123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512 |
- //-----------------------------------------------------------------------------
- // Copyright (c) 2012 GarageGames, LLC
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- //-----------------------------------------------------------------------------
- #ifndef _MMATHFN_H_
- #define _MMATHFN_H_
- #include <math.h>
- #include <stdlib.h>
- #include <limits>
- #ifndef _MCONSTANTS_H_
- #include "math/mConstants.h"
- #endif
- #ifndef _PLATFORMASSERT_H_
- #include "platform/platformAssert.h"
- #endif
- extern void MathConsoleInit();
- //--------------------------------------
- // Installable Library Prototypes
- extern S32 (*m_mulDivS32)(S32 a, S32 b, S32 c);
- extern U32 (*m_mulDivU32)(S32 a, S32 b, U32 c);
- extern F32 (*m_catmullrom)(F32 t, F32 p0, F32 p1, F32 p2, F32 p3);
- extern void (*m_sincos)( F32 angle, F32 *s, F32 *c );
- extern void (*m_sincosD)( F64 angle, F64 *s, F64 *c );
- extern void (*m_point2F_normalize)(F32 *p);
- extern void (*m_point2F_normalize_f)(F32 *p, F32 len);
- extern void (*m_point2D_normalize)(F64 *p);
- extern void (*m_point2D_normalize_f)(F64 *p, F64 len);
- extern void (*m_point3F_normalize)(F32 *p);
- extern void (*m_point3F_normalize_f)(F32 *p, F32 len);
- extern void (*m_point3F_interpolate)(const F32 *from, const F32 *to, F32 factor, F32 *result);
- extern void (*m_point3D_normalize)(F64 *p);
- extern void (*m_point3D_normalize_f)(F64 *p, F64 len);
- extern void (*m_point3D_interpolate)(const F64 *from, const F64 *to, F64 factor, F64 *result);
- extern void (*m_point3F_bulk_dot)(const F32* refVector,
- const F32* dotPoints,
- const U32 numPoints,
- const U32 pointStride,
- F32* output);
- extern void (*m_point3F_bulk_dot_indexed)(const F32* refVector,
- const F32* dotPoints,
- const U32 numPoints,
- const U32 pointStride,
- const U32* pointIndices,
- F32* output);
- extern void (*m_quatF_set_matF)( F32 x, F32 y, F32 z, F32 w, F32* m );
- extern void (*m_matF_set_euler)(const F32 *e, F32 *result);
- extern void (*m_matF_set_euler_point)(const F32 *e, const F32 *p, F32 *result);
- extern void (*m_matF_identity)(F32 *m);
- extern void (*m_matF_inverse)(F32 *m);
- extern void (*m_matF_invert_to)(const F32 *m, F32 *d);
- extern void (*m_matF_affineInverse)(F32 *m);
- extern void (*m_matF_transpose)(F32 *m);
- extern void (*m_matF_scale)(F32 *m,const F32* p);
- extern void (*m_matF_normalize)(F32 *m);
- extern F32 (*m_matF_determinant)(const F32 *m);
- extern void (*m_matF_x_matF)(const F32 *a, const F32 *b, F32 *mresult);
- extern void (*m_matF_x_matF_aligned)(const F32 *a, const F32 *b, F32 *mresult);
- // extern void (*m_matF_x_point3F)(const F32 *m, const F32 *p, F32 *presult);
- // extern void (*m_matF_x_vectorF)(const F32 *m, const F32 *v, F32 *vresult);
- extern void (*m_matF_x_point4F)(const F32 *m, const F32 *p, F32 *presult);
- extern void (*m_matF_x_scale_x_planeF)(const F32 *m, const F32* s, const F32 *p, F32 *presult);
- extern void (*m_matF_x_box3F)(const F32 *m, F32 *min, F32 *max);
- // Note that x must point to at least 4 values for quartics, and 3 for cubics
- extern U32 (*mSolveQuadratic)(F32 a, F32 b, F32 c, F32* x);
- extern U32 (*mSolveCubic)(F32 a, F32 b, F32 c, F32 d, F32* x);
- extern U32 (*mSolveQuartic)(F32 a, F32 b, F32 c, F32 d, F32 e, F32* x);
- extern S32 mRandI(S32 i1, S32 i2); // random # from i1 to i2 inclusive
- extern F32 mRandF(F32 f1, F32 f2); // random # from f1 to f2 inclusive
- extern F32 mRandF(); // random # from 0.0 to 1.0 inclusive
