| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383 |
- // Copyright (C) 2009-2021, Panagiotis Christopoulos Charitos and contributors.
- // All rights reserved.
- // Code licensed under the BSD License.
- // http://www.anki3d.org/LICENSE
- // Contains functions for light calculations
- #pragma once
- #include <AnKi/Shaders/Functions.glsl>
- #include <AnKi/Shaders/CollisionFunctions.glsl>
- #include <AnKi/Shaders/PackFunctions.glsl>
- #include <AnKi/Shaders/Include/ClusteredShadingTypes.h>
- #include <AnKi/Shaders/Include/Evsm.h>
- // Do some EVSM magic with depth
- Vec2 evsmProcessDepth(F32 depth)
- {
- depth = 2.0 * depth - 1.0;
- const F32 pos = exp(EVSM_POSITIVE_CONSTANT * depth);
- const F32 neg = -exp(EVSM_NEGATIVE_CONSTANT * depth);
- return Vec2(pos, neg);
- }
- F32 linstep(F32 a, F32 b, F32 v)
- {
- return saturate((v - a) / (b - a));
- }
- // Reduces VSM light bleedning
- F32 reduceLightBleeding(F32 pMax, F32 amount)
- {
- // Remove the [0, amount] tail and linearly rescale (amount, 1].
- return linstep(amount, 1.0, pMax);
- }
- F32 chebyshevUpperBound(Vec2 moments, F32 mean, F32 minVariance, F32 lightBleedingReduction)
- {
- // Compute variance
- F32 variance = moments.y - (moments.x * moments.x);
- variance = max(variance, minVariance);
- // Compute probabilistic upper bound
- const F32 d = mean - moments.x;
- F32 pMax = variance / (variance + (d * d));
- pMax = reduceLightBleeding(pMax, lightBleedingReduction);
- // One-tailed Chebyshev
- return (mean <= moments.x) ? 1.0 : pMax;
- }
- // Compute the shadow factor of EVSM given the 2 depths
- F32 evsmComputeShadowFactor(F32 occluderDepth, Vec4 shadowMapMoments)
- {
- const Vec2 evsmOccluderDepths = evsmProcessDepth(occluderDepth);
- const Vec2 depthScale =
- EVSM_BIAS * 0.01 * Vec2(EVSM_POSITIVE_CONSTANT, EVSM_NEGATIVE_CONSTANT) * evsmOccluderDepths;
- const Vec2 minVariance = depthScale * depthScale;
- #if !ANKI_EVSM4
- return chebyshevUpperBound(shadowMapMoments.xy, evsmOccluderDepths.x, minVariance.x, EVSM_LIGHT_BLEEDING_REDUCTION);
- #else
- const F32 pos =
- chebyshevUpperBound(shadowMapMoments.xy, evsmOccluderDepths.x, minVariance.x, EVSM_LIGHT_BLEEDING_REDUCTION);
- const F32 neg =
- chebyshevUpperBound(shadowMapMoments.zw, evsmOccluderDepths.y, minVariance.y, EVSM_LIGHT_BLEEDING_REDUCTION);
- return min(pos, neg);
- #endif
- }
- // Fresnel term unreal
- // specular: The specular color aka F0
- Vec3 F_Unreal(Vec3 specular, F32 VoH)
- {
- return specular + (1.0 - specular) * pow(2.0, (-5.55473 * VoH - 6.98316) * VoH);
- }
- // Fresnel Schlick: "An Inexpensive BRDF Model for Physically-Based Rendering"
- // It has lower VGRPs than F_Unreal
- // specular: The specular color aka F0
- Vec3 F_Schlick(Vec3 specular, F32 VoH)
- {
