Renderer.cpp 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765
  1. //
  2. // Copyright (c) 2008-2013 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "Camera.h"
  24. #include "CoreEvents.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "GraphicsEvents.h"
  29. #include "GraphicsImpl.h"
  30. #include "IndexBuffer.h"
  31. #include "Log.h"
  32. #include "Material.h"
  33. #include "OcclusionBuffer.h"
  34. #include "Octree.h"
  35. #include "Profiler.h"
  36. #include "Renderer.h"
  37. #include "RenderPath.h"
  38. #include "ResourceCache.h"
  39. #include "Scene.h"
  40. #include "Shader.h"
  41. #include "ShaderVariation.h"
  42. #include "Technique.h"
  43. #include "Texture2D.h"
  44. #include "TextureCube.h"
  45. #include "VertexBuffer.h"
  46. #include "View.h"
  47. #include "XMLFile.h"
  48. #include "Zone.h"
  49. #include "DebugNew.h"
  50. namespace Urho3D
  51. {
  52. static const float dirLightVertexData[] =
  53. {
  54. -1, 1, 0,
  55. 1, 1, 0,
  56. 1, -1, 0,
  57. -1, -1, 0,
  58. };
  59. static const unsigned short dirLightIndexData[] =
  60. {
  61. 0, 1, 2,
  62. 2, 3, 0,
  63. };
  64. static const float pointLightVertexData[] =
  65. {
  66. -0.423169f, -1.000000f, 0.423169f,
  67. -0.423169f, -1.000000f, -0.423169f,
  68. 0.423169f, -1.000000f, -0.423169f,
  69. 0.423169f, -1.000000f, 0.423169f,
  70. 0.423169f, 1.000000f, -0.423169f,
  71. -0.423169f, 1.000000f, -0.423169f,
  72. -0.423169f, 1.000000f, 0.423169f,
  73. 0.423169f, 1.000000f, 0.423169f,
  74. -1.000000f, 0.423169f, -0.423169f,
  75. -1.000000f, -0.423169f, -0.423169f,
  76. -1.000000f, -0.423169f, 0.423169f,
  77. -1.000000f, 0.423169f, 0.423169f,
  78. 0.423169f, 0.423169f, -1.000000f,
  79. 0.423169f, -0.423169f, -1.000000f,
  80. -0.423169f, -0.423169f, -1.000000f,
  81. -0.423169f, 0.423169f, -1.000000f,
  82. 1.000000f, 0.423169f, 0.423169f,
  83. 1.000000f, -0.423169f, 0.423169f,
  84. 1.000000f, -0.423169f, -0.423169f,
  85. 1.000000f, 0.423169f, -0.423169f,
  86. 0.423169f, -0.423169f, 1.000000f,
  87. 0.423169f, 0.423169f, 1.000000f,
  88. -0.423169f, 0.423169f, 1.000000f,
  89. -0.423169f, -0.423169f, 1.000000f
  90. };
  91. static const unsigned short pointLightIndexData[] =
  92. {
  93. 0, 1, 2,
  94. 0, 2, 3,
  95. 4, 5, 6,
  96. 4, 6, 7,
  97. 8, 9, 10,
  98. 8, 10, 11,
  99. 12, 13, 14,
  100. 12, 14, 15,
  101. 16, 17, 18,
  102. 16, 18, 19,
  103. 20, 21, 22,
  104. 20, 22, 23,
  105. 0, 10, 9,
  106. 0, 9, 1,
  107. 13, 2, 1,
  108. 13, 1, 14,
  109. 23, 0, 3,
  110. 23, 3, 20,
  111. 17, 3, 2,
  112. 17, 2, 18,
  113. 21, 7, 6,
  114. 21, 6, 22,
  115. 7, 16, 19,
  116. 7, 19, 4,
  117. 5, 8, 11,
  118. 5, 11, 6,
  119. 4, 12, 15,
  120. 4, 15, 5,
  121. 22, 11, 10,
  122. 22, 10, 23,
  123. 8, 15, 14,
  124. 8, 14, 9,
  125. 12, 19, 18,
  126. 12, 18, 13,
  127. 16, 21, 20,
  128. 16, 20, 17,
  129. 0, 23, 10,
  130. 1, 9, 14,
  131. 2, 13, 18,
  132. 3, 17, 20,
  133. 6, 11, 22,
  134. 5, 15, 8,
  135. 4, 19, 12,
  136. 7, 21, 16
  137. };
  138. static const float spotLightVertexData[] =
  139. {
  140. 0.00001f, 0.00001f, 0.00001f,
  141. 0.00001f, -0.00001f, 0.00001f,
  142. -0.00001f, -0.00001f, 0.00001f,
  143. -0.00001f, 0.00001f, 0.00001f,
  144. 1.00000f, 1.00000f, 0.99999f,
  145. 1.00000f, -1.00000f, 0.99999f,
  146. -1.00000f, -1.00000f, 0.99999f,
  147. -1.00000f, 1.00000f, 0.99999f,
  148. };
  149. static const unsigned short spotLightIndexData[] =
  150. {
  151. 3, 0, 1,
  152. 3, 1, 2,
  153. 0, 4, 5,
  154. 0, 5, 1,
  155. 3, 7, 4,
  156. 3, 4, 0,
  157. 7, 3, 2,
  158. 7, 2, 6,
  159. 6, 2, 1,
  160. 6, 1, 5,
  161. 7, 5, 4,
  162. 7, 6, 5
  163. };
  164. static const String shadowVariations[] =
  165. {
  166. // No specific hardware shadow compare variation on OpenGL, it is always supported
  167. #ifdef USE_OPENGL
  168. "LQ",
  169. "LQ",
  170. "",
  171. ""
  172. #else
  173. "",
  174. "LQHW",
  175. "",
  176. "HW"
  177. #endif
  178. };
  179. static const String geometryVSVariations[] =
  180. {
  181. "",
  182. "Skinned",
  183. "Instanced",
  184. "Billboard"
  185. };
  186. static const String lightVSVariations[] =
  187. {
  188. "Dir",
  189. "Spot",
  190. "Point",
  191. "DirSpec",
  192. "SpotSpec",
  193. "PointSpec",
  194. "DirShadow",
  195. "SpotShadow",
  196. "PointShadow",
  197. "DirSpecShadow",
  198. "SpotSpecShadow",
  199. "PointSpecShadow"
  200. };
  201. static const String vertexLightVSVariations[] =
  202. {
  203. "",
  204. "1VL",
  205. "2VL",
  206. "3VL",
  207. "4VL",
  208. "5VL",
  209. "6VL"
  210. };
  211. static const String deferredLightVSVariations[] =
  212. {
  213. "",
  214. "Dir",
  215. "Ortho",
  216. "OrthoDir"
  217. };
  218. static const String lightPSVariations[] =
  219. {
  220. "Dir",
  221. "Spot",
  222. "Point",
  223. "PointMask",
  224. "DirSpec",
  225. "SpotSpec",
  226. "PointSpec",
  227. "PointMaskSpec",
  228. "DirShadow",
  229. "SpotShadow",
  230. "PointShadow",
  231. "PointMaskShadow",
  232. "DirSpecShadow",
  233. "SpotSpecShadow",
  234. "PointSpecShadow",
  235. "PointMaskSpecShadow"
  236. };
  237. static const unsigned INSTANCING_BUFFER_MASK = MASK_INSTANCEMATRIX1 | MASK_INSTANCEMATRIX2 | MASK_INSTANCEMATRIX3;
  238. static const unsigned MAX_BUFFER_AGE = 2000;
  239. OBJECTTYPESTATIC(Renderer);
  240. Renderer::Renderer(Context* context) :
  241. Object(context),
  242. defaultZone_(new Zone(context)),
  243. quadDirLight_(new Light(context)),
  244. textureAnisotropy_(4),
  245. textureFilterMode_(FILTER_TRILINEAR),
  246. textureQuality_(QUALITY_HIGH),
  247. materialQuality_(QUALITY_HIGH),
  248. shadowMapSize_(1024),
  249. shadowQuality_(SHADOWQUALITY_HIGH_16BIT),
  250. maxShadowMaps_(1),
  251. maxShadowCascades_(MAX_CASCADE_SPLITS),
  252. maxInstanceTriangles_(500),
  253. maxSortedInstances_(1000),
  254. maxOccluderTriangles_(5000),
  255. occlusionBufferSize_(256),
  256. occluderSizeThreshold_(0.025f),
  257. numViews_(0),
  258. numOcclusionBuffers_(0),
  259. numShadowCameras_(0),
  260. shadersChangedFrameNumber_(M_MAX_UNSIGNED),
  261. specularLighting_(true),
  262. drawShadows_(true),
  263. reuseShadowMaps_(true),
  264. dynamicInstancing_(true),
  265. shadersDirty_(true),
  266. initialized_(false)
  267. {
  268. SubscribeToEvent(E_SCREENMODE, HANDLER(Renderer, HandleScreenMode));
  269. SubscribeToEvent(E_GRAPHICSFEATURES, HANDLER(Renderer, HandleGraphicsFeatures));
  270. // Delay SubscribeToEvent(E_RENDERUPDATE, HANDLER(Renderer, HandleRenderUpdate)) until renderer is initialized
