| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359 |
- // ======================================================================== //
- // Copyright 2009-2017 Intel Corporation //
- // //
- // Licensed under the Apache License, Version 2.0 (the "License"); //
- // you may not use this file except in compliance with the License. //
- // You may obtain a copy of the License at //
- // //
- // http://www.apache.org/licenses/LICENSE-2.0 //
- // //
- // Unless required by applicable law or agreed to in writing, software //
- // distributed under the License is distributed on an "AS IS" BASIS, //
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. //
- // See the License for the specific language governing permissions and //
- // limitations under the License. //
- // ======================================================================== //
- #pragma once
- #include "../common/default.h"
- #include "bezier_curve.h"
- namespace embree
- {
- class BSplineBasis2 // FIXME: make compatible with basis from bspline_patch.h
- {
- public:
- template<typename T>
- static __forceinline Vec4<T> eval(const T& u)
- {
- const T t = u;
- const T s = T(1.0f) - u;
- const T n0 = s*s*s;
- const T n1 = (4.0f*(s*s*s)+(t*t*t)) + (12.0f*((s*t)*s) + 6.0f*((t*s)*t));
- const T n2 = (4.0f*(t*t*t)+(s*s*s)) + (12.0f*((t*s)*t) + 6.0f*((s*t)*s));
- const T n3 = t*t*t;
- return T(1.0f/6.0f)*Vec4<T>(n0,n1,n2,n3);
- }
-
- template<typename T>
- static __forceinline Vec4<T> derivative(const T& u)
- {
- const T t = u;
- const T s = 1.0f - u;
- const T n0 = -s*s;
- const T n1 = -t*t - 4.0f*(t*s);
- const T n2 = s*s + 4.0f*(s*t);
- const T n3 = t*t;
- return T(0.5f)*Vec4<T>(n0,n1,n2,n3);
- }
- template<typename T>
- static __forceinline Vec4<T> derivative2(const T& u)
- {
- const T t = u;
- const T s = 1.0f - u;
- const T n0 = s;
- const T n1 = t - 2.0f*s;
- const T n2 = s - 2.0f*t;
- const T n3 = t;
- return Vec4<T>(n0,n1,n2,n3);
- }
- };
-
- struct PrecomputedBSplineBasis
- {
- enum { N = 16 };
- public:
- PrecomputedBSplineBasis() {}
- PrecomputedBSplineBasis(int shift);
- template<typename T>
- __forceinline Vec4<T> eval(const int u, const int size)
- {
- assert(size <= N);
- assert(u <= size);
- return Vec4<T>(T::loadu(&c0[size][u]),
- T::loadu(&c1[size][u]),
- T::loadu(&c2[size][u]),
- T::loadu(&c3[size][u]));
- }
- template<typename T>
- __forceinline Vec4<T> derivative(const int u, const int size)
- {
- assert(size <= N);
- assert(u <= size);
- return Vec4<T>(T::loadu(&d0[size][u]),
- T::loadu(&d1[size][u]),
- T::loadu(&d2[size][u]),
- T::loadu(&d3[size][u]));
- }
-
- /* basis for bspline evaluation */
- public:
- float c0[N+1][N+1];
- float c1[N+1][N+1];
- float c2[N+1][N+1];
- float c3[N+1][N+1];
-
- /* basis for bspline derivative evaluation */
- public:
- float d0[N+1][N+1];
- float d1[N+1][N+1];
- float d2[N+1][N+1];
- float d3[N+1][N+1];
- };
- extern PrecomputedBSplineBasis bspline_basis0;
- extern PrecomputedBSplineBasis bspline_basis1;
- template<typename Vertex>
- struct BSplineCurveT
- {
- Vertex v0,v1,v2,v3;
-
- __forceinline BSplineCurveT() {}
-
- __forceinline BSplineCurveT(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3)
- : v0(v0), v1(v1), v2(v2), v3(v3) {}
- __forceinline Vertex begin() const {
- return madd(1.0f/6.0f,v0,madd(2.0f/3.0f,v1,1.0f/6.0f*v2));
- }
- __forceinline Vertex end() const {
- return madd(1.0f/6.0f,v1,madd(2.0f/3.0f,v2,1.0f/6.0f*v3));
- }
-
- __forceinline Vertex eval(const float t) const
- {
- const Vec4<float> b = BSplineBasis2::eval(t);
- return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
- }
-
- __forceinline Vertex eval_du(const float t) const
- {
- const Vec4<float> b = BSplineBasis2::derivative(t);
- return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
- }
-
- __forceinline Vertex eval_dudu(const float t) const
- {
- const Vec4<float> b = BSplineBasis2::derivative2(t);
- return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
- }
-