- const F32 a = 1.0 - VoH;
- const F32 a2 = a * a;
- const F32 a5 = a2 * a2 * a; // a5 = a^5
- return /*saturate(50.0 * specular.g) */ a5 + (1.0 - a5) * specular;
- }
- // D(n,h) aka NDF: GGX Trowbridge-Reitz
- F32 D_GGX(F32 roughness, F32 NoH)
- {
- const F32 a = roughness * roughness;
- const F32 a2 = a * a;
- const F32 D = (NoH * a2 - NoH) * NoH + 1.0;
- return a2 / (PI * D * D);
- }
- // Visibility term: Geometric shadowing divided by BRDF denominator
- F32 V_Schlick(F32 roughness, F32 NoV, F32 NoL)
- {
- const F32 k = (roughness * roughness) * 0.5;
- const F32 Vis_SchlickV = NoV * (1.0 - k) + k;
- const F32 Vis_SchlickL = NoL * (1.0 - k) + k;
- return 0.25 / (Vis_SchlickV * Vis_SchlickL);
- }
- Vec3 envBRDF(Vec3 specular, F32 roughness, texture2D integrationLut, sampler integrationLutSampler, F32 NoV)
- {
- const Vec2 envBRDF = textureLod(integrationLut, integrationLutSampler, Vec2(roughness, NoV), 0.0).xy;
- return specular * envBRDF.x + min(1.0, 50.0 * specular.g) * envBRDF.y;
- }
- Vec3 diffuseLambert(Vec3 diffuse)
- {
- return diffuse * (1.0 / PI);
- }
- // Performs BRDF specular lighting
- Vec3 computeSpecularColorBrdf(GbufferInfo gbuffer, Vec3 viewDir, Vec3 frag2Light)
- {
- const Vec3 H = normalize(frag2Light + viewDir);
- const F32 NoL = max(EPSILON, dot(gbuffer.m_normal, frag2Light));
- const F32 VoH = max(EPSILON, dot(viewDir, H));
- const F32 NoH = max(EPSILON, dot(gbuffer.m_normal, H));
- const F32 NoV = max(EPSILON, dot(gbuffer.m_normal, viewDir));
- // F
- #if 0
- const Vec3 F = F_Unreal(gbuffer.m_specular, VoH);
- #else
- const Vec3 F = F_Schlick(gbuffer.m_specular, VoH);
- #endif
- // D
- const F32 D = D_GGX(gbuffer.m_roughness, NoH);
- // Vis
- const F32 V = V_Schlick(gbuffer.m_roughness, NoV, NoL);
- return F * (V * D);
- }
- F32 computeSpotFactor(Vec3 l, F32 outerCos, F32 innerCos, Vec3 spotDir)
- {
- const F32 costheta = -dot(l, spotDir);
- const F32 spotFactor = smoothstep(outerCos, innerCos, costheta);
- return spotFactor;
- }
- U32 computeShadowSampleCount(const U32 COUNT, F32 zVSpace)
- {
- const F32 MAX_DISTANCE = 5.0;
- const F32 z = max(zVSpace, -MAX_DISTANCE);
- F32 sampleCountf = F32(COUNT) + z * (F32(COUNT) / MAX_DISTANCE);
- sampleCountf = max(sampleCountf, 1.0);
- const U32 sampleCount = U32(sampleCountf);
- return sampleCount;
- }
- F32 computeShadowFactorSpotLight(SpotLight light, Vec3 worldPos, texture2D spotMap, sampler spotMapSampler)
- {
- const Vec4 texCoords4 = light.m_textureMatrix * Vec4(worldPos, 1.0);
- const Vec3 texCoords3 = texCoords4.xyz / texCoords4.w;
- const Vec4 shadowMoments = textureLod(spotMap, spotMapSampler, texCoords3.xy, 0.0);
- return evsmComputeShadowFactor(texCoords3.z, shadowMoments);
- }
- // Compute the shadow factor of point (omni) lights.