  271. quadDirLight_->SetLightType(LIGHT_DIRECTIONAL);
  272. // Try to initialize right now, but skip if screen mode is not yet set
  273. Initialize();
  274. }
  275. Renderer::~Renderer()
  276. {
  277. }
  278. void Renderer::SetNumViewports(unsigned num)
  279. {
  280. viewports_.Resize(num);
  281. }
  282. void Renderer::SetViewport(unsigned index, Viewport* viewport)
  283. {
  284. if (index >= viewports_.Size())
  285. viewports_.Resize(index + 1);
  286. viewports_[index] = viewport;
  287. }
  288. void Renderer::SetDefaultRenderPath(RenderPath* renderPath)
  289. {
  290. if (renderPath)
  291. defaultRenderPath_ = renderPath;
  292. }
  293. void Renderer::SetDefaultRenderPath(XMLFile* xmlFile)
  294. {
  295. SharedPtr<RenderPath> newRenderPath(new RenderPath());
  296. if (newRenderPath->LoadParameters(xmlFile))
  297. defaultRenderPath_ = newRenderPath;
  298. }
  299. void Renderer::SetSpecularLighting(bool enable)
  300. {
  301. specularLighting_ = enable;
  302. }
  303. void Renderer::SetTextureAnisotropy(int level)
  304. {
  305. textureAnisotropy_ = Max(level, 1);
  306. }
  307. void Renderer::SetTextureFilterMode(TextureFilterMode mode)
  308. {
  309. textureFilterMode_ = mode;
  310. }
  311. void Renderer::SetTextureQuality(int quality)
  312. {
  313. quality = Clamp(quality, QUALITY_LOW, QUALITY_HIGH);
  314. if (quality != textureQuality_)
  315. {
  316. textureQuality_ = quality;
  317. ReloadTextures();
  318. }
  319. }
  320. void Renderer::SetMaterialQuality(int quality)
  321. {
  322. materialQuality_ = Clamp(quality, QUALITY_LOW, QUALITY_MAX);
  323. shadersDirty_ = true;
  324. ResetViews();
  325. }
  326. void Renderer::SetDrawShadows(bool enable)
  327. {
  328. if (!graphics_ || !graphics_->GetShadowMapFormat())
  329. return;
  330. drawShadows_ = enable;
  331. if (!drawShadows_)
  332. ResetShadowMaps();
  333. }
  334. void Renderer::SetShadowMapSize(int size)
  335. {
  336. if (!graphics_)
  337. return;
  338. size = NextPowerOfTwo(Max(size, SHADOW_MIN_PIXELS));
  339. if (size != shadowMapSize_)
  340. {
  341. shadowMapSize_ = size;
  342. ResetShadowMaps();
  343. }
  344. }
  345. void Renderer::SetShadowQuality(int quality)
  346. {
  347. if (!graphics_)
  348. return;
  349. quality &= SHADOWQUALITY_HIGH_24BIT;
  350. // If no hardware PCF, do not allow to select one-sample quality
  351. if (!graphics_->GetHardwareShadowSupport())
  352. quality |= SHADOWQUALITY_HIGH_16BIT;
  353. if (!graphics_->GetHiresShadowMapFormat())
  354. quality &= SHADOWQUALITY_HIGH_16BIT;
  355. if (quality != shadowQuality_)
  356. {
  357. shadowQuality_ = quality;
  358. shadersDirty_ = true;
  359. ResetShadowMaps();
  360. }
  361. }
  362. void Renderer::SetReuseShadowMaps(bool enable)
  363. {
  364. if (enable == reuseShadowMaps_)
  365. return;
  366. reuseShadowMaps_ = enable;
  367. }
  368. void Renderer::SetMaxShadowMaps(int shadowMaps)
  369. {
  370. if (shadowMaps < 1)
  371. return;
  372. maxShadowMaps_ = shadowMaps;
  373. for (HashMap<int, Vector<SharedPtr<Texture2D> > >::Iterator i = shadowMaps_.Begin(); i != shadowMaps_.End(); ++i)
  374. {
  375. if ((int)i->second_.Size() > maxShadowMaps_)
  376. i->second_.Resize(maxShadowMaps_);
  377. }
  378. }
  379. void Renderer::SetMaxShadowCascades(int cascades)
  380. {
  381. cascades = Clamp(cascades, 1, MAX_CASCADE_SPLITS);
  382. if (cascades != maxShadowCascades_)
  383. {
  384. maxShadowCascades_ = cascades;
  385. ResetShadowMaps();
  386. }
  387. }
  388. void Renderer::SetDynamicInstancing(bool enable)
  389. {
  390. if (!instancingBuffer_)
  391. enable = false;
  392. dynamicInstancing_ = enable;
  393. }
  394. void Renderer::SetMaxInstanceTriangles(int triangles)
  395. {
  396. maxInstanceTriangles_ = Max(triangles, 0);
  397. }
  398. void Renderer::SetMaxSortedInstances(int instances)
  399. {
  400. maxSortedInstances_ = Max(instances, 0);
  401. }
  402. void Renderer::SetMaxOccluderTriangles(int triangles)
  403. {
  404. maxOccluderTriangles_ = Max(triangles, 0);
  405. }
  406. void Renderer::SetOcclusionBufferSize(int size)
  407. {
  408. occlusionBufferSize_ = Max(size, 1);
  409. occlusionBuffers_.Clear();
  410. }
  411. void Renderer::SetOccluderSizeThreshold(float screenSize)
  412. {
  413. occluderSizeThreshold_ = Max(screenSize, 0.0f);
  414. }
  415. void Renderer::ReloadShaders()
  416. {
  417. shadersDirty_ = true;
  418. }
  419. Viewport* Renderer::GetViewport(unsigned index) const
  420. {
  421. return index < viewports_.Size() ? viewports_[index] : (Viewport*)0;
  422. }
  423. RenderPath* Renderer::GetDefaultRenderPath() const
  424. {
  425. return defaultRenderPath_;
  426. }
  427. ShaderVariation* Renderer::GetVertexShader(const String& name, bool checkExists) const
  428. {
  429. return GetShader(VS, name, checkExists);
  430. }
  431. ShaderVariation* Renderer::GetPixelShader(const String& name, bool checkExists) const
  432. {
  433. return GetShader(PS, name, checkExists);
  434. }
  435. unsigned Renderer::GetNumGeometries(bool allViews) const
  436. {
  437. unsigned numGeometries = 0;
  438. unsigned lastView = allViews ? numViews_ : 1;
  439. for (unsigned i = 0; i < lastView; ++i)
  440. numGeometries += views_[i]->GetGeometries().Size();
  441. return numGeometries;
  442. }
  443. unsigned Renderer::GetNumLights(bool allViews) const
  444. {
  445. unsigned numLights = 0;
  446. unsigned lastView = allViews ? numViews_ : 1;
  447. for (unsigned i = 0; i < lastView; ++i)
  448. numLights += views_[i]->GetLights().Size();
  449. return numLights;
  450. }
  451. unsigned Renderer::GetNumShadowMaps(bool allViews) const
  452. {
  453. unsigned numShadowMaps = 0;
  454. unsigned lastView = allViews ? numViews_ : 1;
  455. for (unsigned i = 0; i < lastView; ++i)
  456. {
  457. const Vector<LightBatchQueue>& lightQueues = views_[i]->GetLightQueues();
  458. for (Vector<LightBatchQueue>::ConstIterator i = lightQueues.Begin(); i != lightQueues.End(); ++i)
  459. {
  460. if (i->shadowMap_)
  461. ++numShadowMaps;
  462. }
  463. }
  464. return numShadowMaps;
  465. }
  466. unsigned Renderer::GetNumOccluders(bool allViews) const
  467. {
  468. unsigned numOccluders = 0;
  469. unsigned lastView = allViews ? numViews_ : 1;
  470. for (unsigned i = 0; i < lastView; ++i)
  471. numOccluders += views_[i]->GetOccluders().Size();
  472. return numOccluders;
  473. }
  474. void Renderer::Update(float timeStep)
  475. {
  476. PROFILE(UpdateViews);
