Light.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Light.h"
  28. #include "Node.h"
  29. #include "OctreeQuery.h"
  30. #include "Profiler.h"
  31. #include "ResourceCache.h"
  32. #include "Texture2D.h"
  33. #include "TextureCube.h"
  34. #include "XMLElement.h"
  35. #include "DebugNew.h"
  36. namespace Urho3D
  37. {
  38. static const LightType DEFAULT_LIGHTTYPE = LIGHT_POINT;
  39. static const float DEFAULT_RANGE = 10.0f;
  40. static const float DEFAULT_FOV = 30.0f;
  41. static const float DEFAULT_CONSTANTBIAS = 0.0001f;
  42. static const float DEFAULT_SLOPESCALEDBIAS = 0.5f;
  43. static const float DEFAULT_SHADOWFADESTART = 0.8f;
  44. static const float DEFAULT_SHADOWQUANTIZE = 0.5f;
  45. static const float DEFAULT_SHADOWMINVIEW = 3.0f;
  46. static const float DEFAULT_SHADOWNEARFARRATIO = 0.002f;
  47. static const char* typeNames[] =
  48. {
  49. "Directional",
  50. "Spot",
  51. "Point",
  52. 0
  53. };
  54. void BiasParameters::Validate()
  55. {
  56. constantBias_ = Clamp(constantBias_, -1.0f, 1.0f);
  57. slopeScaledBias_ = Clamp(slopeScaledBias_, -16.0f, 16.0f);
  58. }
  59. void CascadeParameters::Validate()
  60. {
  61. for (unsigned i = 0; i < MAX_CASCADE_SPLITS; ++i)
  62. splits_[i] = Max(splits_[i], 0.0f);
  63. fadeStart_ = Clamp(fadeStart_, M_EPSILON, 1.0f);
  64. }
  65. void FocusParameters::Validate()
  66. {
  67. quantize_ = Max(quantize_, SHADOW_MIN_QUANTIZE);
  68. minView_ = Max(minView_, SHADOW_MIN_VIEW);
  69. }
  70. template<> LightType Variant::Get<LightType>() const
  71. {
  72. return (LightType)GetInt();
  73. }
  74. OBJECTTYPESTATIC(Light);
  75. Light::Light(Context* context) :
  76. Drawable(context),
  77. lightType_(DEFAULT_LIGHTTYPE),
  78. shadowBias_(BiasParameters(DEFAULT_CONSTANTBIAS, DEFAULT_SLOPESCALEDBIAS)),
  79. shadowCascade_(CascadeParameters(M_LARGE_VALUE, 0.0f, 0.0f, 0.0f, DEFAULT_SHADOWFADESTART)),
  80. shadowFocus_(FocusParameters(true, true, true, DEFAULT_SHADOWQUANTIZE, DEFAULT_SHADOWMINVIEW)),
  81. lightQueue_(0),
  82. specularIntensity_(0.0f),
  83. range_(DEFAULT_RANGE),
  84. fov_(DEFAULT_FOV),
  85. aspectRatio_(1.0f),
  86. fadeDistance_(0.0f),
  87. shadowFadeDistance_(0.0f),
  88. shadowIntensity_(0.0f),
  89. shadowResolution_(1.0f),
  90. shadowNearFarRatio_(DEFAULT_SHADOWNEARFARRATIO),
  91. perVertex_(false)
  92. {
  93. drawableFlags_ = DRAWABLE_LIGHT;
  94. }
  95. Light::~Light()
  96. {
  97. }
  98. void Light::RegisterObject(Context* context)
  99. {
  100. context->RegisterFactory<Light>();
  101. ENUM_ACCESSOR_ATTRIBUTE(Light, "Light Type", GetLightType, SetLightType, LightType, typeNames, DEFAULT_LIGHTTYPE, AM_DEFAULT);
  102. REF_ACCESSOR_ATTRIBUTE(Light, VAR_COLOR, "Color", GetColor, SetColor, Color, Color(), AM_DEFAULT);
  103. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Specular Intensity", GetSpecularIntensity, SetSpecularIntensity, float, 0.0f, AM_DEFAULT);
  104. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Range", GetRange, SetRange, float, DEFAULT_RANGE, AM_DEFAULT);
  105. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Spot FOV", GetFov, SetFov, float, DEFAULT_FOV, AM_DEFAULT);