- inline void m_matF_x_point3F(const F32 *m, const F32 *p, F32 *presult)
- {
- AssertFatal(p != presult, "Error, aliasing matrix mul pointers not allowed here!");
-
- #ifdef TORQUE_COMPILER_GCC
- const F32 p0 = p[0], p1 = p[1], p2 = p[2];
- const F32 m0 = m[0], m1 = m[1], m2 = m[2];
- const F32 m3 = m[3], m4 = m[4], m5 = m[5];
- const F32 m6 = m[6], m7 = m[7], m8 = m[8];
- const F32 m9 = m[9], m10 = m[10], m11 = m[11];
-
- presult[0] = m0*p0 + m1*p1 + m2*p2 + m3;
- presult[1] = m4*p0 + m5*p1 + m6*p2 + m7;
- presult[2] = m8*p0 + m9*p1 + m10*p2 + m11;
- #else
- presult[0] = m[0]*p[0] + m[1]*p[1] + m[2]*p[2] + m[3];
- presult[1] = m[4]*p[0] + m[5]*p[1] + m[6]*p[2] + m[7];
- presult[2] = m[8]*p[0] + m[9]*p[1] + m[10]*p[2] + m[11];
- #endif
- }
- //--------------------------------------
- inline void m_matF_x_vectorF(const F32 *m, const F32 *v, F32 *vresult)
- {
- AssertFatal(v != vresult, "Error, aliasing matrix mul pointers not allowed here!");
- #ifdef TORQUE_COMPILER_GCC
- const F32 v0 = v[0], v1 = v[1], v2 = v[2];
- const F32 m0 = m[0], m1 = m[1], m2 = m[2];
- const F32 m4 = m[4], m5 = m[5], m6 = m[6];
- const F32 m8 = m[8], m9 = m[9], m10 = m[10];
-
- vresult[0] = m0*v0 + m1*v1 + m2*v2;
- vresult[1] = m4*v0 + m5*v1 + m6*v2;
- vresult[2] = m8*v0 + m9*v1 + m10*v2;
- #else
- vresult[0] = m[0]*v[0] + m[1]*v[1] + m[2]*v[2];
- vresult[1] = m[4]*v[0] + m[5]*v[1] + m[6]*v[2];
- vresult[2] = m[8]*v[0] + m[9]*v[1] + m[10]*v[2];
- #endif
- }
- //--------------------------------------
- // Inlines
- inline bool mIsEqual( F32 a, F32 b, const F32 epsilon = __EQUAL_CONST_F )
- {
- F32 diff = a - b;
- return diff > -epsilon && diff < epsilon;
- }
- inline bool mIsZero(const F32 val, const F32 epsilon = __EQUAL_CONST_F )
- {
- return (val > -epsilon) && (val < epsilon);
- }
- inline F32 mClampToZero(F32& input)
- {
- if (input < __EQUAL_CONST_F && input > -__EQUAL_CONST_F)
- input = 0.0f;
- return input;
- }
- inline F32 mMax(const F32 x, const F32 y)
- {
- if (x > y)
- return x;
- return y;
- }
- inline F32 mMin(const F32 x, const F32 y)
- {
- if (x < y)
- return x;
- return y;
- }
- inline F32 mFloor(const F32 val)
- {
- return (F32) floor(val);
- }
- inline F32 mCeil(const F32 val)
- {
- return (F32) ceil(val);
- }
- inline F32 mFabs(const F32 val)
- {
- return (F32) fabs(val);
- }
- inline F64 mFabs(const F64 val)
- {
- return fabs(val);
- }
- inline F32 mFmod(const F32 val, const F32 mod)
- {
- return fmod(val, mod);
- }
- inline S32 mRound(const F32 val)
- {
- return (S32)floor(val + 0.5f);
- }
-
- inline F32 mRound(const F32 val, const S32 n)
- {
- S32 place = (S32) pow(10.0f, n);
-
- return mFloor((val*place)+0.5)/place;
- }
- inline S32 mAbs(const S32 val)
- {
- return abs(val);
- }
- inline F32 mRoundToNearest( const F32 val )
- {
- return mFloor( val + .5f );
- }
- inline S32 mClamp(S32 val, S32 low, S32 high)
- {
- return getMax(getMin(val, high), low);
- }
- inline U32 mClampU(U32 val, U32 low, U32 high)
- {
- return getMax(getMin(val, high), low);
- }
- inline F32 mClampF(F32 val, F32 low, F32 high)
- {
- return (F32) getMax(getMin(val, high), low);
- }
- inline S32 mWrap(S32 val, S32 low, S32 high)
- {
- int len = high - low;
- return low + (val >= 0 ? val % len : -val % len ? len - (-val % len) : 0);
- }
- inline F32 mWrapF(F32 val, F32 low, F32 high)
- {
- F32 t = fmod(val - low, high - low);
- return t < 0 ? t + high : t + low;
- }
- /// Template function for doing a linear interpolation between any two
- /// types which implement operators for scalar multiply and addition.