  477. numViews_ = 0;
  478. // If device lost, do not perform update. This is because any dynamic vertex/index buffer updates happen already here,
  479. // and if the device is lost, the updates queue up, causing memory use to rise constantly
  480. if (!graphics_ || !graphics_->IsInitialized() || graphics_->IsDeviceLost())
  481. return;
  482. // Set up the frameinfo structure for this frame
  483. frame_.frameNumber_ = GetSubsystem<Time>()->GetFrameNumber();
  484. frame_.timeStep_ = timeStep;
  485. frame_.camera_ = 0;
  486. numShadowCameras_ = 0;
  487. numOcclusionBuffers_ = 0;
  488. updatedOctrees_.Clear();
  489. // Reload shaders now if needed
  490. if (shadersDirty_)
  491. LoadShaders();
  492. // Queue update of the main viewports. Use reverse order, as rendering order is also reverse
  493. // to render auxiliary views before dependant main views
  494. for (unsigned i = viewports_.Size() - 1; i < viewports_.Size(); --i)
  495. QueueViewport(0, viewports_[i]);
  496. // Gather other render surfaces that are autoupdated
  497. SendEvent(E_RENDERSURFACEUPDATE);
  498. // Process gathered views. This may queue further views (render surfaces that are only updated when visible)
  499. for (unsigned i = 0; i < queuedViews_.Size(); ++i)
  500. {
  501. WeakPtr<RenderSurface>& renderTarget = queuedViews_[i].first_;
  502. WeakPtr<Viewport>& viewport = queuedViews_[i].second_;
  503. // Null pointer means backbuffer view. Differentiate between that and an expired rendersurface
  504. if ((renderTarget.NotNull() && renderTarget.Expired()) || viewport.Expired())
  505. continue;
  506. // Allocate new view if necessary
  507. if (numViews_ == views_.Size())
  508. views_.Push(SharedPtr<View>(new View(context_)));
  509. // Check if view can be defined successfully (has valid scene, camera and octree)
  510. assert(numViews_ < views_.Size());
  511. View* view = views_[numViews_];
  512. if (!view->Define(renderTarget, viewport))
  513. continue;
  514. ++numViews_;
  515. const IntRect& viewRect = viewport->GetRect();
  516. Scene* scene = viewport->GetScene();
  517. Octree* octree = scene->GetComponent<Octree>();
  518. // Update octree (perform early update for drawables which need that, and reinsert moved drawables.)
  519. // However, if the same scene is viewed from multiple cameras, update the octree only once
  520. if (!updatedOctrees_.Contains(octree))
  521. {
  522. frame_.camera_ = viewport->GetCamera();
  523. frame_.viewSize_ = viewRect.Size();
  524. if (frame_.viewSize_ == IntVector2::ZERO)
  525. frame_.viewSize_ = IntVector2(graphics_->GetWidth(), graphics_->GetHeight());
  526. octree->Update(frame_);
  527. updatedOctrees_.Insert(octree);
  528. // Set also the view for the debug renderer already here, so that it can use culling
  529. /// \todo May result in incorrect debug geometry culling if the same scene is drawn from multiple viewports
  530. DebugRenderer* debug = scene->GetComponent<DebugRenderer>();
  531. if (debug)
  532. debug->SetView(viewport->GetCamera());
  533. }
  534. // Update view. This may queue further views
  535. ResetShadowMapAllocations(); // Each view can reuse the same shadow maps
  536. view->Update(frame_);
  537. }
  538. // Reset update flag from queued render surfaces. At this point no new views can be added on this frame
  539. for (unsigned i = 0; i < queuedViews_.Size(); ++i)
  540. {
  541. WeakPtr<RenderSurface>& renderTarget = queuedViews_[i].first_;
  542. if (renderTarget)
  543. renderTarget->WasUpdated();
  544. }
  545. queuedViews_.Clear();
  546. }
  547. void Renderer::Render()
  548. {
  549. // Engine does not render when window is closed or device is lost
  550. assert(graphics_ && graphics_->IsInitialized() && !graphics_->IsDeviceLost());
  551. PROFILE(RenderViews);
  552. // If the indirection textures have lost content (OpenGL mode only), restore them now
  553. if (faceSelectCubeMap_ && faceSelectCubeMap_->IsDataLost())
  554. SetIndirectionTextureData();
  555. graphics_->SetDefaultTextureFilterMode(textureFilterMode_);
  556. graphics_->SetTextureAnisotropy(textureAnisotropy_);
  557. graphics_->ClearParameterSources();
  558. // If no views, just clear the screen
  559. if (!numViews_)
  560. {
  561. graphics_->SetBlendMode(BLEND_REPLACE);
  562. graphics_->SetColorWrite(true);
  563. graphics_->SetDepthWrite(true);
  564. graphics_->SetScissorTest(false);
  565. graphics_->SetStencilTest(false);
  566. graphics_->ResetRenderTargets();
  567. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, defaultZone_->GetFogColor());
  568. numPrimitives_ = 0;
  569. numBatches_ = 0;
  570. }
  571. else
  572. {
  573. // Render views from last to first (each main view is rendered after the auxiliary views it depends on)
  574. for (unsigned i = numViews_ - 1; i < numViews_; --i)
  575. {
  576. // Screen buffers can be reused between views, as each is rendered completely
  577. PrepareViewRender();
  578. views_[i]->Render();
  579. }
  580. // Copy the number of batches & primitives from Graphics so that we can account for 3D geometry only
  581. numPrimitives_ = graphics_->GetNumPrimitives();
  582. numBatches_ = graphics_->GetNumBatches();
  583. }
  584. // Remove unused occlusion buffers and renderbuffers
  585. RemoveUnusedBuffers();
  586. }
  587. void Renderer::DrawDebugGeometry(bool depthTest)
  588. {
  589. PROFILE(RendererDrawDebug);
  590. /// \todo Because debug geometry is per-scene, if two cameras show views of the same area, occlusion is not shown correctly
  591. HashSet<Drawable*> processedGeometries;
  592. HashSet<Light*> processedLights;
  593. for (unsigned i = 0; i < numViews_; ++i)
  594. {
  595. // Make sure it's a main view, and process each node only once
  596. View* view = views_[i];
  597. if (view->GetRenderTarget())
  598. continue;
  599. Octree* octree = view->GetOctree();
  600. if (!octree)
  601. continue;
  602. DebugRenderer* debug = octree->GetComponent<DebugRenderer>();
  603. if (!debug)
  604. continue;
  605. const PODVector<Drawable*>& geometries = view->GetGeometries();
  606. const PODVector<Light*>& lights = view->GetLights();
  607. for (unsigned i = 0; i < geometries.Size(); ++i)
  608. {
  609. if (!processedGeometries.Contains(geometries[i]))
  610. {
  611. geometries[i]->DrawDebugGeometry(debug, depthTest);
  612. processedGeometries.Insert(geometries[i]);
  613. }
  614. }
  615. for (unsigned i = 0; i < lights.Size(); ++i)
  616. {
  617. if (!processedLights.Contains(lights[i]))
