assimpAppNode.cpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311
  1. //-----------------------------------------------------------------------------
  2. // Copyright (c) 2012 GarageGames, LLC
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to
  6. // deal in the Software without restriction, including without limitation the
  7. // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  8. // sell copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19. // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  20. // IN THE SOFTWARE.
  21. //-----------------------------------------------------------------------------
  22. #include "platform/platform.h"
  23. #include "ts/loader/appSequence.h"
  24. #include "ts/assimp/assimpAppNode.h"
  25. #include "ts/assimp/assimpAppMesh.h"
  26. #if !defined(TORQUE_DISABLE_MEMORY_MANAGER)
  27. #ifdef new
  28. #undef new
  29. #endif
  30. #endif
  31. // assimp include files.
  32. #include <assimp/cimport.h>
  33. #include <assimp/scene.h>
  34. #include <assimp/postprocess.h>
  35. #include <assimp/types.h>
  36. #if !defined(TORQUE_DISABLE_MEMORY_MANAGER)
  37. # define _new new(__FILE__, __LINE__)
  38. # define new _new
  39. #endif
  40. aiAnimation* AssimpAppNode::sActiveSequence = NULL;
  41. F32 AssimpAppNode::sTimeMultiplier = 1.0f;
  42. AssimpAppNode::AssimpAppNode(const aiScene* scene, const aiNode* node, AssimpAppNode* parentNode)
  43. : mScene(scene),
  44. mNode(node ? node : scene->mRootNode),
  45. mInvertMeshes(false),
  46. mLastTransformTime(TSShapeLoader::DefaultTime - 1),
  47. mDefaultTransformValid(false)
  48. {
  49. appParent = parentNode;
  50. // Initialize node and parent names.
  51. mName = dStrdup(mNode->mName.C_Str());
  52. if ( dStrlen(mName) == 0 )
  53. {
  54. const char* defaultName = "null";
  55. mName = dStrdup(defaultName);
  56. }
  57. mParentName = dStrdup(parentNode ? parentNode->mName : "ROOT");
  58. // Convert transformation matrix
  59. assimpToTorqueMat(node->mTransformation, mNodeTransform);
  60. Con::printf("[ASSIMP] Node Created: %s, Parent: %s", mName, mParentName);
  61. }
  62. MatrixF AssimpAppNode::getTransform(F32 time)
  63. {
  64. // Check if we can use the last computed transform
  65. if (time == mLastTransformTime)
  66. {
  67. return mLastTransform;
  68. }
  69. if (appParent) {
  70. // Get parent node's transform
  71. mLastTransform = appParent->getTransform(time);
  72. }
  73. else {
  74. // no parent (ie. root level) => scale by global shape <unit>
  75. mLastTransform.identity();
  76. mLastTransform.scale(ColladaUtils::getOptions().unit * ColladaUtils::getOptions().formatScaleFactor);
  77. }
  78. // If this node is animated in the active sequence, fetch the animated transform
  79. MatrixF mat(true);
  80. if (sActiveSequence)
  81. getAnimatedTransform(mat, time, sActiveSequence);
  82. else
  83. mat = mNodeTransform;
  84. // Remove node scaling?
