View.cpp 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "Renderer.h"
  34. #include "ResourceCache.h"
  35. #include "PostProcess.h"
  36. #include "Profiler.h"
  37. #include "Scene.h"
  38. #include "ShaderVariation.h"
  39. #include "Skybox.h"
  40. #include "Sort.h"
  41. #include "Technique.h"
  42. #include "Texture2D.h"
  43. #include "TextureCube.h"
  44. #include "VertexBuffer.h"
  45. #include "View.h"
  46. #include "WorkQueue.h"
  47. #include "Zone.h"
  48. #include "DebugNew.h"
  49. static const Vector3 directions[] =
  50. {
  51. Vector3(1.0f, 0.0f, 0.0f),
  52. Vector3(-1.0f, 0.0f, 0.0f),
  53. Vector3(0.0f, 1.0f, 0.0f),
  54. Vector3(0.0f, -1.0f, 0.0f),
  55. Vector3(0.0f, 0.0f, 1.0f),
  56. Vector3(0.0f, 0.0f, -1.0f)
  57. };
  58. static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
  59. static const float LIGHT_INTENSITY_THRESHOLD = 0.001f;
  60. /// %Frustum octree query for shadowcasters.
  61. class ShadowCasterOctreeQuery : public OctreeQuery
  62. {
  63. public:
  64. /// Construct with frustum and query parameters.
  65. ShadowCasterOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  66. unsigned viewMask = DEFAULT_VIEWMASK) :
  67. OctreeQuery(result, drawableFlags, viewMask),
  68. frustum_(frustum)
  69. {
  70. }
  71. /// Intersection test for an octant.
  72. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  73. {
  74. if (inside)
  75. return INSIDE;
  76. else
  77. return frustum_.IsInside(box);
  78. }
  79. /// Intersection test for drawables.
  80. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  81. {
  82. while (start != end)
  83. {
  84. Drawable* drawable = *start;
  85. if ((drawable->GetDrawableFlags() & drawableFlags_) && drawable->GetCastShadows() && drawable->IsVisible() &&
  86. (drawable->GetViewMask() & viewMask_))
  87. {
  88. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  89. result_.Push(drawable);
  90. }
  91. ++start;
  92. }
  93. }
  94. /// Frustum.
  95. Frustum frustum_;
  96. };
  97. /// %Frustum octree query for zones and occluders.
  98. class ZoneOccluderOctreeQuery : public OctreeQuery
  99. {
  100. public:
  101. /// Construct with frustum and query parameters.
  102. ZoneOccluderOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  103. unsigned viewMask = DEFAULT_VIEWMASK) :
  104. OctreeQuery(result, drawableFlags, viewMask),
  105. frustum_(frustum)
  106. {
  107. }
  108. /// Intersection test for an octant.
  109. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  110. {
  111. if (inside)
  112. return INSIDE;
  113. else
  114. return frustum_.IsInside(box);
  115. }
  116. /// Intersection test for drawables.
  117. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  118. {
  119. while (start != end)
  120. {
  121. Drawable* drawable = *start;
  122. unsigned char flags = drawable->GetDrawableFlags();
  123. if ((flags == DRAWABLE_ZONE || (flags == DRAWABLE_GEOMETRY && drawable->IsOccluder())) && drawable->IsVisible() &&
  124. (drawable->GetViewMask() & viewMask_))
  125. {
  126. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  127. result_.Push(drawable);
  128. }
  129. ++start;
  130. }
  131. }
  132. /// Frustum.
  133. Frustum frustum_;
  134. };
  135. /// %Frustum octree query with occlusion.
  136. class OccludedFrustumOctreeQuery : public OctreeQuery
  137. {
  138. public:
  139. /// Construct with frustum, occlusion buffer and query parameters.
  140. OccludedFrustumOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, OcclusionBuffer* buffer, unsigned char
  141. drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) :
  142. OctreeQuery(result, drawableFlags, viewMask),
  143. frustum_(frustum),
  144. buffer_(buffer)
  145. {
  146. }
  147. /// Intersection test for an octant.
  148. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  149. {
  150. if (inside)
  151. return buffer_->IsVisible(box) ? INSIDE : OUTSIDE;
  152. else
  153. {
  154. Intersection result = frustum_.IsInside(box);
  155. if (result != OUTSIDE && !buffer_->IsVisible(box))
  156. result = OUTSIDE;
  157. return result;
  158. }
  159. }
  160. /// Intersection test for drawables. Note: drawable occlusion is performed later in worker threads.
  161. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  162. {
  163. while (start != end)
  164. {
  165. Drawable* drawable = *start;
  166. if ((drawable->GetDrawableFlags() & drawableFlags_) && drawable->IsVisible() &&
  167. (drawable->GetViewMask() & viewMask_))
  168. {
  169. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  170. result_.Push(drawable);
  171. }
  172. ++start;
  173. }
  174. }
  175. /// Frustum.
  176. Frustum frustum_;
  177. /// Occlusion buffer.
  178. OcclusionBuffer* buffer_;
  179. };
  180. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  181. {
  182. View* view = reinterpret_cast<View*>(item->aux_);
  183. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  184. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  185. OcclusionBuffer* buffer = view->occlusionBuffer_;
  186. const Matrix3x4& viewMatrix = view->camera_->GetInverseWorldTransform();
  187. while (start != end)
  188. {
  189. Drawable* drawable = *start++;
  190. drawable->UpdateDistance(view->frame_);
  191. // If draw distance non-zero, check it
  192. float maxDistance = drawable->GetDrawDistance();
  193. if ((maxDistance <= 0.0f || drawable->GetDistance() <= maxDistance) && (!buffer || !drawable->IsOccludee() ||
  194. buffer->IsVisible(drawable->GetWorldBoundingBox())))
  195. {
  196. drawable->MarkInView(view->frame_);
  197. // For geometries, clear lights, find new zone if necessary and calculate view space Z range
  198. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  199. {
  200. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  201. Vector3 center = geomBox.Center();
  202. float viewCenterZ = viewMatrix.m20_ * center.x_ + viewMatrix.m21_ * center.y_ + viewMatrix.m22_ * center.z_ +
  203. viewMatrix.m23_;
  204. Vector3 edge = geomBox.Size() * 0.5f;
  205. float viewEdgeZ = fabsf(viewMatrix.m20_) * edge.x_ + fabsf(viewMatrix.m21_) * edge.y_ + fabsf(viewMatrix.m22_) *
  206. edge.z_;
  207. drawable->SetMinMaxZ(viewCenterZ - viewEdgeZ, viewCenterZ + viewEdgeZ);
  208. drawable->ClearLights();
  209. if (!drawable->GetZone() && !view->cameraZoneOverride_)
  210. view->FindZone(drawable, threadIndex);
  211. }
  212. }
  213. }
  214. }
  215. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  216. {
  217. View* view = reinterpret_cast<View*>(item->aux_);
  218. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  219. view->ProcessLight(*query, threadIndex);
  220. }
  221. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  222. {
  223. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  224. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  225. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  226. while (start != end)
  227. {
  228. Drawable* drawable = *start;
  229. drawable->UpdateGeometry(frame);
  230. ++start;
  231. }
  232. }
  233. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  234. {
  235. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  236. queue->SortFrontToBack();
  237. }
  238. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  239. {
  240. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  241. queue->SortBackToFront();
  242. }
  243. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  244. {
  245. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  246. start->litBatches_.SortFrontToBack();
  247. }
  248. void SortShadowQueueWork(const WorkItem* item, unsigned threadIndex)
  249. {
  250. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  251. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  252. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  253. }
  254. OBJECTTYPESTATIC(View);
  255. View::View(Context* context) :
  256. Object(context),
  257. graphics_(GetSubsystem<Graphics>()),
  258. renderer_(GetSubsystem<Renderer>()),
  259. octree_(0),
  260. camera_(0),
  261. cameraZone_(0),
  262. farClipZone_(0),
  263. renderTarget_(0)
  264. {
  265. frame_.camera_ = 0;
  266. // Create octree query vector for each thread
  267. tempDrawables_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  268. }
  269. View::~View()
  270. {
  271. }
  272. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  273. {
  274. Scene* scene = viewport->GetScene();
  275. Camera* camera = viewport->GetCamera();
  276. if (!scene || !camera || !camera->GetNode())
  277. return false;
  278. // If scene is loading asynchronously, it is incomplete and should not be rendered
  279. if (scene->IsAsyncLoading())
  280. return false;
  281. Octree* octree = scene->GetComponent<Octree>();
  282. if (!octree)
  283. return false;
  284. renderMode_ = renderer_->GetRenderMode();
  285. octree_ = octree;
  286. camera_ = camera;
  287. cameraNode_ = camera->GetNode();
  288. renderTarget_ = renderTarget;
  289. // Get active post-processing effects on the viewport
  290. const Vector<SharedPtr<PostProcess> >& postProcesses = viewport->GetPostProcesses();
  291. postProcesses_.Clear();
  292. for (Vector<SharedPtr<PostProcess> >::ConstIterator i = postProcesses.Begin(); i != postProcesses.End(); ++i)
  293. {
  294. PostProcess* effect = i->Get();
  295. if (effect && effect->IsActive())
  296. postProcesses_.Push(*i);
  297. }
  298. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  299. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  300. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  301. const IntRect& rect = viewport->GetRect();
  302. if (rect != IntRect::ZERO)
  303. {
  304. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  305. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  306. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  307. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  308. }
  309. else
  310. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  311. viewSize_ = IntVector2(viewRect_.right_ - viewRect_.left_, viewRect_.bottom_ - viewRect_.top_);
  312. rtSize_ = IntVector2(rtWidth, rtHeight);
  313. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  314. #ifdef USE_OPENGL
  315. if (renderTarget_)
  316. {
  317. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  318. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  319. }
  320. #endif
  321. drawShadows_ = renderer_->GetDrawShadows();
  322. materialQuality_ = renderer_->GetMaterialQuality();