- __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const
- {
- p = eval(t);
- dp = eval_du(t);
- ddp = eval_dudu(t);
- }
-
- friend inline std::ostream& operator<<(std::ostream& cout, const BSplineCurveT& curve) {
- return cout << "BSplineCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }";
- }
- };
- template<typename Vertex>
- __forceinline void convert(const BezierCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve) {
- ocurve = icurve;
- }
- template<typename Vertex>
- __forceinline void convert(const BSplineCurveT<Vertex>& icurve, BSplineCurveT<Vertex>& ocurve) {
- ocurve = icurve;
- }
- template<typename Vertex>
- __forceinline void convert(const BezierCurveT<Vertex>& icurve, BSplineCurveT<Vertex>& ocurve)
- {
- const Vertex v0 = madd(6.0f,icurve.v0,madd(-7.0f,icurve.v1,2.0f*icurve.v2));
- const Vertex v1 = msub(2.0f,icurve.v1,icurve.v2);
- const Vertex v2 = msub(2.0f,icurve.v2,icurve.v1);
- const Vertex v3 = madd(2.0f,icurve.v1,madd(-7.0f,icurve.v2,6.0f*icurve.v3));
- ocurve = BSplineCurveT<Vertex>(v0,v1,v2,v3);
- }
- template<typename Vertex>
- __forceinline void convert(const BSplineCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve)
- {
- const Vertex v0 = madd(1.0f/6.0f,icurve.v0,madd(2.0f/3.0f,icurve.v1,1.0f/6.0f*icurve.v2));
- const Vertex v1 = madd(2.0f/3.0f,icurve.v1,1.0f/3.0f*icurve.v2);
- const Vertex v2 = madd(1.0f/3.0f,icurve.v1,2.0f/3.0f*icurve.v2);
- const Vertex v3 = madd(1.0f/6.0f,icurve.v1,madd(2.0f/3.0f,icurve.v2,1.0f/6.0f*icurve.v3));
- ocurve = BezierCurveT<Vertex>(v0,v1,v2,v3);
- }
- struct BSplineCurve3fa : public BSplineCurveT<Vec3fa>
- {
- //using BSplineCurveT<Vec3fa>::BSplineCurveT; // FIXME: not supported by VS2010
-
- __forceinline BSplineCurve3fa() {}
- __forceinline BSplineCurve3fa(const Vec3fa& v0, const Vec3fa& v1, const Vec3fa& v2, const Vec3fa& v3)
- : BSplineCurveT<Vec3fa>(v0,v1,v2,v3) {}
-
- __forceinline Vec4vfx eval_(const vfloatx& t) const
- {
- const Vec4vfx b = BSplineBasis2::eval(t);
- return madd(b.x, Vec4vfx(v0), madd(b.y, Vec4vfx(v1), madd(b.z, Vec4vfx(v2), b.w * Vec4vfx(v3))));
- }
- __forceinline Vec4vfx derivative(const vfloatx& t) const
- {
- const Vec4vfx b = BSplineBasis2::derivative(t);
- return madd(b.x, Vec4vfx(v0), madd(b.y, Vec4vfx(v1), madd(b.z, Vec4vfx(v2), b.w * Vec4vfx(v3))));
- }
- __forceinline void evalN(const vfloatx& t, Vec4vfx& p, Vec4vfx& dp) const
- {
- p = eval_(t);
- dp = derivative(t);
- }
- #if 0
-
- template<int M>
- __forceinline Vec4<vfloat<M>> eval0(const int ofs, const int size) const
- {
- const Vec4<vfloat<M>> b = bspline_basis0.eval<vfloat<M>>(ofs,size);
- return madd(b.x, Vec4<vfloat<M>>(v0), madd(b.y, Vec4<vfloat<M>>(v1), madd(b.z, Vec4<vfloat<M>>(v2), b.w * Vec4<vfloat<M>>(v3))));
- }
-
- template<int M>
- __forceinline Vec4<vfloat<M>> eval1(const int ofs, const int size) const
- {
- const Vec4<vfloat<M>> b = bspline_basis1.eval<vfloat<M>>(ofs,size);
- return madd(b.x, Vec4<vfloat<M>>(v0), madd(b.y, Vec4<vfloat<M>>(v1), madd(b.z, Vec4<vfloat<M>>(v2), b.w * Vec4<vfloat<M>>(v3))));
- }
- template<int M>
- __forceinline Vec4<vfloat<M>> derivative0(const int ofs, const int size) const
- {
- const Vec4<vfloat<M>> b = bspline_basis0.derivative<vfloat<M>>(ofs,size);
- return madd(b.x, Vec4<vfloat<M>>(v0), madd(b.y, Vec4<vfloat<M>>(v1), madd(b.z, Vec4<vfloat<M>>(v2), b.w * Vec4<vfloat<M>>(v3))));
- }
- template<int M>
- __forceinline Vec4<vfloat<M>> derivative1(const int ofs, const int size) const
- {
- const Vec4<vfloat<M>> b = bspline_basis1.derivative<vfloat<M>>(ofs,size);
- return madd(b.x, Vec4<vfloat<M>>(v0), madd(b.y, Vec4<vfloat<M>>(v1), madd(b.z, Vec4<vfloat<M>>(v2), b.w * Vec4<vfloat<M>>(v3))));
- }
- #else
- template<int M>
- __forceinline Vec4<vfloat<M>> eval0(const int ofs, const int size) const
- {
- assert(size <= PrecomputedBSplineBasis::N);
- assert(ofs <= size);
- return madd(vfloat<M>::loadu(&bspline_basis0.c0[size][ofs]), Vec4<vfloat<M>>(v0),