  618. {
  619. lights[i]->DrawDebugGeometry(debug, depthTest);
  620. processedLights.Insert(lights[i]);
  621. }
  622. }
  623. }
  624. }
  625. void Renderer::QueueRenderSurface(RenderSurface* renderTarget)
  626. {
  627. if (renderTarget)
  628. {
  629. unsigned numViewports = renderTarget->GetNumViewports();
  630. for (unsigned i = 0; i < numViewports; ++i)
  631. QueueViewport(renderTarget, renderTarget->GetViewport(i));
  632. }
  633. }
  634. void Renderer::QueueViewport(RenderSurface* renderTarget, Viewport* viewport)
  635. {
  636. if (viewport)
  637. {
  638. queuedViews_.Push(Pair<WeakPtr<RenderSurface>, WeakPtr<Viewport> >(WeakPtr<RenderSurface>(renderTarget),
  639. WeakPtr<Viewport>(viewport)));
  640. }
  641. }
  642. void Renderer::GetLightVolumeShaders(PODVector<ShaderVariation*>& lightVS, PODVector<ShaderVariation*>& lightPS, const String& vsName, const String& psName)
  643. {
  644. lightVS.Resize(MAX_DEFERRED_LIGHT_VS_VARIATIONS);
  645. lightPS.Resize(MAX_DEFERRED_LIGHT_PS_VARIATIONS);
  646. unsigned shadows = (graphics_->GetHardwareShadowSupport() ? 1 : 0) | (shadowQuality_ & SHADOWQUALITY_HIGH_16BIT);
  647. for (unsigned i = 0; i < MAX_DEFERRED_LIGHT_VS_VARIATIONS; ++i)
  648. lightVS[i] = GetVertexShader(vsName + "_" + deferredLightVSVariations[i]);
  649. for (unsigned i = 0; i < lightPS.Size(); ++i)
  650. {
  651. String ortho;
  652. if (i >= DLPS_ORTHO)
  653. ortho = "Ortho";
  654. if (i & DLPS_SHADOW)
  655. {
  656. lightPS[i] = GetPixelShader(psName + "_" + ortho + lightPSVariations[i % DLPS_ORTHO] +
  657. shadowVariations[shadows]);
  658. }
  659. else
  660. lightPS[i] = GetPixelShader(psName + "_" + ortho + lightPSVariations[i % DLPS_ORTHO]);
  661. }
  662. }
  663. Geometry* Renderer::GetLightGeometry(Light* light)
  664. {
  665. switch (light->GetLightType())
  666. {
  667. case LIGHT_DIRECTIONAL:
  668. return dirLightGeometry_;
  669. case LIGHT_SPOT:
  670. return spotLightGeometry_;
  671. case LIGHT_POINT:
  672. return pointLightGeometry_;
  673. }
  674. return 0;
  675. }
  676. Texture2D* Renderer::GetShadowMap(Light* light, Camera* camera, unsigned viewWidth, unsigned viewHeight)
  677. {
  678. LightType type = light->GetLightType();
  679. const FocusParameters& parameters = light->GetShadowFocus();
  680. float size = (float)shadowMapSize_ * light->GetShadowResolution();
  681. // Automatically reduce shadow map size when far away
  682. if (parameters.autoSize_ && type != LIGHT_DIRECTIONAL)
  683. {
  684. const Matrix3x4& view = camera->GetInverseWorldTransform();
  685. const Matrix4& projection = camera->GetProjection();
  686. BoundingBox lightBox;
  687. float lightPixels;
  688. if (type == LIGHT_POINT)
  689. {
  690. // Calculate point light pixel size from the projection of its diagonal
  691. Vector3 center = view * light->GetNode()->GetWorldPosition();
  692. float extent = 0.58f * light->GetRange();
  693. lightBox.Define(center + Vector3(extent, extent, extent), center - Vector3(extent, extent, extent));
  694. }
  695. else
  696. {
  697. // Calculate spot light pixel size from the projection of its frustum far vertices
  698. Frustum lightFrustum = light->GetFrustum().Transformed(view);
  699. lightBox.Define(&lightFrustum.vertices_[4], 4);
  700. }
  701. Vector2 projectionSize = lightBox.Projected(projection).Size();
  702. lightPixels = Max(0.5f * (float)viewWidth * projectionSize.x_, 0.5f * (float)viewHeight * projectionSize.y_);
  703. // Clamp pixel amount to a sufficient minimum to avoid self-shadowing artifacts due to loss of precision
  704. if (lightPixels < SHADOW_MIN_PIXELS)
  705. lightPixels = SHADOW_MIN_PIXELS;
  706. size = Min(size, lightPixels);
  707. }
  708. /// \todo Allow to specify maximum shadow maps per resolution, as smaller shadow maps take less memory
  709. int width = NextPowerOfTwo((unsigned)size);
  710. int height = width;
  711. // Adjust the size for directional or point light shadow map atlases
  712. if (type == LIGHT_DIRECTIONAL)
  713. {
  714. if (maxShadowCascades_ > 1)
  715. width *= 2;
  716. if (maxShadowCascades_ > 2)
  717. height *= 2;
  718. }
  719. else if (type == LIGHT_POINT)
  720. {
  721. width *= 2;
  722. height *= 3;
  723. }
  724. int searchKey = (width << 16) | height;
  725. if (shadowMaps_.Contains(searchKey))
  726. {
  727. // If shadow maps are reused, always return the first
  728. if (reuseShadowMaps_)
  729. return shadowMaps_[searchKey][0];
  730. else
  731. {
  732. // If not reused, check allocation count and return existing shadow map if possible
  733. unsigned allocated = shadowMapAllocations_[searchKey].Size();
  734. if (allocated < shadowMaps_[searchKey].Size())
  735. {
  736. shadowMapAllocations_[searchKey].Push(light);
  737. return shadowMaps_[searchKey][allocated];
  738. }
  739. else if ((int)allocated >= maxShadowMaps_)
  740. return 0;
  741. }
  742. }
  743. unsigned shadowMapFormat = (shadowQuality_ & SHADOWQUALITY_LOW_24BIT) ? graphics_->GetHiresShadowMapFormat() :
  744. graphics_->GetShadowMapFormat();
  745. if (!shadowMapFormat)
  746. return 0;
  747. SharedPtr<Texture2D> newShadowMap(new Texture2D(context_));
  748. int retries = 3;
  749. // OpenGL: create shadow map only. Color rendertarget is not needed
  750. #ifdef USE_OPENGL
  751. while (retries)
  752. {
  753. if (!newShadowMap->SetSize(width, height, shadowMapFormat, TEXTURE_DEPTHSTENCIL))
  754. {
  755. width >>= 1;
  756. height >>= 1;
  757. --retries;
  758. }
  759. else
  760. {
  761. #ifndef GL_ES_VERSION_2_0
  762. newShadowMap->SetFilterMode(FILTER_BILINEAR);
  763. newShadowMap->SetShadowCompare(true);
  764. #endif
  765. break;
  766. }
  767. }
  768. #else
  769. // Direct3D9: create shadow map and dummy color rendertarget
  770. unsigned dummyColorFormat = graphics_->GetDummyColorFormat();
  771. while (retries)
  772. {
  773. if (!newShadowMap->SetSize(width, height, shadowMapFormat, TEXTURE_DEPTHSTENCIL))
  774. {
  775. width >>= 1;
  776. height >>= 1;
  777. --retries;
  778. }
  779. else
  780. {
  781. newShadowMap->SetFilterMode(FILTER_BILINEAR);
  782. // If no dummy color rendertarget for this size exists yet, create one now
  783. if (!colorShadowMaps_.Contains(searchKey))
  784. {
  785. colorShadowMaps_[searchKey] = new Texture2D(context_);
  786. colorShadowMaps_[searchKey]->SetSize(width, height, dummyColorFormat, TEXTURE_RENDERTARGET);
  787. }
  788. // Link the color rendertarget to the shadow map