  323. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  324. // Set possible quality overrides from the camera
  325. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  326. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  327. materialQuality_ = QUALITY_LOW;
  328. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  329. drawShadows_ = false;
  330. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  331. maxOccluderTriangles_ = 0;
  332. return true;
  333. }
  334. void View::Update(const FrameInfo& frame)
  335. {
  336. if (!camera_ || !octree_)
  337. return;
  338. frame_.camera_ = camera_;
  339. frame_.timeStep_ = frame.timeStep_;
  340. frame_.frameNumber_ = frame.frameNumber_;
  341. frame_.viewSize_ = viewSize_;
  342. int maxSortedInstances = renderer_->GetMaxSortedInstances();
  343. // Clear screen buffers, geometry, light, occluder & batch lists
  344. screenBuffers_.Clear();
  345. geometries_.Clear();
  346. shadowGeometries_.Clear();
  347. lights_.Clear();
  348. zones_.Clear();
  349. occluders_.Clear();
  350. baseQueue_.Clear(maxSortedInstances);
  351. preAlphaQueue_.Clear(maxSortedInstances);
  352. gbufferQueue_.Clear(maxSortedInstances);
  353. alphaQueue_.Clear(maxSortedInstances);
  354. postAlphaQueue_.Clear(maxSortedInstances);
  355. vertexLightQueues_.Clear();
  356. // Do not update if camera projection is illegal
  357. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  358. if (!camera_->IsProjectionValid())
  359. return;
  360. // Set automatic aspect ratio if required
  361. if (camera_->GetAutoAspectRatio())
  362. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  363. GetDrawables();
  364. GetBatches();
  365. UpdateGeometries();
  366. }
  367. void View::Render()
  368. {
  369. if (!octree_ || !camera_)
  370. return;
  371. // Allocate screen buffers for post-processing and blitting as necessary
  372. AllocateScreenBuffers();
  373. // Forget parameter sources from the previous view
  374. graphics_->ClearParameterSources();
  375. // If stream offset is supported, write all instance transforms to a single large buffer
  376. // Else we must lock the instance buffer for each batch group
  377. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  378. PrepareInstancingBuffer();
  379. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  380. // again to ensure correct projection will be used
  381. if (camera_->GetAutoAspectRatio())
  382. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  383. graphics_->SetColorWrite(true);
  384. graphics_->SetFillMode(FILL_SOLID);
  385. // Bind the face selection and indirection cube maps for point light shadows
  386. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  387. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  388. // Set "view texture" to prevent destination texture sampling in case we do not render to the destination directly
  389. // ie. when using deferred rendering and/or doing post-processing
  390. if (renderTarget_)
  391. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  392. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  393. // as a render texture produced on Direct3D9
  394. #ifdef USE_OPENGL
  395. if (renderTarget_)
  396. camera_->SetFlipVertical(true);
  397. #endif
  398. // Render
  399. if (renderMode_ == RENDER_FORWARD)
  400. RenderBatchesForward();
  401. else
  402. RenderBatchesDeferred();
  403. #ifdef USE_OPENGL
  404. camera_->SetFlipVertical(false);
  405. #endif
  406. graphics_->SetViewTexture(0);
  407. graphics_->SetScissorTest(false);
  408. graphics_->SetStencilTest(false);
  409. graphics_->ResetStreamFrequencies();
  410. // Run post-processes or framebuffer blitting now
  411. if (screenBuffers_.Size())
  412. {
  413. if (postProcesses_.Size())
  414. RunPostProcesses();
  415. else
  416. BlitFramebuffer();
  417. }
  418. // If this is a main view, draw the associated debug geometry now
  419. if (!renderTarget_)
  420. {
  421. DebugRenderer* debug = octree_->GetComponent<DebugRenderer>();
  422. if (debug)
  423. {
  424. debug->SetView(camera_);
  425. debug->Render();
  426. }
  427. }
  428. // "Forget" the camera, octree and zone after rendering
  429. camera_ = 0;
  430. octree_ = 0;
  431. cameraZone_ = 0;
  432. farClipZone_ = 0;
  433. occlusionBuffer_ = 0;
  434. frame_.camera_ = 0;
  435. }
  436. void View::GetDrawables()
  437. {
  438. PROFILE(GetDrawables);
  439. WorkQueue* queue = GetSubsystem<WorkQueue>();
  440. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  441. // Get zones and occluders first
  442. {
  443. ZoneOccluderOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_ZONE);
  444. octree_->GetDrawables(query);
  445. }
  446. highestZonePriority_ = M_MIN_INT;
  447. int bestPriority = M_MIN_INT;
  448. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  449. // Get default zone first in case we do not have zones defined
  450. Zone* defaultZone = renderer_->GetDefaultZone();
  451. cameraZone_ = farClipZone_ = defaultZone;
  452. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  453. {
  454. Drawable* drawable = *i;
  455. unsigned char flags = drawable->GetDrawableFlags();
  456. if (flags & DRAWABLE_ZONE)
  457. {
  458. Zone* zone = static_cast<Zone*>(drawable);
  459. zones_.Push(zone);
  460. int priority = zone->GetPriority();
  461. if (priority > highestZonePriority_)
  462. highestZonePriority_ = priority;
  463. if (zone->IsInside(cameraPos) && priority > bestPriority)
  464. {
  465. cameraZone_ = zone;
  466. bestPriority = priority;
  467. }
  468. }
  469. else
  470. occluders_.Push(drawable);
  471. }
  472. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  473. cameraZoneOverride_ = cameraZone_->GetOverride();
  474. if (!cameraZoneOverride_)
  475. {
  476. Vector3 farClipPos = cameraPos + cameraNode_->GetWorldDirection() * Vector3(0.0f, 0.0f, camera_->GetFarClip());
  477. bestPriority = M_MIN_INT;
  478. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  479. {
  480. int priority = (*i)->GetPriority();
  481. if ((*i)->IsInside(farClipPos) && priority > bestPriority)
  482. {
  483. farClipZone_ = *i;
  484. bestPriority = priority;
  485. }
  486. }
  487. }
  488. if (farClipZone_ == defaultZone)
  489. farClipZone_ = cameraZone_;
  490. // If occlusion in use, get & render the occluders
  491. occlusionBuffer_ = 0;
  492. if (maxOccluderTriangles_ > 0)
  493. {
  494. UpdateOccluders(occluders_, camera_);
  495. if (occluders_.Size())
  496. {
  497. PROFILE(DrawOcclusion);
  498. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  499. DrawOccluders(occlusionBuffer_, occluders_);
  500. }
  501. }
  502. // Get lights and geometries. Coarse occlusion for octants is used at this point
  503. if (occlusionBuffer_)
  504. {
  505. OccludedFrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), occlusionBuffer_, DRAWABLE_GEOMETRY |
  506. DRAWABLE_LIGHT);
  507. octree_->GetDrawables(query);
  508. }
  509. else
  510. {
  511. FrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  512. octree_->GetDrawables(query);
  513. }
  514. // Check drawable occlusion and find zones for moved drawables in worker threads
  515. {
  516. WorkItem item;
  517. item.workFunction_ = CheckVisibilityWork;
  518. item.aux_ = this;
  519. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  520. while (start != tempDrawables.End())
  521. {
  522. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  523. if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
  524. end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
  525. item.start_ = &(*start);
  526. item.end_ = &(*end);
  527. queue->AddWorkItem(item);
  528. start = end;
  529. }
  530. queue->Complete();
  531. }
  532. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  533. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  534. sceneBox_.defined_ = false;
  535. minZ_ = M_INFINITY;
  536. maxZ_ = 0.0f;
  537. const Matrix3x4& view = camera_->GetInverseWorldTransform();
  538. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  539. {
  540. Drawable* drawable = tempDrawables[i];
  541. if (!drawable->IsInView(frame_))
  542. continue;
  543. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  544. {
  545. // Expand the scene bounding box and Z range (skybox not included because of infinite size) and store the drawawble
  546. if (drawable->GetType() != Skybox::GetTypeStatic())
  547. {
  548. sceneBox_.Merge(drawable->GetWorldBoundingBox());
  549. minZ_ = Min(minZ_, drawable->GetMinZ());
  550. maxZ_ = Max(maxZ_, drawable->GetMaxZ());
  551. }
  552. geometries_.Push(drawable);
  553. }
  554. else
  555. {
  556. Light* light = static_cast<Light*>(drawable);
  557. // Skip lights which are so dim that they can not contribute to a rendertarget
  558. if (light->GetColor().Intensity() > LIGHT_INTENSITY_THRESHOLD)
  559. lights_.Push(light);
  560. }
  561. }
  562. if (minZ_ == M_INFINITY)
  563. minZ_ = 0.0f;
  564. // Sort the lights to brightest/closest first
  565. for (unsigned i = 0; i < lights_.Size(); ++i)
  566. {
  567. Light* light = lights_[i];
  568. light->SetIntensitySortValue(camera_->GetDistance(light->GetNode()->GetWorldPosition()));
  569. light->SetLightQueue(0);
  570. }
  571. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  572. }
  573. void View::GetBatches()
  574. {
  575. WorkQueue* queue = GetSubsystem<WorkQueue>();
  576. PODVector<Light*> vertexLights;
  577. // Process lit geometries and shadow casters for each light
  578. {
  579. PROFILE(ProcessLights);
  580. lightQueryResults_.Resize(lights_.Size());
  581. WorkItem item;
  582. item.workFunction_ = ProcessLightWork;
  583. item.aux_ = this;
  584. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  585. {
  586. LightQueryResult& query = lightQueryResults_[i];
  587. query.light_ = lights_[i];
  588. item.start_ = &query;
  589. queue->AddWorkItem(item);
  590. }
  591. // Ensure all lights have been processed before proceeding
  592. queue->Complete();
  593. }
  594. // Build light queues and lit batches
  595. {
  596. PROFILE(GetLightBatches);
  597. // Preallocate light queues: per-pixel lights which have lit geometries
  598. unsigned numLightQueues = 0;
  599. unsigned usedLightQueues = 0;
  600. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  601. {
  602. if (!i->light_->GetPerVertex() && i->litGeometries_.Size())
  603. ++numLightQueues;
  604. }
  605. lightQueues_.Resize(numLightQueues);
  606. maxLightsDrawables_.Clear();
  607. unsigned maxSortedInstances = renderer_->GetMaxSortedInstances();