  106. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Spot Aspect Ratio", GetAspectRatio, SetAspectRatio, float, 1.0f, AM_DEFAULT);
  107. ACCESSOR_ATTRIBUTE(Light, VAR_RESOURCEREF, "Attenuation Texture", GetRampTextureAttr, SetRampTextureAttr, ResourceRef, ResourceRef(Texture2D::GetTypeStatic()), AM_DEFAULT);
  108. ACCESSOR_ATTRIBUTE(Light, VAR_RESOURCEREF, "Light Shape Texture", GetShapeTextureAttr, SetShapeTextureAttr, ResourceRef, ResourceRef(Texture2D::GetTypeStatic()), AM_DEFAULT);
  109. ATTRIBUTE(Light, VAR_BOOL, "Is Visible", visible_, true, AM_DEFAULT);
  110. ACCESSOR_ATTRIBUTE(Light, VAR_BOOL, "Can Be Occluded", IsOccludee, SetOccludee, bool, true, AM_DEFAULT);
  111. ATTRIBUTE(Light, VAR_BOOL, "Cast Shadows", castShadows_, false, AM_DEFAULT);
  112. ATTRIBUTE(Light, VAR_BOOL, "Per Vertex", perVertex_, false, AM_DEFAULT);
  113. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Draw Distance", GetDrawDistance, SetDrawDistance, float, 0.0f, AM_DEFAULT);
  114. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Fade Distance", GetFadeDistance, SetFadeDistance, float, 0.0f, AM_DEFAULT);
  115. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Shadow Distance", GetShadowDistance, SetShadowDistance, float, 0.0f, AM_DEFAULT);
  116. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Shadow Fade Distance", GetShadowFadeDistance, SetShadowFadeDistance, float, 0.0f, AM_DEFAULT);
  117. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Shadow Intensity", GetShadowIntensity, SetShadowIntensity, float, 0.0f, AM_DEFAULT);
  118. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Shadow Resolution", GetShadowResolution, SetShadowResolution, float, 1.0f, AM_DEFAULT);
  119. ATTRIBUTE(Light, VAR_BOOL, "Focus To Scene", shadowFocus_.focus_, true, AM_DEFAULT);
  120. ATTRIBUTE(Light, VAR_BOOL, "Non-uniform View", shadowFocus_.nonUniform_, true, AM_DEFAULT);
  121. ATTRIBUTE(Light, VAR_BOOL, "Auto-Reduce Size", shadowFocus_.autoSize_, true, AM_DEFAULT);
  122. ATTRIBUTE(Light, VAR_VECTOR4, "CSM Splits", shadowCascade_.splits_, Vector4(M_LARGE_VALUE, 0.0f, 0.0f, 0.0f), AM_DEFAULT);
  123. ATTRIBUTE(Light, VAR_FLOAT, "CSM Fade Start", shadowCascade_.fadeStart_, DEFAULT_SHADOWFADESTART, AM_DEFAULT);
  124. ATTRIBUTE(Light, VAR_FLOAT, "View Size Quantize", shadowFocus_.quantize_, DEFAULT_SHADOWQUANTIZE, AM_DEFAULT);
  125. ATTRIBUTE(Light, VAR_FLOAT, "View Size Minimum", shadowFocus_.minView_, DEFAULT_SHADOWMINVIEW, AM_DEFAULT);
  126. ATTRIBUTE(Light, VAR_FLOAT, "Depth Constant Bias", shadowBias_.constantBias_, DEFAULT_CONSTANTBIAS, AM_DEFAULT);
  127. ATTRIBUTE(Light, VAR_FLOAT, "Depth Slope Bias", shadowBias_.slopeScaledBias_, DEFAULT_SLOPESCALEDBIAS, AM_DEFAULT);
  128. ATTRIBUTE(Light, VAR_FLOAT, "Near/Farclip Ratio", shadowNearFarRatio_, DEFAULT_SHADOWNEARFARRATIO, AM_DEFAULT);
  129. ATTRIBUTE(Light, VAR_INT, "View Mask", viewMask_, DEFAULT_VIEWMASK, AM_DEFAULT);
  130. ATTRIBUTE(Light, VAR_INT, "Light Mask", lightMask_, DEFAULT_LIGHTMASK, AM_DEFAULT);
  131. }
  132. void Light::OnSetAttribute(const AttributeInfo& attr, const Variant& src)