  789. newShadowMap->GetRenderSurface()->SetLinkedRenderTarget(colorShadowMaps_[searchKey]->GetRenderSurface());
  790. break;
  791. }
  792. }
  793. #endif
  794. // If failed to set size, store a null pointer so that we will not retry
  795. if (!retries)
  796. newShadowMap.Reset();
  797. shadowMaps_[searchKey].Push(newShadowMap);
  798. if (!reuseShadowMaps_)
  799. shadowMapAllocations_[searchKey].Push(light);
  800. return newShadowMap;
  801. }
  802. Texture2D* Renderer::GetScreenBuffer(int width, int height, unsigned format, bool filtered, bool srgb)
  803. {
  804. bool depthStencil = (format == Graphics::GetDepthStencilFormat());
  805. if (depthStencil)
  806. {
  807. filtered = false;
  808. srgb = false;
  809. }
  810. long long searchKey = ((long long)format << 32) | (width << 16) | height;
  811. if (filtered)
  812. searchKey |= 0x8000000000000000LL;
  813. if (srgb)
  814. searchKey |= 0x4000000000000000LL;
  815. // If new size or format, initialize the allocation stats
  816. if (screenBuffers_.Find(searchKey) == screenBuffers_.End())
  817. screenBufferAllocations_[searchKey] = 0;
  818. // Reuse depth-stencil buffers whenever the size matches, instead of allocating new
  819. unsigned allocations = screenBufferAllocations_[searchKey];
  820. if(!depthStencil)
  821. ++screenBufferAllocations_[searchKey];
  822. if (allocations >= screenBuffers_[searchKey].Size())
  823. {
  824. SharedPtr<Texture2D> newBuffer(new Texture2D(context_));
  825. newBuffer->SetSRGB(srgb);
  826. newBuffer->SetSize(width, height, format, depthStencil ? TEXTURE_DEPTHSTENCIL : TEXTURE_RENDERTARGET);
  827. newBuffer->SetFilterMode(filtered ? FILTER_BILINEAR : FILTER_NEAREST);
  828. newBuffer->ResetUseTimer();
  829. screenBuffers_[searchKey].Push(newBuffer);
  830. LOGDEBUG("Allocated new screen buffer size " + String(width) + "x" + String(height) + " format " + String(format));
  831. return newBuffer;
  832. }
  833. else
  834. {
  835. Texture2D* buffer = screenBuffers_[searchKey][allocations];
  836. buffer->ResetUseTimer();
  837. return buffer;
  838. }
  839. }
  840. RenderSurface* Renderer::GetDepthStencil(int width, int height)
  841. {
  842. // Return the default depth-stencil surface if applicable
  843. // (when using OpenGL Graphics will allocate right size surfaces on demand to emulate Direct3D9)
  844. if (width == graphics_->GetWidth() && height == graphics_->GetHeight() && graphics_->GetMultiSample() <= 1)
  845. return 0;
  846. else
  847. return GetScreenBuffer(width, height, Graphics::GetDepthStencilFormat(), false, false)->GetRenderSurface();
  848. }
  849. OcclusionBuffer* Renderer::GetOcclusionBuffer(Camera* camera)
  850. {
  851. assert(numOcclusionBuffers_ <= occlusionBuffers_.Size());
  852. if (numOcclusionBuffers_ == occlusionBuffers_.Size())
  853. {
  854. SharedPtr<OcclusionBuffer> newBuffer(new OcclusionBuffer(context_));
  855. occlusionBuffers_.Push(newBuffer);
  856. }
  857. int width = occlusionBufferSize_;
  858. int height = (int)((float)occlusionBufferSize_ / camera->GetAspectRatio() + 0.5f);
  859. OcclusionBuffer* buffer = occlusionBuffers_[numOcclusionBuffers_++];
  860. buffer->SetSize(width, height);
  861. buffer->SetView(camera);
  862. buffer->ResetUseTimer();
  863. return buffer;
  864. }
  865. Camera* Renderer::GetShadowCamera()
  866. {
  867. MutexLock lock(rendererMutex_);
  868. assert(numShadowCameras_ <= shadowCameraNodes_.Size());
  869. if (numShadowCameras_ == shadowCameraNodes_.Size())
  870. {
  871. SharedPtr<Node> newNode(new Node(context_));
  872. newNode->CreateComponent<Camera>();
  873. shadowCameraNodes_.Push(newNode);
  874. }
  875. Camera* camera = shadowCameraNodes_[numShadowCameras_++]->GetComponent<Camera>();
  876. camera->SetOrthographic(false);
  877. camera->SetZoom(1.0f);
  878. return camera;
  879. }
  880. ShaderVariation* Renderer::GetShader(ShaderType type, const String& name, bool checkExists) const
  881. {
  882. String shaderName = shaderPath_;
  883. String variationName;
  884. unsigned split = name.Find('_');
  885. if (split != String::NPOS)
  886. {
  887. shaderName += name.Substring(0, split) + ".xml";
  888. variationName = name.Substring(split + 1);
  889. }
  890. else
  891. shaderName += name + ".xml";
  892. if (checkExists)
  893. {
  894. if (!cache_->Exists(shaderName))
  895. return 0;
  896. }
  897. Shader* shader = cache_->GetResource<Shader>(shaderName);
  898. if (shader)
  899. return shader->GetVariation(type, variationName);
  900. else
  901. return 0;
  902. }
  903. void Renderer::SetBatchShaders(Batch& batch, Technique* tech, bool allowShadows)
  904. {
  905. // Check if shaders are unloaded or need reloading
  906. Pass* pass = batch.pass_;
  907. Vector<SharedPtr<ShaderVariation> >& vertexShaders = pass->GetVertexShaders();
  908. Vector<SharedPtr<ShaderVariation> >& pixelShaders = pass->GetPixelShaders();
  909. if (!vertexShaders.Size() || !pixelShaders.Size() || pass->GetShadersLoadedFrameNumber() !=
  910. shadersChangedFrameNumber_)
  911. {
  912. // First release all previous shaders, then load
  913. pass->ReleaseShaders();
  914. LoadPassShaders(tech, pass->GetType());
  915. }
  916. // Make sure shaders are loaded now
  917. if (vertexShaders.Size() && pixelShaders.Size())
  918. {
  919. GeometryType geomType = batch.geometryType_;
  920. // If instancing is not supported, but was requested, or the object is too large to be instanced,
  921. // choose static geometry vertex shader instead
  922. if (geomType == GEOM_INSTANCED && (!GetDynamicInstancing() || batch.geometry_->GetIndexCount() >
  923. (unsigned)maxInstanceTriangles_ * 3))
  924. geomType = GEOM_STATIC;
  925. if (geomType == GEOM_STATIC_NOINSTANCING)
  926. geomType = GEOM_STATIC;
  927. // Check whether is a pixel lit forward pass. If not, there is only one pixel shader
  928. if (pass->GetLightingMode() == LIGHTING_PERPIXEL)
  929. {
  930. LightBatchQueue* lightQueue = batch.lightQueue_;
  931. if (!lightQueue)
  932. {
  933. // Do not log error, as it would result in a lot of spam
  934. batch.vertexShader_ = 0;
  935. batch.pixelShader_ = 0;
  936. return;
  937. }
  938. Light* light = lightQueue->light_;
  939. unsigned vsi = 0;
  940. unsigned psi = 0;
  941. vsi = geomType * MAX_LIGHT_VS_VARIATIONS;
  942. bool materialHasSpecular = batch.material_ ? batch.material_->GetSpecular() : true;
  943. if (specularLighting_ && light->GetSpecularIntensity() > 0.0f && materialHasSpecular)
  944. {
  945. vsi += LVS_SPEC;
  946. psi += LPS_SPEC;
  947. }