  608. for (Vector<LightQueryResult>::Iterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  609. {
  610. LightQueryResult& query = *i;
  611. // If light has no affected geometries, no need to process further
  612. if (query.litGeometries_.Empty())
  613. continue;
  614. Light* light = query.light_;
  615. // Per-pixel light
  616. if (!light->GetPerVertex())
  617. {
  618. unsigned shadowSplits = query.numSplits_;
  619. // Initialize light queue and store it to the light so that it can be found later
  620. LightBatchQueue& lightQueue = lightQueues_[usedLightQueues++];
  621. light->SetLightQueue(&lightQueue);
  622. lightQueue.light_ = light;
  623. lightQueue.shadowMap_ = 0;
  624. lightQueue.litBatches_.Clear(maxSortedInstances);
  625. lightQueue.volumeBatches_.Clear();
  626. // Allocate shadow map now
  627. if (shadowSplits > 0)
  628. {
  629. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  630. // If did not manage to get a shadow map, convert the light to unshadowed
  631. if (!lightQueue.shadowMap_)
  632. shadowSplits = 0;
  633. }
  634. // Setup shadow batch queues
  635. lightQueue.shadowSplits_.Resize(shadowSplits);
  636. for (unsigned j = 0; j < shadowSplits; ++j)
  637. {
  638. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  639. Camera* shadowCamera = query.shadowCameras_[j];
  640. shadowQueue.shadowCamera_ = shadowCamera;
  641. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  642. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  643. shadowQueue.shadowBatches_.Clear(maxSortedInstances);
  644. // Setup the shadow split viewport and finalize shadow camera parameters
  645. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  646. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  647. // Loop through shadow casters
  648. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  649. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  650. {
  651. Drawable* drawable = *k;
  652. if (!drawable->IsInView(frame_, false))
  653. {
  654. drawable->MarkInView(frame_, false);
  655. shadowGeometries_.Push(drawable);
  656. }
  657. Zone* zone = GetZone(drawable);
  658. unsigned numBatches = drawable->GetNumBatches();
  659. for (unsigned l = 0; l < numBatches; ++l)
  660. {
  661. Batch shadowBatch;
  662. drawable->GetBatch(shadowBatch, frame_, l);
  663. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  664. if (!shadowBatch.geometry_ || !tech)
  665. continue;
  666. shadowBatch.pass_ = tech->GetPass(PASS_SHADOW);
  667. // Skip if material has no shadow pass
  668. if (!shadowBatch.pass_)
  669. continue;
  670. // Fill the rest of the batch
  671. shadowBatch.camera_ = shadowCamera;
  672. shadowBatch.zone_ = zone;
  673. shadowBatch.lightQueue_ = &lightQueue;
  674. AddBatchToQueue(shadowQueue.shadowBatches_, shadowBatch, tech);
  675. }
  676. }
  677. }
  678. // Process lit geometries
  679. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  680. {
  681. Drawable* drawable = *j;
  682. drawable->AddLight(light);
  683. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  684. if (!drawable->GetMaxLights())
  685. GetLitBatches(drawable, lightQueue);
  686. else
  687. maxLightsDrawables_.Insert(drawable);
  688. }
  689. // In deferred modes, store the light volume batch now
  690. if (renderMode_ != RENDER_FORWARD)
  691. {
  692. Batch volumeBatch;
  693. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  694. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  695. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  696. volumeBatch.camera_ = camera_;
  697. volumeBatch.lightQueue_ = &lightQueue;
  698. volumeBatch.distance_ = light->GetDistance();
  699. volumeBatch.material_ = 0;
  700. volumeBatch.pass_ = 0;
  701. volumeBatch.zone_ = 0;
  702. renderer_->SetLightVolumeBatchShaders(volumeBatch);
  703. lightQueue.volumeBatches_.Push(volumeBatch);
  704. }
  705. }
  706. // Per-vertex light
  707. else
  708. {
  709. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  710. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  711. {
  712. Drawable* drawable = *j;
  713. drawable->AddVertexLight(light);
  714. }
  715. }
  716. }
  717. }
  718. // Process drawables with limited per-pixel light count
  719. if (maxLightsDrawables_.Size())
  720. {
  721. PROFILE(GetMaxLightsBatches);
  722. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  723. {
  724. Drawable* drawable = *i;
  725. drawable->LimitLights();
  726. const PODVector<Light*>& lights = drawable->GetLights();
  727. for (unsigned i = 0; i < lights.Size(); ++i)
  728. {
  729. Light* light = lights[i];
  730. // Find the correct light queue again
  731. LightBatchQueue* queue = light->GetLightQueue();
  732. if (queue)
  733. GetLitBatches(drawable, *queue);
  734. }
  735. }
  736. }
  737. // Build base pass batches
  738. {
  739. PROFILE(GetBaseBatches);
  740. hasZeroLightMask_ = false;
  741. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  742. {
  743. Drawable* drawable = *i;
  744. Zone* zone = GetZone(drawable);
  745. unsigned numBatches = drawable->GetNumBatches();
  746. const PODVector<Light*>& drawableVertexLights = drawable->GetVertexLights();
  747. if (!drawableVertexLights.Empty())
  748. drawable->LimitVertexLights();
  749. for (unsigned j = 0; j < numBatches; ++j)
  750. {
  751. Batch baseBatch;
  752. drawable->GetBatch(baseBatch, frame_, j);
  753. // Check here if the material refers to a rendertarget texture with camera(s) attached
  754. // Only check this for the main view (null rendertarget)
  755. if (baseBatch.material_ && baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_ && !renderTarget_)
  756. CheckMaterialForAuxView(baseBatch.material_);
  757. // If already has a lit base pass, skip (forward rendering only)
  758. if (j < 32 && drawable->HasBasePass(j))
  759. continue;
  760. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  761. if (!baseBatch.geometry_ || !tech)
  762. continue;
  763. // Fill the rest of the batch
  764. baseBatch.camera_ = camera_;
  765. baseBatch.zone_ = zone;
  766. baseBatch.isBase_ = true;
  767. baseBatch.pass_ = 0;
  768. baseBatch.lightMask_ = GetLightMask(drawable);
  769. // In deferred modes check for G-buffer and material passes first
  770. if (renderMode_ == RENDER_PREPASS)
  771. {
  772. baseBatch.pass_ = tech->GetPass(PASS_PREPASS);
  773. if (baseBatch.pass_)
  774. {
  775. // If the opaque object has a zero lightmask, have to skip light buffer optimization
  776. if (!hasZeroLightMask_ && (!(GetLightMask(drawable) & 0xff)))
  777. hasZeroLightMask_ = true;
  778. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  779. AddBatchToQueue(gbufferQueue_, baseBatch, tech, baseBatch.lightMask_ == (zone->GetLightMask() & 0xff));
  780. baseBatch.pass_ = tech->GetPass(PASS_MATERIAL);
  781. }
  782. }
  783. if (renderMode_ == RENDER_DEFERRED)
  784. baseBatch.pass_ = tech->GetPass(PASS_DEFERRED);
  785. // Next check for forward unlit base pass
  786. if (!baseBatch.pass_)
  787. baseBatch.pass_ = tech->GetPass(PASS_BASE);
  788. if (baseBatch.pass_)
  789. {
  790. // Check for vertex lights (both forward unlit, light pre-pass material pass, and deferred G-buffer)
  791. if (!drawableVertexLights.Empty())
  792. {
  793. // For a deferred opaque batch, check if the vertex lights include converted per-pixel lights, and remove
  794. // them to prevent double-lighting
  795. if (renderMode_ != RENDER_FORWARD && baseBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  796. {
  797. vertexLights.Clear();
  798. for (unsigned i = 0; i < drawableVertexLights.Size(); ++i)
  799. {
  800. if (drawableVertexLights[i]->GetPerVertex())
  801. vertexLights.Push(drawableVertexLights[i]);
  802. }
  803. }
  804. else
  805. vertexLights = drawableVertexLights;
  806. if (!vertexLights.Empty())
  807. {
  808. // Find a vertex light queue. If not found, create new
  809. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  810. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  811. if (i == vertexLightQueues_.End())
  812. {
  813. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  814. i->second_.light_ = 0;
  815. i->second_.shadowMap_ = 0;
  816. i->second_.vertexLights_ = vertexLights;
  817. }
  818. baseBatch.lightQueue_ = &(i->second_);
  819. }
  820. }
  821. // Check whether batch is opaque or transparent
  822. if (baseBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  823. {
  824. if (baseBatch.pass_->GetType() != PASS_DEFERRED)
  825. AddBatchToQueue(baseQueue_, baseBatch, tech);
  826. else
  827. {
  828. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  829. AddBatchToQueue(gbufferQueue_, baseBatch, tech, baseBatch.lightMask_ == (baseBatch.zone_->GetLightMask() & 0xff));
  830. }
  831. }
  832. else
  833. {
  834. // Transparent batches can not be instanced
  835. AddBatchToQueue(alphaQueue_, baseBatch, tech, false);
  836. }
  837. continue;
  838. }
  839. // If no pass found so far, finally check for pre-alpha / post-alpha custom passes
  840. baseBatch.pass_ = tech->GetPass(PASS_PREALPHA);
  841. if (baseBatch.pass_)
  842. {
  843. AddBatchToQueue(preAlphaQueue_, baseBatch, tech);
  844. continue;
  845. }
  846. baseBatch.pass_ = tech->GetPass(PASS_POSTALPHA);
  847. if (baseBatch.pass_)
  848. {
  849. // Post-alpha pass is treated similarly as alpha, and is not instanced
  850. AddBatchToQueue(postAlphaQueue_, baseBatch, tech, false);
  851. continue;
  852. }
  853. }
  854. }
  855. }
  856. }
  857. void View::UpdateGeometries()
  858. {
  859. PROFILE(SortAndUpdateGeometry);
  860. WorkQueue* queue = GetSubsystem<WorkQueue>();
  861. // Sort batches
  862. {
  863. WorkItem item;
  864. item.workFunction_ = SortBatchQueueFrontToBackWork;
  865. item.start_ = &baseQueue_;
  866. queue->AddWorkItem(item);
  867. item.start_ = &preAlphaQueue_;
  868. queue->AddWorkItem(item);
  869. if (renderMode_ != RENDER_FORWARD)
  870. {
  871. item.start_ = &gbufferQueue_;
  872. queue->AddWorkItem(item);
  873. }
  874. item.workFunction_ = SortBatchQueueBackToFrontWork;
  875. item.start_ = &alphaQueue_;
  876. queue->AddWorkItem(item);
  877. item.start_ = &postAlphaQueue_;
  878. queue->AddWorkItem(item);
  879. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  880. {
  881. item.workFunction_ = SortLightQueueWork;
  882. item.start_ = &(*i);
  883. queue->AddWorkItem(item);
  884. if (i->shadowSplits_.Size())
  885. {
  886. item.workFunction_ = SortShadowQueueWork;
  887. queue->AddWorkItem(item);
  888. }
  889. }
  890. }
  891. // Update geometries. Split into threaded and non-threaded updates.