- madd(vfloat<M>::loadu(&bspline_basis0.c1[size][ofs]), Vec4<vfloat<M>>(v1),
- madd(vfloat<M>::loadu(&bspline_basis0.c2[size][ofs]), Vec4<vfloat<M>>(v2),
- vfloat<M>::loadu(&bspline_basis0.c3[size][ofs]) * Vec4<vfloat<M>>(v3))));
- }
-
- template<int M>
- __forceinline Vec4<vfloat<M>> eval1(const int ofs, const int size) const
- {
- assert(size <= PrecomputedBSplineBasis::N);
- assert(ofs <= size);
- return madd(vfloat<M>::loadu(&bspline_basis1.c0[size][ofs]), Vec4<vfloat<M>>(v0),
- madd(vfloat<M>::loadu(&bspline_basis1.c1[size][ofs]), Vec4<vfloat<M>>(v1),
- madd(vfloat<M>::loadu(&bspline_basis1.c2[size][ofs]), Vec4<vfloat<M>>(v2),
- vfloat<M>::loadu(&bspline_basis1.c3[size][ofs]) * Vec4<vfloat<M>>(v3))));
- }
- template<int M>
- __forceinline Vec4<vfloat<M>> derivative0(const int ofs, const int size) const
- {
- assert(size <= PrecomputedBSplineBasis::N);
- assert(ofs <= size);
- return madd(vfloat<M>::loadu(&bspline_basis0.d0[size][ofs]), Vec4<vfloat<M>>(v0),
- madd(vfloat<M>::loadu(&bspline_basis0.d1[size][ofs]), Vec4<vfloat<M>>(v1),
- madd(vfloat<M>::loadu(&bspline_basis0.d2[size][ofs]), Vec4<vfloat<M>>(v2),
- vfloat<M>::loadu(&bspline_basis0.d3[size][ofs]) * Vec4<vfloat<M>>(v3))));
- }
- template<int M>
- __forceinline Vec4<vfloat<M>> derivative1(const int ofs, const int size) const
- {
- assert(size <= PrecomputedBSplineBasis::N);
- assert(ofs <= size);
- return madd(vfloat<M>::loadu(&bspline_basis1.d0[size][ofs]), Vec4<vfloat<M>>(v0),
- madd(vfloat<M>::loadu(&bspline_basis1.d1[size][ofs]), Vec4<vfloat<M>>(v1),
- madd(vfloat<M>::loadu(&bspline_basis1.d2[size][ofs]), Vec4<vfloat<M>>(v2),
- vfloat<M>::loadu(&bspline_basis1.d3[size][ofs]) * Vec4<vfloat<M>>(v3))));
- }
- #endif
- /* calculates bounds of bspline curve geometry */
- __forceinline BBox3fa accurateBounds() const
- {
- const int N = 7;
- const float scale = 1.0f/(3.0f*(N-1));
- Vec4vfx pl(pos_inf), pu(neg_inf);
- for (int i=0; i<=N; i+=VSIZEX)
- {
- vintx vi = vintx(i)+vintx(step);
- vboolx valid = vi <= vintx(N);
- const Vec4vfx p = eval0<VSIZEX>(i,N);
- const Vec4vfx dp = derivative0<VSIZEX>(i,N);
- const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero));
- const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero));
- pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
- pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
- }
- const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
- const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
- const Vec3fa upper_r = Vec3fa(reduce_max(max(abs(pl.w),abs(pu.w))));
- return enlarge(BBox3fa(lower,upper),upper_r);
- }
- /* calculates bounds when tessellated into N line segments */
- __forceinline BBox3fa tessellatedBounds(int N) const
- {
- if (likely(N == 4))
- {
- const Vec4vf4 pi = eval0<4>(0,4);
- const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z));
- const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z));
- const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w)));
- const Vec3fa pe = end();
- return enlarge(BBox3fa(min(lower,pe),max(upper,pe)),max(upper_r,Vec3fa(abs(pe.w))));
- }
- else
- {
- Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f);
- for (int i=0; i<=N; i+=VSIZEX)
- {
- vboolx valid = vintx(i)+vintx(step) <= vintx(N);
- const Vec4vfx pi = eval0<VSIZEX>(i,N);
-
- pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min
- pl.y = select(valid,min(pl.y,pi.y),pl.y);
- pl.z = select(valid,min(pl.z,pi.z),pl.z);
-
- pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min
- pu.y = select(valid,max(pu.y,pi.y),pu.y);
- pu.z = select(valid,max(pu.z,pi.z),pu.z);
- ru = select(valid,max(ru,abs(pi.w)),ru);
- }
- const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
- const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
- const Vec3fa upper_r(reduce_max(ru));
- return enlarge(BBox3fa(lower,upper),upper_r);
- }
- }
- };
-
- #if defined(EMBREE_NATIVE_CURVE_BSPLINE)
- #define CurveT BSplineCurveT
- typedef BSplineCurve3fa Curve3fa;
- #endif
- }
|