- F32 computeShadowFactorPointLight(PointLight light, Vec3 frag2Light, texture2D shadowMap, sampler shadowMapSampler)
- {
- const Vec3 dir = -frag2Light;
- const Vec3 dirabs = abs(dir);
- const F32 dist = max(dirabs.x, max(dirabs.y, dirabs.z));
- // 1) Project the dist to light's proj mat
- //
- const F32 near = CLUSTER_OBJECT_FRUSTUM_NEAR_PLANE;
- const F32 far = light.m_radius;
- const F32 g = near - far;
- const F32 zVSpace = -dist;
- const F32 w = -zVSpace;
- F32 z = (far * zVSpace + far * near) / g;
- z /= w;
- // 2) Read shadow tex
- //
- // Convert cube coords
- U32 faceIdxu;
- Vec2 uv = convertCubeUvsu(dir, faceIdxu);
- // Get the atlas offset
- const Vec2 atlasOffset = light.m_shadowAtlasTileOffsets[faceIdxu];
- // Compute UV
- uv = fma(uv, Vec2(light.m_shadowAtlasTileScale), atlasOffset);
- // Sample
- const Vec4 shadowMoments = textureLod(shadowMap, shadowMapSampler, uv, 0.0);
- // 3) Compare
- //
- const F32 shadowFactor = evsmComputeShadowFactor(z, shadowMoments);
- return shadowFactor;
- }
- // Compute the shadow factor of a directional light
- F32 computeShadowFactorDirLight(DirectionalLight light, U32 cascadeIdx, Vec3 worldPos, texture2D shadowMap,
- sampler shadowMapSampler)
- {
- #define ANKI_FAST_CASCADES_WORKAROUND 1 // Doesn't make sense but it's super fast
- #if ANKI_FAST_CASCADES_WORKAROUND
- // Assumes MAX_SHADOW_CASCADES2 is 4
- Mat4 lightProjectionMat;
- switch(cascadeIdx)
- {
- case 0:
- lightProjectionMat = light.m_textureMatrices[0];
- break;
- case 1:
- lightProjectionMat = light.m_textureMatrices[1];
- break;
- case 2:
- lightProjectionMat = light.m_textureMatrices[2];
- break;
- default:
- lightProjectionMat = light.m_textureMatrices[3];
- }
- #else
- const Mat4 lightProjectionMat = light.m_textureMatrices[cascadeIdx];
- #endif
- const Vec4 texCoords4 = lightProjectionMat * Vec4(worldPos, 1.0);
- const Vec3 texCoords3 = texCoords4.xyz / texCoords4.w;
- const Vec4 shadowMoments = textureLod(shadowMap, shadowMapSampler, texCoords3.xy, 0.0);
- return evsmComputeShadowFactor(texCoords3.z, shadowMoments);
- }
- // Compute the shadow factor of a directional light
- F32 computeShadowFactorDirLight(Mat4 lightProjectionMat, Vec3 worldPos, texture2D shadowMap,
- samplerShadow shadowMapSampler)
- {
- const Vec4 texCoords4 = lightProjectionMat * Vec4(worldPos, 1.0);
- const Vec3 texCoords3 = texCoords4.xyz / texCoords4.w;
- const F32 shadowFactor = textureLod(shadowMap, shadowMapSampler, texCoords3, 0.0);
- return shadowFactor;
- }
- // Compute the cubemap texture lookup vector given the reflection vector (r) the radius squared of the probe (R2) and
- // the frag pos in sphere space (f)
- Vec3 computeCubemapVecAccurate(Vec3 r, F32 R2, Vec3 f)
- {
- // Compute the collision of the r to the inner part of the sphere
- // From now on we work on the sphere's space
- // Project the center of the sphere (it's zero now since we are in sphere space) in ray "f,r"
- const Vec3 p = f - r * dot(f, r);
- // The collision to the sphere is point x where x = p + T * r
- // Because of the pythagorean theorem: R^2 = dot(p, p) + dot(T * r, T * r)
- // solving for T, T = R / |p|
- // then x becomes x = sqrt(R^2 - dot(p, p)) * r + p;
- F32 pp = dot(p, p);
- pp = min(pp, R2);
- const F32 sq = sqrt(R2 - pp);
- const Vec3 x = p + sq * r;
- return x;
- }
- // Cheap version of computeCubemapVecAccurate
- Vec3 computeCubemapVecCheap(Vec3 r, F32 R2, Vec3 f)
- {
- return r;
- }
- F32 computeAttenuationFactor(F32 squareRadiusOverOne, Vec3 frag2Light)
- {
- const F32 fragLightDist = dot(frag2Light, frag2Light);
- F32 att = 1.0 - fragLightDist * squareRadiusOverOne;
- att = max(0.0, att);
- return att * att;
- }
- // Given the probe properties trace a ray inside the probe and find the cube tex coordinates to sample
- Vec3 intersectProbe(Vec3 fragPos, // Ray origin
- Vec3 rayDir, // Ray direction
- Vec3 probeAabbMin, Vec3 probeAabbMax,
- Vec3 probeOrigin // Cubemap origin
- )
- {
- // Compute the intersection point
- const F32 intresectionDist = testRayAabbInside(fragPos, rayDir, probeAabbMin, probeAabbMax);
- const Vec3 intersectionPoint = fragPos + intresectionDist * rayDir;
- // Compute the cubemap vector
- return intersectionPoint - probeOrigin;
- }
- // Compute a weight (factor) of fragPos against some probe's bounds. The weight will be zero when fragPos is close to
- // AABB bounds and 1.0 at fadeDistance and less.