  892. {
  893. nonThreadedGeometries_.Clear();
  894. threadedGeometries_.Clear();
  895. for (PODVector<Drawable*>::Iterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  896. {
  897. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  898. if (type == UPDATE_MAIN_THREAD)
  899. nonThreadedGeometries_.Push(*i);
  900. else if (type == UPDATE_WORKER_THREAD)
  901. threadedGeometries_.Push(*i);
  902. }
  903. for (PODVector<Drawable*>::Iterator i = shadowGeometries_.Begin(); i != shadowGeometries_.End(); ++i)
  904. {
  905. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  906. if (type == UPDATE_MAIN_THREAD)
  907. nonThreadedGeometries_.Push(*i);
  908. else if (type == UPDATE_WORKER_THREAD)
  909. threadedGeometries_.Push(*i);
  910. }
  911. if (threadedGeometries_.Size())
  912. {
  913. WorkItem item;
  914. item.workFunction_ = UpdateDrawableGeometriesWork;
  915. item.aux_ = const_cast<FrameInfo*>(&frame_);
  916. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  917. while (start != threadedGeometries_.End())
  918. {
  919. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  920. if (end - start > DRAWABLES_PER_WORK_ITEM)
  921. end = start + DRAWABLES_PER_WORK_ITEM;
  922. item.start_ = &(*start);
  923. item.end_ = &(*end);
  924. queue->AddWorkItem(item);
  925. start = end;
  926. }
  927. }
  928. // While the work queue is processed, update non-threaded geometries
  929. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  930. (*i)->UpdateGeometry(frame_);
  931. }
  932. // Finally ensure all threaded work has completed
  933. queue->Complete();
  934. }
  935. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
  936. {
  937. Light* light = lightQueue.light_;
  938. Zone* zone = GetZone(drawable);
  939. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  940. // Shadows on transparencies can only be rendered if shadow maps are not reused
  941. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  942. bool allowLitBase = light == drawable->GetFirstLight() && drawable->GetVertexLights().Empty() && !hasAmbientGradient;
  943. unsigned numBatches = drawable->GetNumBatches();
  944. for (unsigned i = 0; i < numBatches; ++i)
  945. {
  946. Batch litBatch;
  947. drawable->GetBatch(litBatch, frame_, i);
  948. Technique* tech = GetTechnique(drawable, litBatch.material_);
  949. if (!litBatch.geometry_ || !tech)
  950. continue;
  951. // Do not create pixel lit forward passes for materials that render into the G-buffer
  952. if ((renderMode_ == RENDER_PREPASS && tech->HasPass(PASS_PREPASS)) || (renderMode_ == RENDER_DEFERRED &&
  953. tech->HasPass(PASS_DEFERRED)))
  954. continue;
  955. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  956. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  957. if (i < 32 && allowLitBase)
  958. {
  959. litBatch.pass_ = tech->GetPass(PASS_LITBASE);
  960. if (litBatch.pass_)
  961. {
  962. litBatch.isBase_ = true;
  963. drawable->SetBasePass(i);
  964. }
  965. else
  966. litBatch.pass_ = tech->GetPass(PASS_LIGHT);
  967. }
  968. else
  969. litBatch.pass_ = tech->GetPass(PASS_LIGHT);
  970. // Skip if material does not receive light at all
  971. if (!litBatch.pass_)
  972. continue;
  973. // Fill the rest of the batch
  974. litBatch.camera_ = camera_;
  975. litBatch.lightQueue_ = &lightQueue;
  976. litBatch.zone_ = zone;
  977. // Check from the ambient pass whether the object is opaque or transparent
  978. Pass* ambientPass = tech->GetPass(PASS_BASE);
  979. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  980. AddBatchToQueue(lightQueue.litBatches_, litBatch, tech);
  981. else
  982. {
  983. // Transparent batches can not be instanced
  984. AddBatchToQueue(alphaQueue_, litBatch, tech, false, allowTransparentShadows);
  985. }
  986. }
  987. }
  988. void View::RenderBatchesForward()
  989. {
  990. // If using hardware multisampling with post-processing, render to the backbuffer first and then resolve
  991. bool resolve = screenBuffers_.Size() && !renderTarget_ && graphics_->GetMultiSample() > 1;
  992. RenderSurface* renderTarget = (screenBuffers_.Size() && !resolve) ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  993. RenderSurface* depthStencil = GetDepthStencil(renderTarget);
  994. // If not reusing shadowmaps, render all of them first
  995. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  996. {
  997. PROFILE(RenderShadowMaps);
  998. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  999. {
  1000. if (i->shadowMap_)
  1001. RenderShadowMap(*i);
  1002. }
  1003. }
  1004. graphics_->SetRenderTarget(0, renderTarget);
  1005. graphics_->SetDepthStencil(depthStencil);
  1006. graphics_->SetViewport(viewRect_);
  1007. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  1008. // Render opaque object unlit base pass
  1009. if (!baseQueue_.IsEmpty())
  1010. {
  1011. PROFILE(RenderBase);
  1012. baseQueue_.Draw(graphics_, renderer_);
  1013. }
  1014. // Render shadow maps + opaque objects' additive lighting
  1015. if (!lightQueues_.Empty())
  1016. {
  1017. PROFILE(RenderLights);
  1018. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1019. {
  1020. // If reusing shadowmaps, render each of them before the lit batches
  1021. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1022. {
  1023. RenderShadowMap(*i);
  1024. graphics_->SetRenderTarget(0, renderTarget);
  1025. graphics_->SetDepthStencil(depthStencil);
  1026. graphics_->SetViewport(viewRect_);
  1027. }
  1028. i->litBatches_.Draw(i->light_, graphics_, renderer_);
  1029. }
  1030. }
  1031. graphics_->SetScissorTest(false);
  1032. graphics_->SetStencilTest(false);
  1033. // At this point clear the parts of viewport not occupied by opaque geometry with fog color
  1034. graphics_->SetAlphaTest(false);
  1035. graphics_->SetBlendMode(BLEND_REPLACE);
  1036. graphics_->SetColorWrite(true);
  1037. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1038. graphics_->SetDepthWrite(false);
  1039. graphics_->SetScissorTest(false);
  1040. graphics_->SetStencilTest(false);
  1041. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1042. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1043. graphics_->ClearParameterSource(PSP_MATDIFFCOLOR);
  1044. DrawFullscreenQuad(camera_, false);
  1045. // Render pre-alpha custom pass
  1046. if (!preAlphaQueue_.IsEmpty())
  1047. {
  1048. PROFILE(RenderPreAlpha);
  1049. preAlphaQueue_.Draw(graphics_, renderer_);
  1050. }
  1051. // Render transparent objects (both base passes & additive lighting)
  1052. if (!alphaQueue_.IsEmpty())
  1053. {
  1054. PROFILE(RenderAlpha);
  1055. alphaQueue_.Draw(graphics_, renderer_, true);
  1056. }
  1057. // Render post-alpha custom pass
  1058. if (!postAlphaQueue_.IsEmpty())
  1059. {
  1060. PROFILE(RenderPostAlpha);
  1061. postAlphaQueue_.Draw(graphics_, renderer_);
  1062. }
  1063. // Resolve multisampled backbuffer now if necessary
  1064. if (resolve)
  1065. graphics_->ResolveToTexture(screenBuffers_[0], viewRect_);
  1066. }
  1067. void View::RenderBatchesDeferred()
  1068. {
  1069. // If not reusing shadowmaps, render all of them first
  1070. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  1071. {
  1072. PROFILE(RenderShadowMaps);
  1073. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1074. {
  1075. if (i->shadowMap_)
  1076. RenderShadowMap(*i);
  1077. }
  1078. }
  1079. bool hwDepth = graphics_->GetHardwareDepthSupport();
  1080. // In light prepass mode the albedo buffer is used for light accumulation instead
  1081. Texture2D* albedoBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  1082. Texture2D* normalBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  1083. Texture2D* depthBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, hwDepth ? Graphics::GetDepthStencilFormat() :
  1084. Graphics::GetLinearDepthFormat());
  1085. RenderSurface* renderTarget = screenBuffers_.Size() ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  1086. RenderSurface* depthStencil = hwDepth ? depthBuffer->GetRenderSurface() : renderer_->GetDepthStencil(rtSize_.x_, rtSize_.y_);
  1087. if (renderMode_ == RENDER_PREPASS)
  1088. {
  1089. graphics_->SetRenderTarget(0, normalBuffer);
  1090. if (!hwDepth)
  1091. graphics_->SetRenderTarget(1, depthBuffer);
  1092. }
  1093. else
  1094. {
  1095. graphics_->SetRenderTarget(0, renderTarget);
  1096. graphics_->SetRenderTarget(1, albedoBuffer);
  1097. graphics_->SetRenderTarget(2, normalBuffer);
  1098. if (!hwDepth)
  1099. graphics_->SetRenderTarget(3, depthBuffer);
  1100. }
  1101. graphics_->SetDepthStencil(depthStencil);
  1102. graphics_->SetViewport(viewRect_);
  1103. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  1104. // Render G-buffer batches
  1105. if (!gbufferQueue_.IsEmpty())
  1106. {
  1107. PROFILE(RenderGBuffer);
  1108. gbufferQueue_.Draw(graphics_, renderer_, false, true);
  1109. }
  1110. // Clear the light accumulation buffer (light pre-pass only.) However, skip the clear if the first light is a directional
  1111. // light with full mask
  1112. RenderSurface* lightRenderTarget = renderMode_ == RENDER_PREPASS ? albedoBuffer->GetRenderSurface() : renderTarget;
  1113. if (renderMode_ == RENDER_PREPASS)
  1114. {
  1115. bool optimizeLightBuffer = !hasZeroLightMask_ && !lightQueues_.Empty() && lightQueues_.Front().light_->GetLightType() ==
  1116. LIGHT_DIRECTIONAL && (lightQueues_.Front().light_->GetLightMask() & 0xff) == 0xff;
  1117. graphics_->SetRenderTarget(0, lightRenderTarget);
  1118. graphics_->ResetRenderTarget(1);
  1119. graphics_->SetDepthStencil(depthStencil);
  1120. graphics_->SetViewport(viewRect_);
  1121. if (!optimizeLightBuffer)
  1122. graphics_->Clear(CLEAR_COLOR);
  1123. }
  1124. else
  1125. {