  948. if (allowShadows && lightQueue->shadowMap_)
  949. {
  950. vsi += LVS_SHADOW;
  951. psi += LPS_SHADOW;
  952. }
  953. switch (light->GetLightType())
  954. {
  955. case LIGHT_DIRECTIONAL:
  956. vsi += LVS_DIR;
  957. break;
  958. case LIGHT_SPOT:
  959. psi += LPS_SPOT;
  960. vsi += LVS_SPOT;
  961. break;
  962. case LIGHT_POINT:
  963. if (light->GetShapeTexture())
  964. psi += LPS_POINTMASK;
  965. else
  966. psi += LPS_POINT;
  967. vsi += LVS_POINT;
  968. break;
  969. }
  970. batch.vertexShader_ = vertexShaders[vsi];
  971. batch.pixelShader_ = pixelShaders[psi];
  972. // If shadow or specular variations do not exist, try without them
  973. if ((!batch.vertexShader_ || !batch.pixelShader_) && (vsi >= LVS_SHADOW))
  974. {
  975. vsi -= LVS_SHADOW;
  976. psi -= LPS_SHADOW;
  977. batch.vertexShader_ = vertexShaders[vsi];
  978. batch.pixelShader_ = pixelShaders[psi];
  979. }
  980. if ((!batch.vertexShader_ || !batch.pixelShader_) && (vsi >= LVS_SPEC))
  981. {
  982. vsi -= LVS_SPEC;
  983. psi -= LPS_SPEC;
  984. batch.vertexShader_ = vertexShaders[vsi];
  985. batch.pixelShader_ = pixelShaders[psi];
  986. }
  987. }
  988. else
  989. {
  990. // Check if pass has vertex lighting support
  991. if (pass->GetLightingMode() == LIGHTING_PERVERTEX)
  992. {
  993. unsigned numVertexLights = 0;
  994. if (batch.lightQueue_)
  995. numVertexLights = batch.lightQueue_->vertexLights_.Size();
  996. unsigned vsi = geomType * MAX_VERTEXLIGHT_VS_VARIATIONS + numVertexLights;
  997. batch.vertexShader_ = vertexShaders[vsi];
  998. // If vertex lights variations do not exist, try without them
  999. if (!batch.vertexShader_)
  1000. {
  1001. unsigned vsi = geomType * MAX_VERTEXLIGHT_VS_VARIATIONS;
  1002. batch.vertexShader_ = vertexShaders[vsi];
  1003. }
  1004. }
  1005. else
  1006. {
  1007. unsigned vsi = geomType;
  1008. batch.vertexShader_ = vertexShaders[vsi];
  1009. }
  1010. batch.pixelShader_ = pixelShaders[0];
  1011. }
  1012. }
  1013. // Log error if shaders could not be assigned, but only once per technique
  1014. if (!batch.vertexShader_ || !batch.pixelShader_)
  1015. {
  1016. if (!shaderErrorDisplayed_.Contains(tech))
  1017. {
  1018. shaderErrorDisplayed_.Insert(tech);
  1019. LOGERROR("Technique " + tech->GetName() + " has missing shaders");
  1020. }
  1021. }
  1022. }
  1023. void Renderer::SetLightVolumeBatchShaders(Batch& batch, PODVector<ShaderVariation*>& lightVS, PODVector<ShaderVariation*>& lightPS)
  1024. {
  1025. unsigned vsi = DLVS_NONE;
  1026. unsigned psi = DLPS_NONE;
  1027. Light* light = batch.lightQueue_->light_;
  1028. switch (light->GetLightType())
  1029. {
  1030. case LIGHT_DIRECTIONAL:
  1031. vsi += DLVS_DIR;
  1032. break;
  1033. case LIGHT_SPOT:
  1034. psi += DLPS_SPOT;
  1035. break;
  1036. case LIGHT_POINT:
  1037. if (light->GetShapeTexture())
  1038. psi += DLPS_POINTMASK;
  1039. else
  1040. psi += DLPS_POINT;
  1041. break;
  1042. }
  1043. if (batch.lightQueue_->shadowMap_)
  1044. psi += DLPS_SHADOW;
  1045. if (specularLighting_ && light->GetSpecularIntensity() > 0.0f)
  1046. psi += DLPS_SPEC;
  1047. if (batch.camera_->IsOrthographic())
  1048. {
  1049. vsi += DLVS_ORTHO;
  1050. psi += DLPS_ORTHO;
  1051. }
  1052. batch.vertexShader_ = lightVS[vsi];
  1053. batch.pixelShader_ = lightPS[psi];
  1054. }
  1055. void Renderer::SetCullMode(CullMode mode, Camera* camera)
  1056. {
  1057. // If a camera is specified, check for vertical flipping and reverse culling in that case
  1058. if (camera && camera->GetFlipVertical())
  1059. {
  1060. if (mode == CULL_CW)
  1061. mode = CULL_CCW;
  1062. else if (mode == CULL_CCW)
  1063. mode = CULL_CW;
  1064. }
  1065. graphics_->SetCullMode(mode);
  1066. }
  1067. bool Renderer::ResizeInstancingBuffer(unsigned numInstances)
  1068. {
  1069. if (!instancingBuffer_ || !dynamicInstancing_)
  1070. return false;
  1071. unsigned oldSize = instancingBuffer_->GetVertexCount();
  1072. if (numInstances <= oldSize)
  1073. return true;
  1074. unsigned newSize = INSTANCING_BUFFER_DEFAULT_SIZE;
  1075. while (newSize < numInstances)
  1076. newSize <<= 1;
  1077. if (!instancingBuffer_->SetSize(newSize, INSTANCING_BUFFER_MASK, true))
  1078. {
  1079. LOGERROR("Failed to resize instancing buffer to " + String(newSize));
  1080. // If failed, try to restore the old size
  1081. instancingBuffer_->SetSize(oldSize, INSTANCING_BUFFER_MASK, true);
  1082. return false;
  1083. }
  1084. LOGDEBUG("Resized instancing buffer to " + String(newSize));
  1085. return true;
  1086. }
  1087. void Renderer::SaveScreenBufferAllocations()
  1088. {
  1089. savedScreenBufferAllocations_ = screenBufferAllocations_;
  1090. }
  1091. void Renderer::RestoreScreenBufferAllocations()
  1092. {
  1093. screenBufferAllocations_ = savedScreenBufferAllocations_;
  1094. }
  1095. void Renderer::OptimizeLightByScissor(Light* light, Camera* camera)
  1096. {
  1097. if (light && light->GetLightType() != LIGHT_DIRECTIONAL)
  1098. graphics_->SetScissorTest(true, GetLightScissor(light, camera));
  1099. else
  1100. graphics_->SetScissorTest(false);
  1101. }
  1102. void Renderer::OptimizeLightByStencil(Light* light, Camera* camera)
  1103. {
  1104. #ifndef GL_ES_VERSION_2_0
  1105. if (light)
  1106. {
  1107. LightType type = light->GetLightType();
  1108. if (type == LIGHT_DIRECTIONAL)
  1109. {
  1110. graphics_->SetStencilTest(false);
  1111. return;
  1112. }
  1113. Geometry* geometry = GetLightGeometry(light);
  1114. const Matrix3x4& view = camera->GetInverseWorldTransform();
  1115. const Matrix4& projection = camera->GetProjection();
  1116. Vector3 cameraPos = camera->GetNode()->GetWorldPosition();
  1117. float lightDist;
  1118. if (type == LIGHT_POINT)
  1119. lightDist = Sphere(light->GetNode()->GetWorldPosition(), light->GetRange() * 1.25f).Distance(cameraPos);
  1120. else
  1121. lightDist = light->GetFrustum().Distance(cameraPos);
  1122. // If the camera is actually inside the light volume, do not draw to stencil as it would waste fillrate
  1123. if (lightDist < M_EPSILON)
  1124. {
  1125. graphics_->SetStencilTest(false);
  1126. return;
  1127. }
  1128. // If the stencil value has wrapped, clear the whole stencil first
  1129. if (!lightStencilValue_)
  1130. {
  1131. graphics_->Clear(CLEAR_STENCIL);
  1132. lightStencilValue_ = 1;
  1133. }
  1134. // If possible, render the stencil volume front faces. However, close to the near clip plane render back faces instead
  1135. // to avoid clipping.