- F32 computeProbeBlendWeight(Vec3 fragPos, // Doesn't need to be inside the AABB
- Vec3 probeAabbMin, Vec3 probeAabbMax, F32 fadeDistance)
- {
- // Compute the min distance of fragPos from the edges of the AABB
- const Vec3 distFromMin = fragPos - probeAabbMin;
- const Vec3 distFromMax = probeAabbMax - fragPos;
- const Vec3 minDistVec = min(distFromMin, distFromMax);
- const F32 minDist = min(minDistVec.x, min(minDistVec.y, minDistVec.z));
- // Use saturate because minDist might be negative.
- return saturate(minDist / fadeDistance);
- }
- // Given the value of the 6 faces of the dice and a normal, sample the correct weighted value.
- // https://www.shadertoy.com/view/XtcBDB
- Vec3 sampleAmbientDice(Vec3 posx, Vec3 negx, Vec3 posy, Vec3 negy, Vec3 posz, Vec3 negz, Vec3 normal)
- {
- const Vec3 axisWeights = abs(normal);
- const Vec3 uv = NDC_TO_UV(normal);
- Vec3 col = mix(negx, posx, uv.x) * axisWeights.x;
- col += mix(negy, posy, uv.y) * axisWeights.y;
- col += mix(negz, posz, uv.z) * axisWeights.z;
- // Divide by weight
- col /= axisWeights.x + axisWeights.y + axisWeights.z + EPSILON;
- return col;
- }
- // Sample the irradiance term from the clipmap
- Vec3 sampleGlobalIllumination(const Vec3 worldPos, const Vec3 normal, const GlobalIlluminationProbe probe,
- texture3D textures[MAX_VISIBLE_GLOBAL_ILLUMINATION_PROBES], sampler linearAnyClampSampler)
- {
- // Find the UVW
- Vec3 uvw = (worldPos - probe.m_aabbMin) / (probe.m_aabbMax - probe.m_aabbMin);
- // The U contains the 6 directions so divide
- uvw.x /= 6.0;
- // Calmp it to avoid direction leaking
- uvw.x = clamp(uvw.x, probe.m_halfTexelSizeU, (1.0 / 6.0) - probe.m_halfTexelSizeU);
- // Read the irradiance
- Vec3 irradiancePerDir[6u];
- ANKI_UNROLL for(U32 dir = 0u; dir < 6u; ++dir)
- {
- // Point to the correct UV
- Vec3 shiftedUVw = uvw;
- shiftedUVw.x += (1.0 / 6.0) * F32(dir);
- irradiancePerDir[dir] =
- textureLod(textures[nonuniformEXT(probe.m_textureIndex)], linearAnyClampSampler, shiftedUVw, 0.0).rgb;
- }
- // Sample the irradiance
- const Vec3 irradiance = sampleAmbientDice(irradiancePerDir[0], irradiancePerDir[1], irradiancePerDir[2],
- irradiancePerDir[3], irradiancePerDir[4], irradiancePerDir[5], normal);
- return irradiance;
- }
- U32 computeShadowCascadeIndex(F32 distance, F32 p, F32 effectiveShadowDistance, U32 shadowCascadeCount)
- {
- const F32 shadowCascadeCountf = F32(shadowCascadeCount);
- F32 idx = pow(distance / effectiveShadowDistance, 1.0f / p) * shadowCascadeCountf;
- idx = min(idx, shadowCascadeCountf - 1.0f);
- return U32(idx);
- }
|