  1126. graphics_->ResetRenderTarget(1);
  1127. graphics_->ResetRenderTarget(2);
  1128. graphics_->ResetRenderTarget(3);
  1129. }
  1130. // Render shadow maps + light volumes
  1131. if (!lightQueues_.Empty())
  1132. {
  1133. PROFILE(RenderLights);
  1134. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1135. {
  1136. // If reusing shadowmaps, render each of them before the lit batches
  1137. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1138. {
  1139. RenderShadowMap(*i);
  1140. graphics_->SetRenderTarget(0, lightRenderTarget);
  1141. graphics_->SetDepthStencil(depthStencil);
  1142. graphics_->SetViewport(viewRect_);
  1143. }
  1144. if (renderMode_ == RENDER_DEFERRED)
  1145. graphics_->SetTexture(TU_ALBEDOBUFFER, albedoBuffer);
  1146. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  1147. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  1148. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  1149. {
  1150. SetupLightVolumeBatch(i->volumeBatches_[j]);
  1151. i->volumeBatches_[j].Draw(graphics_, renderer_);
  1152. }
  1153. }
  1154. }
  1155. graphics_->SetTexture(TU_ALBEDOBUFFER, 0);
  1156. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  1157. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  1158. if (renderMode_ == RENDER_PREPASS)
  1159. {
  1160. graphics_->SetRenderTarget(0, renderTarget);
  1161. graphics_->SetDepthStencil(depthStencil);
  1162. graphics_->SetViewport(viewRect_);
  1163. }
  1164. // At this point clear the parts of viewport not occupied by opaque geometry with fog color
  1165. graphics_->SetAlphaTest(false);
  1166. graphics_->SetBlendMode(BLEND_REPLACE);
  1167. graphics_->SetColorWrite(true);
  1168. graphics_->SetDepthTest(CMP_ALWAYS);
  1169. graphics_->SetDepthWrite(false);
  1170. graphics_->SetScissorTest(false);
  1171. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0);
  1172. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1173. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1174. graphics_->ClearParameterSource(PSP_MATDIFFCOLOR);
  1175. DrawFullscreenQuad(camera_, false);
  1176. // Render opaque objects with deferred lighting result (light pre-pass only)
  1177. if (!baseQueue_.IsEmpty())
  1178. {
  1179. PROFILE(RenderBase);
  1180. graphics_->SetTexture(TU_LIGHTBUFFER, renderMode_ == RENDER_PREPASS ? albedoBuffer : 0);
  1181. baseQueue_.Draw(graphics_, renderer_);
  1182. graphics_->SetTexture(TU_LIGHTBUFFER, 0);
  1183. }
  1184. // Render pre-alpha custom pass
  1185. if (!preAlphaQueue_.IsEmpty())
  1186. {
  1187. PROFILE(RenderPreAlpha);
  1188. preAlphaQueue_.Draw(graphics_, renderer_);
  1189. }
  1190. // Render transparent objects (both base passes & additive lighting)
  1191. if (!alphaQueue_.IsEmpty())
  1192. {
  1193. PROFILE(RenderAlpha);
  1194. alphaQueue_.Draw(graphics_, renderer_, true);
  1195. }
  1196. // Render post-alpha custom pass
  1197. if (!postAlphaQueue_.IsEmpty())
  1198. {
  1199. PROFILE(RenderPostAlpha);
  1200. postAlphaQueue_.Draw(graphics_, renderer_);
  1201. }
  1202. }
  1203. void View::AllocateScreenBuffers()
  1204. {
  1205. unsigned neededBuffers = 0;
  1206. #ifdef USE_OPENGL
  1207. // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer
  1208. // Also, if rendering to a texture with deferred rendering, it must be RGBA to comply with the rest of the buffers.
  1209. if (renderMode_ != RENDER_FORWARD && (!renderTarget_ || (renderMode_ == RENDER_DEFERRED &&
  1210. renderTarget_->GetParentTexture()->GetFormat() != Graphics::GetRGBAFormat())))
  1211. neededBuffers = 1;
  1212. #endif
  1213. unsigned postProcessPasses = 0;
  1214. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1215. postProcessPasses += postProcesses_[i]->GetNumPasses();
  1216. // If more than one post-process pass, need 2 buffers for ping-pong rendering
  1217. if (postProcessPasses)
  1218. neededBuffers = Min((int)postProcessPasses, 2);
  1219. unsigned format = Graphics::GetRGBFormat();
  1220. #ifdef USE_OPENGL
  1221. if (renderMode_ == RENDER_DEFERRED)
  1222. format = Graphics::GetRGBAFormat();
  1223. #endif
  1224. // Allocate screen buffers with filtering active in case the post-processing effects need that
  1225. for (unsigned i = 0; i < neededBuffers; ++i)
  1226. screenBuffers_.Push(renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true));
  1227. }
  1228. void View::BlitFramebuffer()
  1229. {
  1230. // Blit the final image to destination rendertarget
  1231. /// \todo Depth is reset to far plane, so geometry drawn after the view can not be depth tested
  1232. graphics_->SetAlphaTest(false);
  1233. graphics_->SetBlendMode(BLEND_REPLACE);
  1234. graphics_->SetDepthTest(CMP_ALWAYS);
  1235. graphics_->SetDepthWrite(true);
  1236. graphics_->SetScissorTest(false);
  1237. graphics_->SetStencilTest(false);
  1238. graphics_->SetRenderTarget(0, renderTarget_);
  1239. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1240. graphics_->SetViewport(viewRect_);
  1241. String shaderName = "CopyFramebuffer";
  1242. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  1243. float rtWidth = (float)rtSize_.x_;
  1244. float rtHeight = (float)rtSize_.y_;
  1245. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1246. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1247. #ifdef USE_OPENGL
  1248. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1249. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1250. #else
  1251. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1252. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1253. #endif
  1254. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1255. graphics_->SetTexture(TU_DIFFUSE, screenBuffers_[0]);
  1256. DrawFullscreenQuad(camera_, false);
  1257. }
  1258. void View::RunPostProcesses()
  1259. {
  1260. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1261. // Ping-pong buffer indices for read and write
  1262. unsigned readRtIndex = 0;
  1263. unsigned writeRtIndex = screenBuffers_.Size() - 1;
  1264. graphics_->SetAlphaTest(false);
  1265. graphics_->SetBlendMode(BLEND_REPLACE);
  1266. graphics_->SetDepthTest(CMP_ALWAYS);
  1267. graphics_->SetScissorTest(false);
  1268. graphics_->SetStencilTest(false);
  1269. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1270. {
  1271. PostProcess* effect = postProcesses_[i];
  1272. // For each effect, rendertargets can be re-used. Allocate them now
  1273. renderer_->SaveScreenBufferAllocations();
  1274. const HashMap<StringHash, PostProcessRenderTarget>& renderTargetInfos = effect->GetRenderTargets();
  1275. HashMap<StringHash, Texture2D*> renderTargets;
  1276. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator j = renderTargetInfos.Begin(); j !=
  1277. renderTargetInfos.End(); ++j)
  1278. {
  1279. unsigned width = j->second_.size_.x_;
  1280. unsigned height = j->second_.size_.y_;
  1281. if (j->second_.sizeDivisor_)
  1282. {
  1283. width = viewSize_.x_ / width;
  1284. height = viewSize_.y_ / height;
  1285. }
  1286. renderTargets[j->first_] = renderer_->GetScreenBuffer(width, height, j->second_.format_, j->second_.filtered_);
  1287. }
  1288. // Run each effect pass
  1289. for (unsigned j = 0; j < effect->GetNumPasses(); ++j)
  1290. {
  1291. PostProcessPass* pass = effect->GetPass(j);
  1292. bool lastPass = (i == postProcesses_.Size() - 1) && (j == effect->GetNumPasses() - 1);
  1293. bool swapBuffers = false;
  1294. // Write depth on the last pass only
  1295. graphics_->SetDepthWrite(lastPass);
  1296. // Set output rendertarget
  1297. RenderSurface* rt = 0;
  1298. String output = pass->GetOutput().ToLower();
  1299. if (output == "viewport")
  1300. {
  1301. if (!lastPass)
  1302. {
  1303. rt = screenBuffers_[writeRtIndex]->GetRenderSurface();
  1304. swapBuffers = true;
  1305. }
  1306. else
  1307. rt = renderTarget_;
  1308. graphics_->SetRenderTarget(0, rt);
  1309. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1310. graphics_->SetViewport(viewRect_);
  1311. }
  1312. else
  1313. {
  1314. HashMap<StringHash, Texture2D*>::ConstIterator k = renderTargets.Find(StringHash(output));
  1315. if (k != renderTargets.End())
  1316. rt = k->second_->GetRenderSurface();
  1317. else
  1318. continue; // Skip pass if rendertarget can not be found
  1319. graphics_->SetRenderTarget(0, rt);
  1320. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1321. graphics_->SetViewport(IntRect(0, 0, rt->GetWidth(), rt->GetHeight()));
  1322. }
  1323. // Set shaders, shader parameters and textures
  1324. graphics_->SetShaders(renderer_->GetVertexShader(pass->GetVertexShader()),
  1325. renderer_->GetPixelShader(pass->GetPixelShader()));
  1326. const HashMap<StringHash, Vector4>& globalParameters = effect->GetShaderParameters();
  1327. for (HashMap<StringHash, Vector4>::ConstIterator k = globalParameters.Begin(); k != globalParameters.End(); ++k)
  1328. graphics_->SetShaderParameter(k->first_, k->second_);
  1329. const HashMap<StringHash, Vector4>& parameters = pass->GetShaderParameters();
  1330. for (HashMap<StringHash, Vector4>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1331. graphics_->SetShaderParameter(k->first_, k->second_);
  1332. float rtWidth = (float)rtSize_.x_;
  1333. float rtHeight = (float)rtSize_.y_;
  1334. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1335. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1336. #ifdef USE_OPENGL
  1337. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1338. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1339. #else
  1340. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1341. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1342. #endif