  133. {
  134. Component::OnSetAttribute(attr, src);
  135. // Validate the bias, cascade & focus parameters
  136. if (attr.offset_ >= offsetof(Light, shadowBias_) && attr.offset_ < (offsetof(Light, shadowBias_) + sizeof(BiasParameters)))
  137. shadowBias_.Validate();
  138. else if (attr.offset_ >= offsetof(Light, shadowCascade_) && attr.offset_ < (offsetof(Light, shadowCascade_) + sizeof(CascadeParameters)))
  139. shadowCascade_.Validate();
  140. else if (attr.offset_ >= offsetof(Light, shadowFocus_) && attr.offset_ < (offsetof(Light, shadowFocus_) + sizeof(FocusParameters)))
  141. shadowFocus_.Validate();
  142. }
  143. void Light::ProcessRayQuery(const RayOctreeQuery& query, PODVector<RayQueryResult>& results)
  144. {
  145. RayQueryLevel level = query.level_;
  146. switch (level)
  147. {
  148. case RAY_AABB_NOSUBOBJECTS:
  149. case RAY_AABB:
  150. // Do not record a raycast result for a directional light, as they would overwhelm all other results
  151. if (lightType_ != LIGHT_DIRECTIONAL)
  152. Drawable::ProcessRayQuery(query, results);
  153. break;
  154. case RAY_OBB:
  155. if (lightType_ != LIGHT_DIRECTIONAL)
  156. {
  157. Matrix3x4 inverse(node_->GetWorldTransform().Inverse());
  158. Ray localRay(inverse * query.ray_.origin_, inverse * Vector4(query.ray_.direction_, 0.0f));
  159. float distance = localRay.HitDistance(GetWorldBoundingBox());
  160. if (distance <= query.maxDistance_)
  161. {
  162. RayQueryResult result;
  163. result.drawable_ = this;
  164. result.node_ = GetNode();
  165. result.distance_ = distance;
  166. result.subObject_ = M_MAX_UNSIGNED;
  167. results.Push(result);
  168. }
  169. }
  170. break;
  171. case RAY_TRIANGLE:
  172. if (lightType_ == LIGHT_SPOT)
  173. {
  174. float distance = query.ray_.HitDistance(GetFrustum());
  175. if (distance <= query.maxDistance_)
  176. {
  177. RayQueryResult result;
  178. result.drawable_ = this;
  179. result.node_ = GetNode();
  180. result.distance_ = distance;
  181. result.subObject_ = M_MAX_UNSIGNED;
  182. results.Push(result);
  183. }
  184. }
  185. if (lightType_ == LIGHT_POINT)
  186. {
  187. float distance = query.ray_.HitDistance(Sphere(node_->GetWorldPosition(), range_));
  188. if (distance <= query.maxDistance_)
  189. {
  190. RayQueryResult result;
  191. result.drawable_ = this;
  192. result.node_ = GetNode();
  193. result.distance_ = distance;
  194. result.subObject_ = M_MAX_UNSIGNED;
  195. results.Push(result);
  196. }
  197. }
  198. break;
  199. }
  200. }
  201. void Light::UpdateBatches(const FrameInfo& frame)
  202. {
  203. switch (lightType_)
  204. {
  205. case LIGHT_DIRECTIONAL:
  206. // Directional light affects the whole scene, so it is always "closest"
  207. distance_ = 0.0f;
  208. break;
  209. default:
  210. distance_ = frame.camera_->GetDistance(node_->GetWorldPosition());
  211. break;
  212. }
  213. }
  214. void Light::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  215. {
  216. if (debug)
  217. {
  218. switch (lightType_)
  219. {
  220. case LIGHT_SPOT:
  221. debug->AddFrustum(GetFrustum(), color_, depthTest);
  222. break;