  85. Point3F nodeScale = mat.getScale();
  86. if (nodeScale != Point3F::One && appParent && ColladaUtils::getOptions().ignoreNodeScale)
  87. {
  88. nodeScale.x = nodeScale.x ? (1.0f / nodeScale.x) : 0;
  89. nodeScale.y = nodeScale.y ? (1.0f / nodeScale.y) : 0;
  90. nodeScale.z = nodeScale.z ? (1.0f / nodeScale.z) : 0;
  91. mat.scale(nodeScale);
  92. }
  93. mLastTransform.mul(mat);
  94. mLastTransformTime = time;
  95. return mLastTransform;
  96. }
  97. void AssimpAppNode::getAnimatedTransform(MatrixF& mat, F32 t, aiAnimation* animSeq)
  98. {
  99. // Convert time `t` (in seconds) to a frame index
  100. const F32 frameTime = (t * animSeq->mTicksPerSecond + 0.5f) + 1.0f;
  101. // Loop through animation channels to find the matching node
  102. for (U32 k = 0; k < animSeq->mNumChannels; ++k)
  103. {
  104. const aiNodeAnim* nodeAnim = animSeq->mChannels[k];
  105. if (dStrcmp(mName, nodeAnim->mNodeName.C_Str()) != 0)
  106. continue;
  107. Point3F translation(Point3F::Zero);
  108. QuatF rotation(QuatF::Identity);
  109. Point3F scale(Point3F::One);
  110. // Interpolate Translation Keys
  111. if (nodeAnim->mNumPositionKeys > 0)
  112. {
  113. translation = interpolateVectorKey(nodeAnim->mPositionKeys, nodeAnim->mNumPositionKeys, frameTime);
  114. }
  115. // Interpolate Rotation Keys
  116. if (nodeAnim->mNumRotationKeys > 0)
  117. {
  118. rotation = interpolateQuaternionKey(nodeAnim->mRotationKeys, nodeAnim->mNumRotationKeys, frameTime);
  119. }
  120. // Interpolate Scaling Keys
  121. if (nodeAnim->mNumScalingKeys > 0)
  122. {
  123. scale = interpolateVectorKey(nodeAnim->mScalingKeys, nodeAnim->mNumScalingKeys, frameTime);
  124. }
  125. // Apply the interpolated transform components to the matrix
  126. rotation.setMatrix(&mat);
  127. mat.inverse();
  128. mat.setPosition(translation);
  129. mat.scale(scale);
  130. return; // Exit after processing the matching node
  131. }
  132. // Default to the static node transformation if no animation data is found
  133. mat = mNodeTransform;
  134. }
  135. Point3F AssimpAppNode::interpolateVectorKey(const aiVectorKey* keys, U32 numKeys, F32 frameTime)
  136. {
  137. if (numKeys == 1) // Single keyframe: use it directly
  138. return Point3F(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z);
  139. // Clamp frameTime to the bounds of the keyframes
  140. if (frameTime <= keys[0].mTime) {
  141. // Before the first keyframe, return the first key
  142. return Point3F(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z);
  143. }
  144. if (frameTime >= keys[numKeys - 1].mTime) {
  145. // After the last keyframe, return the last key
  146. return Point3F(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z);
  147. }
  148. // Interpolate between the two nearest keyframes
  149. for (U32 i = 1; i < numKeys; ++i)
  150. {
  151. if (frameTime < keys[i].mTime)
  152. {
  153. const F32 factor = (frameTime - keys[i - 1].mTime) / (keys[i].mTime - keys[i - 1].mTime);
  154. Point3F start(keys[i - 1].mValue.x, keys[i - 1].mValue.y, keys[i - 1].mValue.z);
  155. Point3F end(keys[i].mValue.x, keys[i].mValue.y, keys[i].mValue.z);
  156. Point3F result;
  157. result.interpolate(start, end, factor);
  158. return result;
  159. }
  160. }
  161. // Default to the last keyframe
  162. return Point3F(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z);
  163. }
  164. QuatF AssimpAppNode::interpolateQuaternionKey(const aiQuatKey* keys, U32 numKeys, F32 frameTime)
  165. {
  166. if (numKeys == 1) // Single keyframe: use it directly
  167. return QuatF(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z, keys[0].mValue.w);
  168. for (U32 i = 1; i < numKeys; ++i)
  169. {
  170. if (frameTime < keys[i].mTime)
  171. {
  172. const F32 factor = (frameTime - keys[i - 1].mTime) / (keys[i].mTime - keys[i - 1].mTime);
  173. QuatF start(keys[i - 1].mValue.x, keys[i - 1].mValue.y, keys[i - 1].mValue.z, keys[i - 1].mValue.w);
  174. QuatF end(keys[i].mValue.x, keys[i].mValue.y, keys[i].mValue.z, keys[i].mValue.w);
  175. QuatF result;
  176. result.interpolate(start, end, factor);
  177. return result;
  178. }
  179. }
  180. // Default to the last keyframe
  181. return QuatF(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z, keys[numKeys - 1].mValue.w);
  182. }
  183. bool AssimpAppNode::animatesTransform(const AppSequence* appSeq)
  184. {
  185. return false;
  186. }
  187. /// Get the world transform of the node at the specified time
  188. MatrixF AssimpAppNode::getNodeTransform(F32 time)
  189. {
  190. // Avoid re-computing the default transform if possible
  191. if (mDefaultTransformValid && time == TSShapeLoader::DefaultTime)
  192. {
  193. return mDefaultNodeTransform;
  194. }
  195. else
  196. {
  197. MatrixF nodeTransform = getTransform(time);
  198. // Check for inverted node coordinate spaces => can happen when modelers
  199. // use the 'mirror' tool in their 3d app. Shows up as negative <scale>
  200. // transforms in the collada model.