  1343. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1344. graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1345. // Set per-rendertarget inverse size / offset shader parameters as necessary
  1346. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator k = renderTargetInfos.Begin(); k !=
  1347. renderTargetInfos.End(); ++k)
  1348. {
  1349. String invSizeName = k->second_.name_ + "InvSize";
  1350. String offsetsName = k->second_.name_ + "Offsets";
  1351. float width = (float)renderTargets[k->first_]->GetWidth();
  1352. float height = (float)renderTargets[k->first_]->GetHeight();
  1353. graphics_->SetShaderParameter(StringHash(invSizeName), Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f));
  1354. #ifdef USE_OPENGL
  1355. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4::ZERO);
  1356. #else
  1357. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f));
  1358. #endif
  1359. }
  1360. const String* textureNames = pass->GetTextures();
  1361. for (unsigned k = 0; k < MAX_MATERIAL_TEXTURE_UNITS; ++k)
  1362. {
  1363. if (!textureNames[k].Empty())
  1364. {
  1365. // Texture may either refer to a rendertarget or to a texture resource
  1366. if (!textureNames[k].Compare("viewport", false))
  1367. graphics_->SetTexture(k, screenBuffers_[readRtIndex]);
  1368. else
  1369. {
  1370. HashMap<StringHash, Texture2D*>::ConstIterator l = renderTargets.Find(StringHash(textureNames[k]));
  1371. if (l != renderTargets.End())
  1372. graphics_->SetTexture(k, l->second_);
  1373. else
  1374. {
  1375. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1376. Texture2D* texture = cache->GetResource<Texture2D>(textureNames[k]);
  1377. if (texture)
  1378. graphics_->SetTexture(k, texture);
  1379. else
  1380. pass->SetTexture((TextureUnit)k, String());
  1381. }
  1382. }
  1383. }
  1384. }
  1385. DrawFullscreenQuad(camera_, false);
  1386. // Swap the ping-pong buffer sides now if necessary
  1387. if (swapBuffers)
  1388. Swap(readRtIndex, writeRtIndex);
  1389. }
  1390. // Forget the rendertargets allocated during this effect
  1391. renderer_->RestoreScreenBufferAllocations();
  1392. }
  1393. }
  1394. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1395. {
  1396. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1397. float halfViewSize = camera->GetHalfViewSize();
  1398. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1399. Vector3 cameraPos = camera->GetNode()->GetWorldPosition();
  1400. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1401. {
  1402. Drawable* occluder = *i;
  1403. bool erase = false;
  1404. if (!occluder->IsInView(frame_, false))
  1405. occluder->UpdateDistance(frame_);
  1406. // Check occluder's draw distance (in main camera view)
  1407. float maxDistance = occluder->GetDrawDistance();
  1408. if (maxDistance <= 0.0f || occluder->GetDistance() <= maxDistance)
  1409. {
  1410. // Check that occluder is big enough on the screen
  1411. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1412. float diagonal = box.Size().Length();
  1413. float compare;
  1414. if (!camera->IsOrthographic())
  1415. compare = diagonal * halfViewSize / occluder->GetDistance();
  1416. else
  1417. compare = diagonal * invOrthoSize;
  1418. if (compare < occluderSizeThreshold_)
  1419. erase = true;
  1420. else
  1421. {
  1422. // Store amount of triangles divided by screen size as a sorting key
  1423. // (best occluders are big and have few triangles)
  1424. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1425. }
  1426. }
  1427. else
  1428. erase = true;
  1429. if (erase)
  1430. i = occluders.Erase(i);
  1431. else
  1432. ++i;
  1433. }
  1434. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1435. if (occluders.Size())
  1436. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1437. }
  1438. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1439. {
  1440. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1441. buffer->Clear();
  1442. for (unsigned i = 0; i < occluders.Size(); ++i)
  1443. {
  1444. Drawable* occluder = occluders[i];
  1445. if (i > 0)
  1446. {
  1447. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1448. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1449. continue;
  1450. }
  1451. // Check for running out of triangles
  1452. if (!occluder->DrawOcclusion(buffer))
  1453. break;
  1454. }
  1455. buffer->BuildDepthHierarchy();
  1456. }
  1457. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1458. {
  1459. Light* light = query.light_;
  1460. LightType type = light->GetLightType();
  1461. const Frustum& frustum = camera_->GetFrustum();
  1462. // Check if light should be shadowed
  1463. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1464. // If shadow distance non-zero, check it
  1465. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1466. isShadowed = false;
  1467. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1468. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1469. query.litGeometries_.Clear();
  1470. switch (type)
  1471. {
  1472. case LIGHT_DIRECTIONAL:
  1473. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1474. {
  1475. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1476. query.litGeometries_.Push(geometries_[i]);
  1477. }
  1478. break;
  1479. case LIGHT_SPOT:
  1480. {
  1481. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1482. octree_->GetDrawables(octreeQuery);
  1483. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1484. {
  1485. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1486. query.litGeometries_.Push(tempDrawables[i]);
  1487. }
  1488. }
  1489. break;
  1490. case LIGHT_POINT:
  1491. {
  1492. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetNode()->GetWorldPosition(), light->GetRange()),
  1493. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1494. octree_->GetDrawables(octreeQuery);
  1495. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1496. {
  1497. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1498. query.litGeometries_.Push(tempDrawables[i]);
  1499. }
  1500. }
  1501. break;
  1502. }
  1503. // If no lit geometries or not shadowed, no need to process shadow cameras
  1504. if (query.litGeometries_.Empty() || !isShadowed)
  1505. {
  1506. query.numSplits_ = 0;
  1507. return;
  1508. }
  1509. // Determine number of shadow cameras and setup their initial positions
  1510. SetupShadowCameras(query);
  1511. // Process each split for shadow casters
  1512. query.shadowCasters_.Clear();
  1513. for (unsigned i = 0; i < query.numSplits_; ++i)
  1514. {
  1515. Camera* shadowCamera = query.shadowCameras_[i];
  1516. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1517. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1518. // For point light check that the face is visible: if not, can skip the split
  1519. if (type == LIGHT_POINT && frustum.IsInsideFast(BoundingBox(shadowCameraFrustum)) == OUTSIDE)
  1520. continue;
  1521. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1522. if (type == LIGHT_DIRECTIONAL)
  1523. {
  1524. if (minZ_ > query.shadowFarSplits_[i])
  1525. continue;
  1526. if (maxZ_ < query.shadowNearSplits_[i])
  1527. continue;
  1528. }
  1529. // Reuse lit geometry query for all except directional lights
  1530. if (type == LIGHT_DIRECTIONAL)
  1531. {
  1532. ShadowCasterOctreeQuery query(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1533. camera_->GetViewMask());
  1534. octree_->GetDrawables(query);
  1535. }
  1536. // Check which shadow casters actually contribute to the shadowing
  1537. ProcessShadowCasters(query, tempDrawables, i);
  1538. }
  1539. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1540. // only cost has been the shadow camera setup & queries
  1541. if (query.shadowCasters_.Empty())
  1542. query.numSplits_ = 0;
  1543. }
  1544. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1545. {
  1546. Light* light = query.light_;
  1547. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1548. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1549. const Matrix3x4& lightView = shadowCamera->GetInverseWorldTransform();
  1550. const Matrix4& lightProj = shadowCamera->GetProjection();
  1551. LightType type = light->GetLightType();
  1552. query.shadowCasterBox_[splitIndex].defined_ = false;
  1553. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1554. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1555. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1556. Frustum lightViewFrustum;
  1557. if (type != LIGHT_DIRECTIONAL)
  1558. lightViewFrustum = camera_->GetSplitFrustum(minZ_, maxZ_).Transformed(lightView);
  1559. else
  1560. lightViewFrustum = camera_->GetSplitFrustum(Max(minZ_, query.shadowNearSplits_[splitIndex]),
  1561. Min(maxZ_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1562. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1563. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1564. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1565. return;
  1566. BoundingBox lightViewBox;
  1567. BoundingBox lightProjBox;
  1568. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1569. {
  1570. Drawable* drawable = *i;
  1571. // In case this is a point or spot light query result reused for optimization, we may have non-shadowcasters included.
  1572. // Check for that first
  1573. if (!drawable->GetCastShadows())
  1574. continue;
  1575. // For point light, check that this drawable is inside the split shadow camera frustum
  1576. if (type == LIGHT_POINT && shadowCameraFrustum.IsInsideFast(drawable->GetWorldBoundingBox()) == OUTSIDE)
  1577. continue;
  1578. // Note: as lights are processed threaded, it is possible a drawable's UpdateDistance() function is called several
  1579. // times. However, this should not cause problems as no scene modification happens at this point.
