMesh = new rcChunkyTriMesh;
+      if (!mChunkyMesh)
+      {
+         Con::errorf("Build tile navigation: out of memory");
+         return NULL;
+      }
+
+      if (!rcCreateChunkyTriMesh(getVerts(), getTris(), getTriCount(), 256, mChunkyMesh))
+      {
+         Con::errorf("Build tile navigation: out of memory");
+         return NULL;
+      }
+
+   }
+
+   return mChunkyMesh;
+}
+
 void RecastPolyList::clear()
 {
    nverts = 0;

+ 9 - 0
Engine/source/navigation/recastPolyList.h

@@ -26,6 +26,10 @@
 #include "collision/abstractPolyList.h"
 #include "core/util/tVector.h"
 
+#ifndef CHUNKYTRIMESH_H
+#include "ChunkyTriMesh.h"
+#endif
+
 /// Represents polygons in the same manner as the .obj file format. Handy for
 /// padding data to Recast, since it expects this data format. At the moment,
 /// this class only accepts triangles.
@@ -70,6 +74,9 @@ public:
    /// Default destructor.
    ~RecastPolyList();
 
+   rcChunkyTriMesh* getChunkyMesh();
+
+
 protected:
    /// Number of vertices defined.
    U32 nverts;
@@ -93,6 +100,8 @@ protected:
    /// Another inherited utility function.
    const PlaneF& getIndexedPlane(const U32 index) override { return planes[index]; }
 
+   rcChunkyTriMesh* mChunkyMesh;
+
 private:
 };