  201. if (m_matF_determinant(nodeTransform) < 0.0f)
  202. {
  203. // Mark this node as inverted so we can mirror mesh geometry, then
  204. // de-invert the transform matrix
  205. mInvertMeshes = true;
  206. nodeTransform.scale(Point3F(1, 1, -1));
  207. }
  208. // Cache the default transform
  209. if (time == TSShapeLoader::DefaultTime)
  210. {
  211. mDefaultTransformValid = true;
  212. mDefaultNodeTransform = nodeTransform;
  213. }
  214. return nodeTransform;
  215. }
  216. }
  217. void AssimpAppNode::assimpToTorqueMat(const aiMatrix4x4& inAssimpMat, MatrixF& outMat)
  218. {
  219. outMat.setRow(0, Point4F((F32)inAssimpMat.a1, (F32)inAssimpMat.a2,
  220. (F32)inAssimpMat.a3, (F32)inAssimpMat.a4));
  221. outMat.setRow(1, Point4F((F32)inAssimpMat.b1, (F32)inAssimpMat.b2,
  222. (F32)inAssimpMat.b3, (F32)inAssimpMat.b4));
  223. outMat.setRow(2, Point4F((F32)inAssimpMat.c1, (F32)inAssimpMat.c2,
  224. (F32)inAssimpMat.c3, (F32)inAssimpMat.c4));
  225. outMat.setRow(3, Point4F((F32)inAssimpMat.d1, (F32)inAssimpMat.d2,
  226. (F32)inAssimpMat.d3, (F32)inAssimpMat.d4));
  227. }
  228. aiNode* AssimpAppNode::findChildNodeByName(const char* nodeName, aiNode* rootNode)
  229. {
  230. aiNode* retNode = NULL;
  231. if (strcmp(nodeName, rootNode->mName.C_Str()) == 0)
  232. return rootNode;
  233. for (U32 i = 0; i < rootNode->mNumChildren; ++i)
  234. {
  235. retNode = findChildNodeByName(nodeName, rootNode->mChildren[i]);
  236. if (retNode)
  237. return retNode;
  238. }
  239. return nullptr;
  240. }
  241. void AssimpAppNode::addChild(AssimpAppNode* child)
  242. {
  243. mChildNodes.push_back(child);
  244. }
  245. void AssimpAppNode::addMesh(AssimpAppMesh* child)
  246. {
  247. mMeshes.push_back(child);
  248. }
  249. void AssimpAppNode::buildMeshList()
  250. {
  251. for (U32 i = 0; i < mNode->mNumMeshes; i++)
  252. {
  253. U32 meshIdx = mNode->mMeshes[i];
  254. const aiMesh* mesh = mScene->mMeshes[meshIdx];
  255. AssimpAppMesh* curMesh = new AssimpAppMesh(mesh, this);
  256. mMeshes.push_back(curMesh);
  257. }
  258. }
  259. void AssimpAppNode::buildChildList()
  260. {
  261. for (U32 i = 0; i < mNode->mNumChildren; i++)
  262. {
  263. const aiNode* node = mNode->mChildren[i];
  264. mChildNodes.push_back(new AssimpAppNode(mScene, node, this));
  265. }
  266. }