  223. case LIGHT_POINT:
  224. debug->AddSphere(Sphere(node_->GetWorldPosition(), range_), GetColor(), depthTest);
  225. break;
  226. }
  227. }
  228. }
  229. void Light::SetLightType(LightType type)
  230. {
  231. lightType_ = type;
  232. OnMarkedDirty(node_);
  233. MarkNetworkUpdate();
  234. }
  235. void Light::SetPerVertex(bool enable)
  236. {
  237. perVertex_ = enable;
  238. MarkNetworkUpdate();
  239. }
  240. void Light::SetColor(const Color& color)
  241. {
  242. // Clamp RGB values to positive, as negative values behave erratically depending on whether the pass uses
  243. // replace or additive blend mode
  244. color_ = Color(Max(color.r_, 0.0f), Max(color.g_, 0.0f), Max(color.b_, 0.0f), 1.0f);
  245. MarkNetworkUpdate();
  246. }
  247. void Light::SetRange(float range)
  248. {
  249. range_ = Max(range, 0.0f);
  250. OnMarkedDirty(node_);
  251. MarkNetworkUpdate();
  252. }
  253. void Light::SetFov(float fov)
  254. {
  255. fov_ = Clamp(fov, 0.0f, M_MAX_FOV);
  256. OnMarkedDirty(node_);
  257. MarkNetworkUpdate();
  258. }
  259. void Light::SetAspectRatio(float aspectRatio)
  260. {
  261. aspectRatio_ = Max(aspectRatio, M_EPSILON);
  262. OnMarkedDirty(node_);
  263. MarkNetworkUpdate();
  264. }
  265. void Light::SetShadowNearFarRatio(float nearFarRatio)
  266. {
  267. shadowNearFarRatio_ = Clamp(nearFarRatio, 0.0f, 0.5f);
  268. MarkNetworkUpdate();
  269. }
  270. void Light::SetSpecularIntensity(float intensity)
  271. {
  272. specularIntensity_ = Max(intensity, 0.0f);
  273. MarkNetworkUpdate();
  274. }
  275. void Light::SetFadeDistance(float distance)
  276. {
  277. fadeDistance_ = Max(distance, 0.0f);
  278. MarkNetworkUpdate();
  279. }
  280. void Light::SetShadowBias(const BiasParameters& parameters)
  281. {
  282. shadowBias_ = parameters;
  283. shadowBias_.Validate();
  284. MarkNetworkUpdate();
  285. }
  286. void Light::SetShadowCascade(const CascadeParameters& parameters)
  287. {
  288. shadowCascade_ = parameters;
  289. shadowCascade_.Validate();
  290. MarkNetworkUpdate();
  291. }
  292. void Light::SetShadowFocus(const FocusParameters& parameters)
  293. {
  294. shadowFocus_ = parameters;
  295. shadowFocus_.Validate();
  296. MarkNetworkUpdate();
  297. }
  298. void Light::SetShadowFadeDistance(float distance)
  299. {
  300. shadowFadeDistance_ = Max(distance, 0.0f);
  301. MarkNetworkUpdate();
  302. }
  303. void Light::SetShadowIntensity(float intensity)
  304. {
  305. shadowIntensity_ = Clamp(intensity, 0.0f, 1.0f);
  306. MarkNetworkUpdate();
  307. }
  308. void Light::SetShadowResolution(float resolution)
  309. {
  310. shadowResolution_ = Clamp(resolution, 0.125f, 1.0f);
  311. MarkNetworkUpdate();
  312. }
  313. void Light::SetRampTexture(Texture* texture)
  314. {
  315. rampTexture_ = texture;
  316. MarkNetworkUpdate();
  317. }
  318. void Light::SetShapeTexture(Texture* texture)
  319. {
  320. shapeTexture_ = texture;
  321. MarkNetworkUpdate();
  322. }
  323. Frustum Light::GetFrustum() const
  324. {
  325. const Matrix3x4& transform = node_ ? node_->GetWorldTransform() : Matrix3x4::IDENTITY;