  1580. if (!drawable->IsInView(frame_, false))
  1581. drawable->UpdateDistance(frame_);
  1582. // Check shadow distance
  1583. float maxShadowDistance = drawable->GetShadowDistance();
  1584. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1585. continue;
  1586. // Check shadow mask
  1587. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1588. continue;
  1589. // Project shadow caster bounding box to light view space for visibility check
  1590. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1591. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1592. {
  1593. // Merge to shadow caster bounding box and add to the list
  1594. if (type == LIGHT_DIRECTIONAL)
  1595. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1596. else
  1597. {
  1598. lightProjBox = lightViewBox.Projected(lightProj);
  1599. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1600. }
  1601. query.shadowCasters_.Push(drawable);
  1602. }
  1603. }
  1604. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1605. }
  1606. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1607. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1608. {
  1609. if (shadowCamera->IsOrthographic())
  1610. {
  1611. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1612. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1613. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1614. }
  1615. else
  1616. {
  1617. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1618. if (drawable->IsInView(frame_))
  1619. return true;
  1620. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1621. Vector3 center = lightViewBox.Center();
  1622. Ray extrusionRay(center, center.Normalized());
  1623. float extrusionDistance = shadowCamera->GetFarClip();
  1624. float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance);
  1625. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1626. float sizeFactor = extrusionDistance / originalDistance;
  1627. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1628. // than necessary, so the test will be conservative
  1629. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1630. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1631. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1632. lightViewBox.Merge(extrudedBox);
  1633. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1634. }
  1635. }
  1636. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1637. {
  1638. unsigned width = shadowMap->GetWidth();
  1639. unsigned height = shadowMap->GetHeight();
  1640. int maxCascades = renderer_->GetMaxShadowCascades();
  1641. // Due to instruction count limits, deferred modes in SM2.0 can only support up to 3 cascades
  1642. #ifndef USE_OPENGL
  1643. if (renderMode_ != RENDER_FORWARD && !graphics_->GetSM3Support())
  1644. maxCascades = Max(maxCascades, 3);
  1645. #endif
  1646. switch (light->GetLightType())
  1647. {
  1648. case LIGHT_DIRECTIONAL:
  1649. if (maxCascades == 1)
  1650. return IntRect(0, 0, width, height);
  1651. else if (maxCascades == 2)
  1652. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1653. else
  1654. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1655. (splitIndex / 2 + 1) * height / 2);
  1656. case LIGHT_SPOT:
  1657. return IntRect(0, 0, width, height);
  1658. case LIGHT_POINT:
  1659. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1660. (splitIndex / 2 + 1) * height / 3);
  1661. }
  1662. return IntRect();
  1663. }
  1664. void View::SetupShadowCameras(LightQueryResult& query)
  1665. {
  1666. Light* light = query.light_;
  1667. LightType type = light->GetLightType();
  1668. int splits = 0;
  1669. if (type == LIGHT_DIRECTIONAL)
  1670. {
  1671. const CascadeParameters& cascade = light->GetShadowCascade();
  1672. float nearSplit = camera_->GetNearClip();
  1673. float farSplit;
  1674. while (splits < renderer_->GetMaxShadowCascades())
  1675. {
  1676. // If split is completely beyond camera far clip, we are done
  1677. if (nearSplit > camera_->GetFarClip())
  1678. break;
  1679. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1680. if (farSplit <= nearSplit)
  1681. break;
  1682. // Setup the shadow camera for the split
  1683. Camera* shadowCamera = renderer_->GetShadowCamera();
  1684. query.shadowCameras_[splits] = shadowCamera;
  1685. query.shadowNearSplits_[splits] = nearSplit;
  1686. query.shadowFarSplits_[splits] = farSplit;
  1687. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1688. nearSplit = farSplit;
  1689. ++splits;
  1690. }
  1691. }
  1692. if (type == LIGHT_SPOT)
  1693. {
  1694. Camera* shadowCamera = renderer_->GetShadowCamera();
  1695. query.shadowCameras_[0] = shadowCamera;
  1696. Node* cameraNode = shadowCamera->GetNode();
  1697. Node* lightNode = light->GetNode();
  1698. cameraNode->SetTransform(lightNode->GetWorldPosition(), lightNode->GetWorldRotation());
  1699. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1700. shadowCamera->SetFarClip(light->GetRange());
  1701. shadowCamera->SetFov(light->GetFov());
  1702. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1703. splits = 1;
  1704. }
  1705. if (type == LIGHT_POINT)
  1706. {
  1707. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1708. {
  1709. Camera* shadowCamera = renderer_->GetShadowCamera();
  1710. query.shadowCameras_[i] = shadowCamera;
  1711. Node* cameraNode = shadowCamera->GetNode();
  1712. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1713. cameraNode->SetPosition(light->GetNode()->GetWorldPosition());
  1714. cameraNode->SetDirection(directions[i]);
  1715. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1716. shadowCamera->SetFarClip(light->GetRange());
  1717. shadowCamera->SetFov(90.0f);
  1718. shadowCamera->SetAspectRatio(1.0f);
  1719. }
  1720. splits = MAX_CUBEMAP_FACES;
  1721. }
  1722. query.numSplits_ = splits;
  1723. }
  1724. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1725. {
  1726. Node* shadowCameraNode = shadowCamera->GetNode();
  1727. Node* lightNode = light->GetNode();
  1728. float extrusionDistance = camera_->GetFarClip();
  1729. const FocusParameters& parameters = light->GetShadowFocus();
  1730. // Calculate initial position & rotation
  1731. Vector3 lightWorldDirection = lightNode->GetWorldRotation() * Vector3::FORWARD;
  1732. Vector3 pos = cameraNode_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1733. shadowCameraNode->SetTransform(pos, lightNode->GetWorldRotation());
  1734. // Calculate main camera shadowed frustum in light's view space
  1735. farSplit = Min(farSplit, camera_->GetFarClip());
  1736. // Use the scene Z bounds to limit frustum size if applicable
  1737. if (parameters.focus_)
  1738. {
  1739. nearSplit = Max(minZ_, nearSplit);
  1740. farSplit = Min(maxZ_, farSplit);
  1741. }
  1742. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1743. Polyhedron frustumVolume;
  1744. frustumVolume.Define(splitFrustum);
  1745. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1746. if (parameters.focus_)
  1747. {
  1748. BoundingBox litGeometriesBox;
  1749. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1750. {
  1751. Drawable* drawable = geometries_[i];
  1752. // Skip skyboxes as they have undefinedly large bounding box size
  1753. if (drawable->GetType() == Skybox::GetTypeStatic())
  1754. continue;
  1755. if (drawable->GetMinZ() <= farSplit && drawable->GetMaxZ() >= nearSplit &&
  1756. (GetLightMask(drawable) & light->GetLightMask()))
  1757. litGeometriesBox.Merge(drawable->GetWorldBoundingBox());
  1758. }
  1759. if (litGeometriesBox.defined_)
  1760. {
  1761. frustumVolume.Clip(litGeometriesBox);
  1762. // If volume became empty, restore it to avoid zero size
  1763. if (frustumVolume.Empty())
  1764. frustumVolume.Define(splitFrustum);
  1765. }
  1766. }
  1767. // Transform frustum volume to light space
  1768. const Matrix3x4& lightView = shadowCamera->GetInverseWorldTransform();
  1769. frustumVolume.Transform(lightView);
  1770. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1771. BoundingBox shadowBox;
  1772. if (!parameters.nonUniform_)
  1773. shadowBox.Define(Sphere(frustumVolume));
  1774. else
  1775. shadowBox.Define(frustumVolume);
  1776. shadowCamera->SetOrthographic(true);
  1777. shadowCamera->SetAspectRatio(1.0f);
  1778. shadowCamera->SetNearClip(0.0f);
  1779. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1780. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1781. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1782. }
  1783. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1784. const BoundingBox& shadowCasterBox)
  1785. {
  1786. const FocusParameters& parameters = light->GetShadowFocus();
  1787. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1788. LightType type = light->GetLightType();
  1789. if (type == LIGHT_DIRECTIONAL)
  1790. {
  1791. BoundingBox shadowBox;
  1792. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1793. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1794. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1795. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1796. // Requantize and snap to shadow map texels
  1797. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1798. }
  1799. if (type == LIGHT_SPOT)
  1800. {
  1801. if (parameters.focus_)
  1802. {
  1803. float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_));
  1804. float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_));
  1805. float viewSize = Max(viewSizeX, viewSizeY);
  1806. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1807. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1808. float quantize = parameters.quantize_ * invOrthoSize;
  1809. float minView = parameters.minView_ * invOrthoSize;
  1810. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1811. if (viewSize < 1.0f)
  1812. shadowCamera->SetZoom(1.0f / viewSize);
  1813. }
  1814. }
  1815. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1816. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1817. if (shadowCamera->GetZoom() >= 1.0f)
  1818. {
  1819. if (light->GetLightType() != LIGHT_POINT)
  1820. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1821. else
  1822. {
  1823. #ifdef USE_OPENGL
  1824. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1825. #else
  1826. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1827. #endif
  1828. }
  1829. }
  1830. }
  1831. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1832. const BoundingBox& viewBox)
  1833. {
  1834. Node* shadowCameraNode = shadowCamera->GetNode();
  1835. const FocusParameters& parameters = light->GetShadowFocus();
  1836. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1837. float minX = viewBox.min_.x_;
  1838. float minY = viewBox.min_.y_;
  1839. float maxX = viewBox.max_.x_;
  1840. float maxY = viewBox.max_.y_;
  1841. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1842. Vector2 viewSize(maxX - minX, maxY - minY);
  1843. // Quantize size to reduce swimming
  1844. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1845. if (parameters.nonUniform_)
  1846. {
  1847. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1848. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1849. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1850. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1851. }
  1852. else if (parameters.focus_)
  1853. {
  1854. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1855. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1856. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1857. viewSize.y_ = viewSize.x_;
  1858. }
  1859. shadowCamera->SetOrthoSize(viewSize);
  1860. // Center shadow camera to the view space bounding box
  1861. Vector3 pos(shadowCameraNode->GetWorldPosition());
  1862. Quaternion rot(shadowCameraNode->GetWorldRotation());
  1863. Vector3 adjust(center.x_, center.y_, 0.0f);
  1864. shadowCameraNode->Translate(rot * adjust);
  1865. // If the shadow map viewport is known, snap to whole texels
  1866. if (shadowMapWidth > 0.0f)
  1867. {
  1868. Vector3 viewPos(rot.Inverse() * shadowCameraNode->GetWorldPosition());
  1869. // Take into account that shadow map border will not be used
  1870. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1871. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1872. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1873. shadowCameraNode->Translate(rot * snap);
  1874. }
  1875. }
  1876. void View::FindZone(Drawable* drawable, unsigned threadIndex)
  1877. {
  1878. Vector3 center = drawable->GetWorldBoundingBox().Center();
  1879. int bestPriority = M_MIN_INT;
  1880. Zone* newZone = 0;
  1881. // If bounding box center is in view, the zone assignment is conclusive also for next frames. Otherwise it is temporary
  1882. // (possibly incorrect) and must be re-evaluated on the next frame
  1883. bool temporary = !camera_->GetFrustum().IsInside(center);
  1884. // First check if the last zone remains a conclusive result
  1885. Zone* lastZone = drawable->GetLastZone();
  1886. if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) &&
  1887. lastZone->GetPriority() >= highestZonePriority_)
  1888. newZone = lastZone;
  1889. else
  1890. {
  1891. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  1892. {
  1893. Zone* zone = *i;
  1894. int priority = zone->GetPriority();
  1895. if (zone->IsInside(center) && (drawable->GetZoneMask() & zone->GetZoneMask()) && priority > bestPriority)
  1896. {
  1897. newZone = zone;
  1898. bestPriority = priority;
  1899. }
  1900. }
  1901. }
  1902. drawable->SetZone(newZone, temporary);
  1903. }
  1904. Zone* View::GetZone(Drawable* drawable)
  1905. {
  1906. if (cameraZoneOverride_)
  1907. return cameraZone_;
  1908. Zone* drawableZone = drawable->GetZone();
  1909. return drawableZone ? drawableZone : cameraZone_;
  1910. }
  1911. unsigned View::GetLightMask(Drawable* drawable)
  1912. {
  1913. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1914. }
  1915. unsigned View::GetShadowMask(Drawable* drawable)
  1916. {
  1917. return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
  1918. }
  1919. unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
  1920. {
  1921. unsigned long long hash = 0;
  1922. for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
  1923. hash += (unsigned long long)(*i);
  1924. return hash;
  1925. }
  1926. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1927. {
  1928. if (!material)
  1929. material = renderer_->GetDefaultMaterial();
  1930. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1931. // If only one technique, no choice
  1932. if (techniques.Size() == 1)
  1933. return techniques[0].technique_;
  1934. else
  1935. {
  1936. float lodDistance = drawable->GetLodDistance();
  1937. // Check for suitable technique. Techniques should be ordered like this:
  1938. // Most distant & highest quality
  1939. // Most distant & lowest quality
  1940. // Second most distant & highest quality
  1941. // ...