  1136. if (lightDist < camera->GetNearClip() * 2.0f)
  1137. {
  1138. SetCullMode(CULL_CW, camera);
  1139. graphics_->SetDepthTest(CMP_GREATER);
  1140. }
  1141. else
  1142. {
  1143. SetCullMode(CULL_CCW, camera);
  1144. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1145. }
  1146. graphics_->SetColorWrite(false);
  1147. graphics_->SetDepthWrite(false);
  1148. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, lightStencilValue_);
  1149. graphics_->SetShaders(stencilVS_, stencilPS_);
  1150. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection * view);
  1151. graphics_->SetShaderParameter(VSP_MODEL, light->GetVolumeTransform(camera));
  1152. geometry->Draw(graphics_);
  1153. graphics_->ClearTransformSources();
  1154. graphics_->SetColorWrite(true);
  1155. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, lightStencilValue_);
  1156. // Increase stencil value for next light
  1157. ++lightStencilValue_;
  1158. }
  1159. else
  1160. graphics_->SetStencilTest(false);
  1161. #endif
  1162. }
  1163. const Rect& Renderer::GetLightScissor(Light* light, Camera* camera)
  1164. {
  1165. Pair<Light*, Camera*> combination(light, camera);
  1166. HashMap<Pair<Light*, Camera*>, Rect>::Iterator i = lightScissorCache_.Find(combination);
  1167. if (i != lightScissorCache_.End())
  1168. return i->second_;
  1169. const Matrix3x4& view = camera->GetInverseWorldTransform();
  1170. const Matrix4& projection = camera->GetProjection();
  1171. assert(light->GetLightType() != LIGHT_DIRECTIONAL);
  1172. if (light->GetLightType() == LIGHT_SPOT)
  1173. {
  1174. Frustum viewFrustum(light->GetFrustum().Transformed(view));
  1175. return lightScissorCache_[combination] = viewFrustum.Projected(projection);
  1176. }
  1177. else // LIGHT_POINT
  1178. {
  1179. BoundingBox viewBox(light->GetWorldBoundingBox().Transformed(view));
  1180. return lightScissorCache_[combination] = viewBox.Projected(projection);
  1181. }
  1182. }
  1183. void Renderer::PrepareViewRender()
  1184. {
  1185. ResetScreenBufferAllocations();
  1186. lightScissorCache_.Clear();
  1187. lightStencilValue_ = 1;
  1188. }
  1189. void Renderer::RemoveUnusedBuffers()
  1190. {
  1191. for (unsigned i = occlusionBuffers_.Size() - 1; i < occlusionBuffers_.Size(); --i)
  1192. {
  1193. if (occlusionBuffers_[i]->GetUseTimer() > MAX_BUFFER_AGE)
  1194. {
  1195. LOGDEBUG("Removed unused occlusion buffer");
  1196. occlusionBuffers_.Erase(i);
  1197. }
  1198. }
  1199. for (HashMap<long long, Vector<SharedPtr<Texture2D> > >::Iterator i = screenBuffers_.Begin(); i != screenBuffers_.End();)
  1200. {
  1201. HashMap<long long, Vector<SharedPtr<Texture2D> > >::Iterator current = i++;
  1202. Vector<SharedPtr<Texture2D> >& buffers = current->second_;
  1203. for (unsigned j = buffers.Size() - 1; j < buffers.Size(); --j)
  1204. {
  1205. Texture2D* buffer = buffers[j];
  1206. if (buffer->GetUseTimer() > MAX_BUFFER_AGE)
  1207. {
  1208. LOGDEBUG("Removed unused screen buffer size " + String(buffer->GetWidth()) + "x" + String(buffer->GetHeight()) + " format " + String(buffer->GetFormat()));
  1209. buffers.Erase(j);
  1210. }
  1211. }
  1212. if (buffers.Empty())
  1213. {
  1214. screenBufferAllocations_.Erase(current->first_);
  1215. screenBuffers_.Erase(current);
  1216. }
  1217. }
  1218. }
  1219. void Renderer::ResetShadowMapAllocations()
  1220. {
  1221. for (HashMap<int, PODVector<Light*> >::Iterator i = shadowMapAllocations_.Begin(); i != shadowMapAllocations_.End(); ++i)
  1222. i->second_.Clear();
  1223. }
  1224. void Renderer::ResetScreenBufferAllocations()
  1225. {
  1226. for (HashMap<long long, unsigned>::Iterator i = screenBufferAllocations_.Begin(); i != screenBufferAllocations_.End(); ++i)
  1227. i->second_ = 0;
  1228. }
  1229. void Renderer::Initialize()
  1230. {
  1231. Graphics* graphics = GetSubsystem<Graphics>();
  1232. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1233. if (!graphics || !graphics->IsInitialized() || !cache)
  1234. return;
  1235. PROFILE(InitRenderer);
  1236. graphics_ = graphics;
  1237. cache_ = cache;
  1238. #ifndef USE_OPENGL
  1239. shaderPath_ = "Shaders/HLSL/";
  1240. #else
  1241. shaderPath_ = "Shaders/GLSL/";
  1242. #endif
  1243. if (!graphics_->GetShadowMapFormat())
  1244. drawShadows_ = false;
  1245. defaultLightRamp_ = cache->GetResource<Texture2D>("Textures/Ramp.png");
  1246. defaultLightSpot_ = cache->GetResource<Texture2D>("Textures/Spot.png");
  1247. defaultMaterial_ = cache->GetResource<Material>("Materials/Default.xml");
  1248. // If default material not found, create one. This will actually not render properly, but prevents crashing
  1249. if (!defaultMaterial_)
  1250. defaultMaterial_ = new Material(context_);
  1251. defaultRenderPath_ = new RenderPath();
  1252. defaultRenderPath_->LoadParameters(cache->GetResource<XMLFile>("RenderPaths/Forward.xml"));
  1253. CreateGeometries();
  1254. CreateInstancingBuffer();
  1255. viewports_.Resize(1);
  1256. ResetViews();
  1257. ResetShadowMaps();
  1258. ResetBuffers();
  1259. shadersDirty_ = true;
  1260. initialized_ = true;
  1261. SubscribeToEvent(E_RENDERUPDATE, HANDLER(Renderer, HandleRenderUpdate));
  1262. LOGINFO("Initialized renderer");
  1263. }
  1264. void Renderer::ResetViews()
  1265. {
  1266. views_.Clear();
  1267. numViews_ = 0;
  1268. }
  1269. void Renderer::LoadShaders()
  1270. {
  1271. LOGINFO("Reloading shaders");
  1272. // Release old material shaders, mark them for reload
  1273. ReleaseMaterialShaders();
  1274. shadersChangedFrameNumber_ = GetSubsystem<Time>()->GetFrameNumber();
  1275. // Load inbuilt shaders
  1276. stencilVS_ = GetVertexShader("Stencil");
  1277. stencilPS_ = GetPixelShader("Stencil");
  1278. shadersDirty_ = false;
  1279. }
  1280. void Renderer::LoadPassShaders(Technique* tech, StringHash type)
  1281. {
  1282. Pass* pass = tech->GetPass(type);
  1283. if (!pass)
  1284. return;
  1285. PROFILE(LoadPassShaders);
  1286. unsigned shadows = (graphics_->GetHardwareShadowSupport() ? 1 : 0) | (shadowQuality_ & SHADOWQUALITY_HIGH_16BIT);
  1287. String vertexShaderName = pass->GetVertexShader();
  1288. String pixelShaderName = pass->GetPixelShader();
  1289. // Check if the shader name is already a variation in itself
  1290. if (!vertexShaderName.Contains('_'))
  1291. vertexShaderName += "_";
  1292. if (!pixelShaderName.Contains('_'))
  1293. pixelShaderName += "_";
  1294. Vector<SharedPtr<ShaderVariation> >& vertexShaders = pass->GetVertexShaders();
  1295. Vector<SharedPtr<ShaderVariation> >& pixelShaders = pass->GetPixelShaders();
  1296. // Forget all the old shaders
  1297. vertexShaders.Clear();
  1298. pixelShaders.Clear();
  1299. if (pass->GetLightingMode() == LIGHTING_PERPIXEL)
  1300. {
  1301. // Load forward pixel lit variations
  1302. vertexShaders.Resize(MAX_GEOMETRYTYPES * MAX_LIGHT_VS_VARIATIONS);
  1303. pixelShaders.Resize(MAX_LIGHT_PS_VARIATIONS);
  1304. for (unsigned j = 0; j < MAX_GEOMETRYTYPES * MAX_LIGHT_VS_VARIATIONS; ++j)
  1305. {
  1306. unsigned g = j / MAX_LIGHT_VS_VARIATIONS;
  1307. unsigned l = j % MAX_LIGHT_VS_VARIATIONS;
  1308. vertexShaders[j] = GetVertexShader(vertexShaderName + lightVSVariations[l] + geometryVSVariations[g], g != 0);
  1309. }
  1310. for (unsigned j = 0; j < MAX_LIGHT_PS_VARIATIONS; ++j)
  1311. {
  1312. if (j & LPS_SHADOW)
  1313. pixelShaders[j] = GetPixelShader(pixelShaderName + lightPSVariations[j] + shadowVariations[shadows]);