  326. Matrix3x4 frustumTransform(transform.Translation(), transform.Rotation(), 1.0f);
  327. Frustum ret;
  328. ret.Define(fov_, aspectRatio_, 1.0f, M_MIN_NEARCLIP, range_, frustumTransform);
  329. return ret;
  330. }
  331. Matrix3x4 Light::GetDirLightTransform(Camera* camera, bool getNearQuad)
  332. {
  333. if (!camera)
  334. return Matrix3x4::IDENTITY;
  335. Vector3 nearVector, farVector;
  336. camera->GetFrustumSize(nearVector, farVector);
  337. float nearClip = camera->GetNearClip();
  338. float farClip = camera->GetFarClip();
  339. float distance = getNearQuad ? nearClip : farClip;
  340. if (!camera->IsOrthographic())
  341. farVector *= (distance / farClip);
  342. else
  343. farVector.z_ *= (distance / farClip);
  344. // Set an epsilon from clip planes due to possible inaccuracy
  345. /// \todo Rather set an identity projection matrix
  346. farVector.z_ = Clamp(farVector.z_, (1.0f + M_LARGE_EPSILON) * nearClip, (1.0f - M_LARGE_EPSILON) * farClip);
  347. return Matrix3x4(Vector3(0.0f, 0.0f, farVector.z_), Quaternion::IDENTITY, Vector3(farVector.x_, farVector.y_, 1.0f));
  348. }
  349. const Matrix3x4& Light::GetVolumeTransform(Camera* camera)
  350. {
  351. const Matrix3x4& transform = node_->GetWorldTransform();
  352. switch (lightType_)
  353. {
  354. case LIGHT_DIRECTIONAL:
  355. volumeTransform_ = GetDirLightTransform(camera);
  356. break;
  357. case LIGHT_SPOT:
  358. {
  359. float yScale = tanf(fov_ * M_DEGTORAD * 0.5f) * range_;
  360. float xScale = aspectRatio_ * yScale;
  361. volumeTransform_ = Matrix3x4(transform.Translation(), transform.Rotation(), Vector3(xScale, yScale, range_));
  362. }
  363. break;
  364. case LIGHT_POINT:
  365. volumeTransform_ = Matrix3x4(transform.Translation(), Quaternion::IDENTITY, range_);
  366. break;
  367. }
  368. return volumeTransform_;
  369. }
  370. void Light::SetRampTextureAttr(ResourceRef value)
  371. {
  372. ResourceCache* cache = GetSubsystem<ResourceCache>();
  373. rampTexture_ = static_cast<Texture*>(cache->GetResource(value.type_, value.id_));
  374. }
  375. void Light::SetShapeTextureAttr(ResourceRef value)
  376. {
  377. ResourceCache* cache = GetSubsystem<ResourceCache>();
  378. shapeTexture_ = static_cast<Texture*>(cache->GetResource(value.type_, value.id_));
  379. }
  380. ResourceRef Light::GetRampTextureAttr() const
  381. {
  382. return GetResourceRef(rampTexture_, Texture2D::GetTypeStatic());
  383. }
  384. ResourceRef Light::GetShapeTextureAttr() const
  385. {
  386. return GetResourceRef(shapeTexture_, Texture2D::GetTypeStatic());
  387. }
  388. void Light::OnWorldBoundingBoxUpdate()
  389. {
  390. switch (lightType_)
  391. {
  392. case LIGHT_DIRECTIONAL:
  393. // Directional light always sets humongous bounding box not affected by transform
  394. worldBoundingBox_.Define(-M_LARGE_VALUE, M_LARGE_VALUE);
  395. break;
  396. case LIGHT_POINT:
  397. {
  398. const Vector3& center = node_->GetWorldPosition();
  399. Vector3 edge(range_, range_, range_);
  400. worldBoundingBox_.Define(center - edge, center + edge);
  401. }
  402. break;
  403. case LIGHT_SPOT:
  404. // Frustum is already transformed into world space
  405. worldBoundingBox_.Define(GetFrustum());
  406. break;
  407. }
  408. }
  409. void Light::SetIntensitySortValue(float distance)
  410. {
  411. // When sorting lights globally, give priority to directional lights so that they will be combined into the ambient pass
  412. if (lightType_ != LIGHT_DIRECTIONAL)
  413. sortValue_ = Max(distance, M_MIN_NEARCLIP) / (color_.Intensity() + M_EPSILON);
  414. else
  415. sortValue_ = M_EPSILON / (color_.Intensity() + M_EPSILON);
  416. // Additionally, give priority to vertex lights so that vertex light base passes can be determined before per pixel lights
  417. if (perVertex_)
  418. sortValue_ -= M_LARGE_VALUE;
  419. }
  420. void Light::SetIntensitySortValue(const BoundingBox& box)
  421. {
  422. // When sorting lights for object's maximum light cap, give priority based on attenuation and intensity
  423. switch (lightType_)
  424. {
  425. case LIGHT_DIRECTIONAL:
  426. sortValue_ = 1.0f / (color_.Intensity() + M_EPSILON);
  427. break;
  428. case LIGHT_POINT:
  429. {
  430. Vector3 centerPos = box.Center();
  431. Vector3 lightPos = node_->GetWorldPosition();
  432. Vector3 lightDir = (centerPos - lightPos).Normalized();
  433. Ray lightRay(lightPos, lightDir);
  434. float distance = lightRay.HitDistance(box);
  435. float normDistance = distance / range_;
  436. float att = Max(1.0f - normDistance * normDistance, M_EPSILON);
  437. sortValue_ = 1.0f / (color_.Intensity() * att + M_EPSILON);
  438. }
  439. break;
  440. case LIGHT_SPOT:
  441. {
  442. Vector3 centerPos = box.Center();
  443. Vector3 lightPos = node_->GetWorldPosition();
  444. Vector3 lightDir = node_->GetWorldRotation() * Vector3::FORWARD;
  445. Ray lightRay(lightPos, lightDir);
  446. Vector3 centerProj = lightRay.Project(centerPos);
  447. float centerDistance = (centerProj - lightPos).Length();
  448. Ray centerRay(centerProj, (centerPos - centerProj).Normalized());
  449. float centerAngle = centerRay.HitDistance(box) / centerDistance;
  450. // Check if a corner of the bounding box is closer to the light ray than the center, use its angle in that case
  451. Vector3 cornerPos = centerPos + box.HalfSize() * Vector3(centerPos.x_ < centerProj.x_ ? 1.0f : -1.0f,
  452. centerPos.y_ < centerProj.y_ ? 1.0f : -1.0f, centerPos.z_ < centerProj.z_ ? 1.0f : -1.0f);
  453. Vector3 cornerProj = lightRay.Project(cornerPos);
  454. float cornerDistance = (cornerProj - lightPos).Length();
  455. float cornerAngle = (cornerPos - cornerProj).Length() / cornerDistance;
  456. float spotAngle = Min(centerAngle, cornerAngle);
  457. float maxAngle = tanf(fov_ * M_DEGTORAD * 0.5f);
  458. float spotFactor = Min(spotAngle / maxAngle, 1.0f);
  459. // We do not know the actual range attenuation ramp, so take only spot attenuation into account
  460. float att = Max(1.0f - spotFactor * spotFactor, M_EPSILON);
  461. sortValue_ = 1.0f / (color_.Intensity() * att + M_EPSILON);
  462. }
  463. break;
  464. }
  465. }
  466. void Light::SetLightQueue(LightBatchQueue* queue)
  467. {
  468. lightQueue_ = queue;
  469. }
  470. }