  1942. for (unsigned i = 0; i < techniques.Size(); ++i)
  1943. {
  1944. const TechniqueEntry& entry = techniques[i];
  1945. Technique* tech = entry.technique_;
  1946. if (!tech || (tech->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1947. continue;
  1948. if (lodDistance >= entry.lodDistance_)
  1949. return tech;
  1950. }
  1951. // If no suitable technique found, fallback to the last
  1952. return techniques.Size() ? techniques.Back().technique_ : (Technique*)0;
  1953. }
  1954. }
  1955. void View::CheckMaterialForAuxView(Material* material)
  1956. {
  1957. const SharedPtr<Texture>* textures = material->GetTextures();
  1958. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  1959. {
  1960. // Have to check cube & 2D textures separately
  1961. Texture* texture = textures[i];
  1962. if (texture)
  1963. {
  1964. if (texture->GetType() == Texture2D::GetTypeStatic())
  1965. {
  1966. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1967. RenderSurface* target = tex2D->GetRenderSurface();
  1968. if (target)
  1969. {
  1970. Viewport* viewport = target->GetViewport();
  1971. if (viewport->GetScene() && viewport->GetCamera())
  1972. renderer_->AddView(target, viewport);
  1973. }
  1974. }
  1975. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1976. {
  1977. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1978. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1979. {
  1980. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1981. if (target)
  1982. {
  1983. Viewport* viewport = target->GetViewport();
  1984. if (viewport->GetScene() && viewport->GetCamera())
  1985. renderer_->AddView(target, viewport);
  1986. }
  1987. }
  1988. }
  1989. }
  1990. }
  1991. // Set frame number so that we can early-out next time we come across this material on the same frame
  1992. material->MarkForAuxView(frame_.frameNumber_);
  1993. }
  1994. void View::AddBatchToQueue(BatchQueue& batchQueue, Batch& batch, Technique* tech, bool allowInstancing, bool allowShadows)
  1995. {
  1996. // Convert to instanced if possible
  1997. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && !batch.shaderData_ && !batch.overrideView_)
  1998. batch.geometryType_ = GEOM_INSTANCED;
  1999. if (batch.geometryType_ == GEOM_INSTANCED)
  2000. {
  2001. HashMap<BatchGroupKey, BatchGroup>* groups = batch.isBase_ ? &batchQueue.baseBatchGroups_ : &batchQueue.batchGroups_;
  2002. BatchGroupKey key(batch);
  2003. HashMap<BatchGroupKey, BatchGroup>::Iterator i = groups->Find(key);
  2004. if (i == groups->End())
  2005. {
  2006. // Create a new group based on the batch
  2007. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2008. BatchGroup newGroup(batch);
  2009. newGroup.instances_.Push(InstanceData(batch.worldTransform_, batch.distance_));
  2010. groups->Insert(MakePair(key, newGroup));
  2011. }
  2012. else
  2013. i->second_.instances_.Push(InstanceData(batch.worldTransform_, batch.distance_));
  2014. }
  2015. else
  2016. {
  2017. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2018. batch.CalculateSortKey();
  2019. batchQueue.batches_.Push(batch);
  2020. }
  2021. }
  2022. void View::PrepareInstancingBuffer()
  2023. {
  2024. PROFILE(PrepareInstancingBuffer);
  2025. unsigned totalInstances = 0;
  2026. totalInstances += baseQueue_.GetNumInstances(renderer_);
  2027. totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
  2028. if (renderMode_ != RENDER_FORWARD)
  2029. totalInstances += gbufferQueue_.GetNumInstances(renderer_);
  2030. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2031. {
  2032. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2033. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
  2034. totalInstances += i->litBatches_.GetNumInstances(renderer_);
  2035. }
  2036. // If fail to set buffer size, fall back to per-group locking
  2037. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  2038. {
  2039. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  2040. unsigned freeIndex = 0;
  2041. void* lockedData = instancingBuffer->Lock(0, totalInstances, LOCK_DISCARD);
  2042. if (lockedData)
  2043. {
  2044. baseQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2045. preAlphaQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2046. if (renderMode_ != RENDER_FORWARD)
  2047. gbufferQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2048. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2049. {
  2050. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2051. i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  2052. i->litBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  2053. }
  2054. instancingBuffer->Unlock();
  2055. }
  2056. }
  2057. }
  2058. void View::SetupLightVolumeBatch(Batch& batch)
  2059. {
  2060. Light* light = batch.lightQueue_->light_;
  2061. LightType type = light->GetLightType();
  2062. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  2063. float lightDist;
  2064. // Use replace blend mode for the first pre-pass light volume, and additive for the rest
  2065. graphics_->SetAlphaTest(false);
  2066. graphics_->SetBlendMode(renderMode_ == RENDER_PREPASS && light == lightQueues_.Front().light_ ? BLEND_REPLACE : BLEND_ADD);
  2067. graphics_->SetDepthWrite(false);
  2068. if (type != LIGHT_DIRECTIONAL)
  2069. {
  2070. if (type == LIGHT_POINT)
  2071. lightDist = Sphere(light->GetNode()->GetWorldPosition(), light->GetRange() * 1.25f).Distance(cameraPos);
  2072. else
  2073. lightDist = light->GetFrustum().Distance(cameraPos);
  2074. // Draw front faces if not inside light volume
  2075. if (lightDist < camera_->GetNearClip() * 2.0f)
  2076. {
  2077. renderer_->SetCullMode(CULL_CW, camera_);
  2078. graphics_->SetDepthTest(CMP_GREATER);
  2079. }
  2080. else
  2081. {
  2082. renderer_->SetCullMode(CULL_CCW, camera_);
  2083. graphics_->SetDepthTest(CMP_LESSEQUAL);
  2084. }
  2085. }
  2086. else
  2087. {
  2088. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  2089. // refresh the directional light's model transform before rendering
  2090. light->GetVolumeTransform(camera_);
  2091. graphics_->SetCullMode(CULL_NONE);
  2092. graphics_->SetDepthTest(CMP_ALWAYS);
  2093. }
  2094. graphics_->SetScissorTest(false);
  2095. graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  2096. }
  2097. void View::DrawFullscreenQuad(Camera* camera, bool nearQuad)
  2098. {
  2099. Light quadDirLight(context_);
  2100. quadDirLight.SetLightType(LIGHT_DIRECTIONAL);
  2101. Matrix3x4 model(quadDirLight.GetDirLightTransform(camera, nearQuad));
  2102. graphics_->SetCullMode(CULL_NONE);
  2103. graphics_->SetShaderParameter(VSP_MODEL, model);
  2104. graphics_->SetShaderParameter(VSP_VIEWPROJ, camera->GetProjection());
  2105. graphics_->ClearTransformSources();
  2106. renderer_->GetLightGeometry(&quadDirLight)->Draw(graphics_);
  2107. }
  2108. void View::RenderShadowMap(const LightBatchQueue& queue)
  2109. {
  2110. PROFILE(RenderShadowMap);
  2111. Texture2D* shadowMap = queue.shadowMap_;
  2112. graphics_->SetTexture(TU_SHADOWMAP, 0);
  2113. graphics_->SetColorWrite(false);
  2114. graphics_->SetStencilTest(false);
  2115. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  2116. graphics_->SetDepthStencil(shadowMap);
  2117. graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight()));
  2118. graphics_->Clear(CLEAR_DEPTH);
  2119. // Set shadow depth bias
  2120. BiasParameters parameters = queue.light_->GetShadowBias();
  2121. // Adjust the light's constant depth bias according to global shadow map resolution
  2122. /// \todo Should remove this adjustment and find a more flexible solution
  2123. unsigned shadowMapSize = renderer_->GetShadowMapSize();
  2124. if (shadowMapSize <= 512)
  2125. parameters.constantBias_ *= 2.0f;
  2126. else if (shadowMapSize >= 2048)
  2127. parameters.constantBias_ *= 0.5f;
  2128. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  2129. // Render each of the splits
  2130. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  2131. {
  2132. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  2133. if (!shadowQueue.shadowBatches_.IsEmpty())
  2134. {
  2135. graphics_->SetViewport(shadowQueue.shadowViewport_);
  2136. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  2137. // However, do not do this for point lights, which need to render continuously across cube faces
  2138. float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_);
  2139. if (queue.light_->GetLightType() != LIGHT_POINT)
  2140. {
  2141. float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width);
  2142. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  2143. graphics_->SetScissorTest(true, zoomRect, false);
  2144. }
  2145. else
  2146. graphics_->SetScissorTest(false);
  2147. // Draw instanced and non-instanced shadow casters
  2148. shadowQueue.shadowBatches_.Draw(graphics_, renderer_);
  2149. }
  2150. }
  2151. graphics_->SetColorWrite(true);
  2152. graphics_->SetDepthBias(0.0f, 0.0f);
  2153. }
  2154. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2155. {
  2156. // If using the backbuffer, return the backbuffer depth-stencil
  2157. if (!renderTarget)
  2158. return 0;
  2159. // Then check for linked depth-stencil
  2160. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2161. // Finally get one from Renderer
  2162. if (!depthStencil)
  2163. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2164. return depthStencil;
  2165. }