  1314. else
  1315. pixelShaders[j] = GetPixelShader(pixelShaderName + lightPSVariations[j]);
  1316. }
  1317. }
  1318. else
  1319. {
  1320. // Load vertex light variations
  1321. if (pass->GetLightingMode() == LIGHTING_PERVERTEX)
  1322. {
  1323. vertexShaders.Resize(MAX_VERTEXLIGHT_VS_VARIATIONS * MAX_GEOMETRYTYPES);
  1324. for (unsigned j = 0; j < MAX_GEOMETRYTYPES * MAX_VERTEXLIGHT_VS_VARIATIONS; ++j)
  1325. {
  1326. unsigned g = j / MAX_VERTEXLIGHT_VS_VARIATIONS;
  1327. unsigned l = j % MAX_VERTEXLIGHT_VS_VARIATIONS;
  1328. vertexShaders[j] = GetVertexShader(vertexShaderName + vertexLightVSVariations[l] + geometryVSVariations[g],
  1329. g != 0 || l != 0);
  1330. }
  1331. }
  1332. else
  1333. {
  1334. vertexShaders.Resize(MAX_GEOMETRYTYPES);
  1335. for (unsigned j = 0; j < MAX_GEOMETRYTYPES; ++j)
  1336. vertexShaders[j] = GetVertexShader(vertexShaderName + geometryVSVariations[j], j != 0);
  1337. }
  1338. pixelShaders.Resize(1);
  1339. pixelShaders[0] = GetPixelShader(pixelShaderName);
  1340. }
  1341. pass->MarkShadersLoaded(shadersChangedFrameNumber_);
  1342. }
  1343. void Renderer::ReleaseMaterialShaders()
  1344. {
  1345. PODVector<Material*> materials;
  1346. cache_->GetResources<Material>(materials);
  1347. for (unsigned i = 0; i < materials.Size(); ++i)
  1348. materials[i]->ReleaseShaders();
  1349. }
  1350. void Renderer::ReloadTextures()
  1351. {
  1352. PODVector<Resource*> textures;
  1353. cache_->GetResources(textures, Texture2D::GetTypeStatic());
  1354. for (unsigned i = 0; i < textures.Size(); ++i)
  1355. cache_->ReloadResource(textures[i]);
  1356. cache_->GetResources(textures, TextureCube::GetTypeStatic());
  1357. for (unsigned i = 0; i < textures.Size(); ++i)
  1358. cache_->ReloadResource(textures[i]);
  1359. }
  1360. void Renderer::CreateGeometries()
  1361. {
  1362. SharedPtr<VertexBuffer> dlvb(new VertexBuffer(context_));
  1363. dlvb->SetShadowed(true);
  1364. dlvb->SetSize(4, MASK_POSITION);
  1365. dlvb->SetData(dirLightVertexData);
  1366. SharedPtr<IndexBuffer> dlib(new IndexBuffer(context_));
  1367. dlib->SetShadowed(true);
  1368. dlib->SetSize(6, false);
  1369. dlib->SetData(dirLightIndexData);
  1370. dirLightGeometry_ = new Geometry(context_);
  1371. dirLightGeometry_->SetVertexBuffer(0, dlvb);
  1372. dirLightGeometry_->SetIndexBuffer(dlib);
  1373. dirLightGeometry_->SetDrawRange(TRIANGLE_LIST, 0, dlib->GetIndexCount());
  1374. SharedPtr<VertexBuffer> slvb(new VertexBuffer(context_));
  1375. slvb->SetShadowed(true);
  1376. slvb->SetSize(8, MASK_POSITION);
  1377. slvb->SetData(spotLightVertexData);
  1378. SharedPtr<IndexBuffer> slib(new IndexBuffer(context_));
  1379. slib->SetShadowed(true);
  1380. slib->SetSize(36, false);
  1381. slib->SetData(spotLightIndexData);
  1382. spotLightGeometry_ = new Geometry(context_);
  1383. spotLightGeometry_->SetVertexBuffer(0, slvb);
  1384. spotLightGeometry_->SetIndexBuffer(slib);
  1385. spotLightGeometry_->SetDrawRange(TRIANGLE_LIST, 0, slib->GetIndexCount());
  1386. SharedPtr<VertexBuffer> plvb(new VertexBuffer(context_));
  1387. plvb->SetShadowed(true);
  1388. plvb->SetSize(24, MASK_POSITION);
  1389. plvb->SetData(pointLightVertexData);
  1390. SharedPtr<IndexBuffer> plib(new IndexBuffer(context_));
  1391. plib->SetShadowed(true);
  1392. plib->SetSize(132, false);
  1393. plib->SetData(pointLightIndexData);
  1394. pointLightGeometry_ = new Geometry(context_);
  1395. pointLightGeometry_->SetVertexBuffer(0, plvb);
  1396. pointLightGeometry_->SetIndexBuffer(plib);
  1397. pointLightGeometry_->SetDrawRange(TRIANGLE_LIST, 0, plib->GetIndexCount());
  1398. #if !defined(USE_OPENGL) || !defined(GL_ES_VERSION_2_0)
  1399. if (graphics_->GetShadowMapFormat())
  1400. {
  1401. faceSelectCubeMap_ = new TextureCube(context_);
  1402. faceSelectCubeMap_->SetNumLevels(1);
  1403. faceSelectCubeMap_->SetSize(1, graphics_->GetRGBAFormat());
  1404. faceSelectCubeMap_->SetFilterMode(FILTER_NEAREST);
  1405. indirectionCubeMap_ = new TextureCube(context_);
  1406. indirectionCubeMap_->SetNumLevels(1);
  1407. indirectionCubeMap_->SetSize(256, graphics_->GetRGBAFormat());
  1408. indirectionCubeMap_->SetFilterMode(FILTER_BILINEAR);
  1409. indirectionCubeMap_->SetAddressMode(COORD_U, ADDRESS_CLAMP);
  1410. indirectionCubeMap_->SetAddressMode(COORD_V, ADDRESS_CLAMP);
  1411. indirectionCubeMap_->SetAddressMode(COORD_W, ADDRESS_CLAMP);
  1412. SetIndirectionTextureData();
  1413. }
  1414. #endif
  1415. }
  1416. void Renderer::SetIndirectionTextureData()
  1417. {
  1418. unsigned char data[256 * 256 * 4];
  1419. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1420. {
  1421. unsigned axis = i / 2;
  1422. data[0] = (axis == 0) ? 255 : 0;
  1423. data[1] = (axis == 1) ? 255 : 0;
  1424. data[2] = (axis == 2) ? 255 : 0;
  1425. data[3] = 0;
  1426. faceSelectCubeMap_->SetData((CubeMapFace)i, 0, 0, 0, 1, 1, data);
  1427. }
  1428. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1429. {
  1430. unsigned char faceX = (i & 1) * 255;
  1431. unsigned char faceY = (i / 2) * 255 / 3;
  1432. unsigned char* dest = data;
  1433. for (unsigned y = 0; y < 256; ++y)
  1434. {
  1435. for (unsigned x = 0; x < 256; ++x)
  1436. {
  1437. #ifdef USE_OPENGL
  1438. *dest++ = x;
  1439. *dest++ = 255 - y;
  1440. *dest++ = faceX;
  1441. *dest++ = 255 * 2 / 3 - faceY;
  1442. #else
  1443. *dest++ = x;
  1444. *dest++ = y;
  1445. *dest++ = faceX;
  1446. *dest++ = faceY;
  1447. #endif
  1448. }
  1449. }
  1450. indirectionCubeMap_->SetData((CubeMapFace)i, 0, 0, 0, 256, 256, data);
  1451. }
  1452. faceSelectCubeMap_->ClearDataLost();
  1453. indirectionCubeMap_->ClearDataLost();
  1454. }
  1455. void Renderer::CreateInstancingBuffer()
  1456. {
  1457. // Do not create buffer if instancing not supported
  1458. if (!graphics_->GetSM3Support())
  1459. {
  1460. instancingBuffer_.Reset();
  1461. dynamicInstancing_ = false;
  1462. return;
  1463. }
  1464. // If must lock the buffer for each batch group, set a smaller size
  1465. unsigned defaultSize = graphics_->GetStreamOffsetSupport() ? INSTANCING_BUFFER_DEFAULT_SIZE : INSTANCING_BUFFER_DEFAULT_SIZE / 4;
  1466. instancingBuffer_ = new VertexBuffer(context_);
  1467. if (!instancingBuffer_->SetSize(defaultSize, INSTANCING_BUFFER_MASK, true))
  1468. {
  1469. instancingBuffer_.Reset();
  1470. dynamicInstancing_ = false;
  1471. }
  1472. }
  1473. void Renderer::ResetShadowMaps()
  1474. {
  1475. shadowMaps_.Clear();
  1476. shadowMapAllocations_.Clear();
  1477. colorShadowMaps_.Clear();
  1478. }
  1479. void Renderer::ResetBuffers()
  1480. {
  1481. occlusionBuffers_.Clear();
  1482. screenBuffers_.Clear();
  1483. screenBufferAllocations_.Clear();
  1484. }
  1485. void Renderer::HandleScreenMode(StringHash eventType, VariantMap& eventData)
  1486. {
  1487. if (!initialized_)
  1488. Initialize();
  1489. else
  1490. {
  1491. // When screen mode changes, purge old views
  1492. ResetViews();
  1493. }
  1494. }
  1495. void Renderer::HandleGraphicsFeatures(StringHash eventType, VariantMap& eventData)
  1496. {
  1497. // Reinitialize if already initialized
  1498. if (initialized_)
  1499. Initialize();
  1500. }
  1501. void Renderer::HandleRenderUpdate(StringHash eventType, VariantMap& eventData)
  1502. {
  1503. using namespace RenderUpdate;
  1504. Update(eventData[P_TIMESTEP].GetFloat());
  1505. }
  1506. }