- template <typename T>
- inline T mLerp( const T &v1, const T &v2, F32 factor )
- {
- return ( v1 * ( 1.0f - factor ) ) + ( v2 * factor );
- }
- inline S32 mMulDiv(S32 a, S32 b, S32 c)
- {
- return m_mulDivS32(a, b, c);
- }
- inline U32 mMulDiv(S32 a, S32 b, U32 c)
- {
- return m_mulDivU32(a, b, c);
- }
- inline F32 mSin(const F32 angle)
- {
- return (F32) sin(angle);
- }
- inline F32 mCos(const F32 angle)
- {
- return (F32) cos(angle);
- }
- inline F32 mTan(const F32 angle)
- {
- return (F32) tan(angle);
- }
- inline F32 mAsin(const F32 val)
- {
- return (F32) asin(val);
- }
- inline F32 mAcos(const F32 val)
- {
- return (F32) acos(val);
- }
- inline F32 mAtan( const F32 x )
- {
- return (F32) atan( x );
- }
- inline F32 mAtan2(const F32 y, const F32 x)
- {
- return (F32)atan2(y, x);
- }
- inline void mSinCos(const F32 angle, F32 &s, F32 &c)
- {
- m_sincos( angle, &s, &c );
- }
- inline F32 mTanh(const F32 angle)
- {
- return (F32) tanh(angle);
- }
- inline F32 mSqrt(const F32 val)
- {
- return (F32) sqrt(val);
- }
- inline F64 mSqrt(const F64 val)
- {
- return (F64) sqrt(val);
- }
- inline F32 mPow(const F32 x, const F32 y)
- {
- return (F32) pow(x, y);
- }
- inline F32 mLog(const F32 val)
- {
- return (F32) log(val);
- }
- inline F32 mLog2(const F32 val)
- {
- return (F32) log2(val);
- }
- inline F32 mExp(const F32 val)
- {
- return (F32) exp(val);
- }
- inline F64 mSin(const F64 angle)
- {
- return (F64) sin(angle);
- }
- inline F64 mCos(const F64 angle)
- {
- return (F64) cos(angle);
- }
- inline F64 mTan(const F64 angle)
- {
- return (F64) tan(angle);
- }
- inline F64 mAsin(const F64 val)
- {
- return (F64) asin(val);
- }
- inline F64 mAcos(const F64 val)
- {
- return (F64) acos(val);
- }
- inline F64 mAtan( const F64 x )
- {
- return (F64) atan( x );
- }
- inline F64 mAtan2(const F64 x, const F64 y)
- {
- return (F64) atan2(x, y);
- }
- inline void mSinCos(const F64 angle, F64 &s, F64 &c)
- {
- m_sincosD( angle, &s, &c );
- }
- inline F64 mTanh(const F64 angle)
- {
- return (F64) tanh(angle);
- }
- inline F64 mPow(const F64 x, const F64 y)
- {
- return (F64) pow(x, y);
- }
- inline F64 mLog(const F64 val)
- {
- return (F64) log(val);
- }
- inline F64 mLog2(const F64 val)
- {
- return (F64) log2(val);
- }
- inline F32 mCatmullrom(F32 t, F32 p0, F32 p1, F32 p2, F32 p3)
- {
- return m_catmullrom(t, p0, p1, p2, p3);
- }
- inline F64 mFabsD(const F64 val)
- {
- return (F64) fabs(val);
- }
- inline F64 mFmodD(const F64 val, const F64 mod)
- {
- return (F64) fmod(val, mod);
- }
- inline F64 mSqrtD(const F64 val)
- {
- return (F64) sqrt(val);
- }
- inline F64 mFloorD(const F64 val)
- {
- return (F64) floor(val);
- }
- inline F64 mCeilD(const F64 val)
- {
- return (F64) ceil(val);
- }
- ///
- template< typename A, typename B >
- inline A mAlignToMultiple( A val, B mul )
- {
- A rem = val % mul;
- return ( rem ? val + mul - rem : val );
- }
- //--------------------------------------
- inline F32 mDegToRad(F32 d)
- {
- return((d * M_PI_F) / 180.0f);
- }
- inline F32 mRadToDeg(F32 r)
- {
- return((r * 180.0f) / M_PI_F);
- }
- inline F64 mDegToRad(F64 d)
- {
- return (d * M_PI) / 180.0;
- }
- inline F64 mRadToDeg(F64 r)
- {
- return (r * 180.0) / M_PI;
- }
- //------------------------------------------------------------------------------
- inline bool mIsNaN_F( const F32 x )
- {
- // If x is a floating point variable, then (x != x) will be TRUE if x has the value NaN.
- // This is only going to work if the compiler is IEEE 748 compliant.
- //
- // Tested and working on VC2k5
- return ( x != x );
- }
- inline bool mIsInf_F( const F32 x )
- {
- return ( x == std::numeric_limits< F32 >::infinity() );
- }
- inline F32 mSign( const F32 n )
- {
- if ( n > 0.0f )
- return 1.0f;
- if ( n < 0.0f )
- return -1.0f;
- return 0.0f;
- }
- /// Returns the input value squared.
- inline F32 mSquared( F32 n )
- {
- return n * n;
- }
- /// @copydoc mSquaredF
- inline F64 mSquared( F64 n )
- {
- return n * n;
- }
- #endif //_MMATHFN_H_
|