PhysicsWorld.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "CollisionShape.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Joint.h"
  28. #include "Log.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsUtils.h"
  32. #include "PhysicsWorld.h"
  33. #include "Profiler.h"
  34. #include "Ray.h"
  35. #include "RigidBody.h"
  36. #include "Scene.h"
  37. #include "SceneEvents.h"
  38. #include "Sort.h"
  39. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  40. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  41. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  42. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  43. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  44. #include "DebugNew.h"
  45. static const int DEFAULT_FPS = 60;
  46. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  47. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  48. {
  49. return lhs.distance_ < rhs.distance_;
  50. }
  51. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  52. {
  53. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  54. }
  55. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  56. {
  57. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  58. }
  59. OBJECTTYPESTATIC(PhysicsWorld);
  60. PhysicsWorld::PhysicsWorld(Context* context) :
  61. Component(context),
  62. collisionConfiguration_(0),
  63. collisionDispatcher_(0),
  64. broadphase_(0),
  65. solver_(0),
  66. world_(0),
  67. fps_(DEFAULT_FPS),
  68. timeAcc_(0.0f),
  69. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  70. interpolation_(true),
  71. debugRenderer_(0),
  72. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints)
  73. {
  74. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  75. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  76. broadphase_ = new btDbvtBroadphase();
  77. solver_ = new btSequentialImpulseConstraintSolver();
  78. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  79. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  80. world_->getDispatchInfo().m_useContinuous = true;
  81. world_->setDebugDrawer(this);
  82. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  83. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  84. }
  85. PhysicsWorld::~PhysicsWorld()
  86. {
  87. if (scene_)
  88. {
  89. // Force all remaining joints, rigid bodies and collision shapes to release themselves
  90. for (PODVector<Joint*>::Iterator i = joints_.Begin(); i != joints_.End(); ++i)
  91. (*i)->Clear();
  92. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  93. (*i)->ReleaseBody();
  94. }
  95. // Remove any cached geometries that still remain
  96. geometryCache_.Clear();
  97. delete world_;
  98. world_ = 0;
  99. delete solver_;
  100. solver_ = 0;
  101. delete broadphase_;
  102. broadphase_ = 0;
  103. delete collisionDispatcher_;
  104. collisionDispatcher_ = 0;
  105. delete collisionConfiguration_;
  106. collisionConfiguration_ = 0;
  107. }
  108. void PhysicsWorld::RegisterObject(Context* context)
  109. {
  110. context->RegisterFactory<PhysicsWorld>();
  111. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  112. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  113. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  114. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  115. }
  116. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  117. {
  118. if (debugRenderer_)
  119. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  120. }
  121. void PhysicsWorld::reportErrorWarning(const char* warningString)
  122. {
  123. LOGWARNING("Physics: " + String(warningString));
  124. }
  125. void PhysicsWorld::Update(float timeStep)
  126. {
  127. PROFILE(UpdatePhysics);
  128. float internalTimeStep = 1.0f / fps_;
  129. if (interpolation_)
  130. {
  131. int maxSubSteps = (int)(timeStep * fps_) + 1;
  132. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  133. }
  134. else
  135. {
  136. timeAcc_ += timeStep;
  137. while (timeAcc_ >= internalTimeStep)
  138. {
  139. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  140. timeAcc_ -= internalTimeStep;
  141. }
  142. }
  143. }
  144. void PhysicsWorld::UpdateCollisions()
  145. {
  146. world_->performDiscreteCollisionDetection();
  147. }
  148. void PhysicsWorld::SetFps(int fps)
  149. {
  150. fps_ = Clamp(fps, 1, 1000);
  151. }
  152. void PhysicsWorld::SetGravity(Vector3 gravity)
  153. {
  154. world_->setGravity(ToBtVector3(gravity));
  155. }
  156. void PhysicsWorld::SetInterpolation(bool enable)
  157. {
  158. interpolation_ = enable;
  159. }
  160. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  161. {
  162. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  163. }
  164. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  165. {
  166. PROFILE(PhysicsRaycast);
  167. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  168. maxDistance * ray.direction_));
  169. rayCallback.m_collisionFilterGroup = (short)0xffff;
  170. rayCallback.m_collisionFilterMask = collisionMask;
  171. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  172. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  173. {
  174. PhysicsRaycastResult newResult;
  175. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  176. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  177. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  178. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  179. result.Push(newResult);
  180. }
  181. Sort(result.Begin(), result.End(), CompareRaycastResults);
  182. }
  183. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  184. {
  185. PROFILE(PhysicsRaycastSingle);
  186. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  187. maxDistance * ray.direction_));
  188. rayCallback.m_collisionFilterGroup = (short)0xffff;
  189. rayCallback.m_collisionFilterMask = collisionMask;
  190. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  191. if (rayCallback.hasHit())
  192. {
  193. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  194. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  195. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  196. result.distance_ = (result.position_ - ray.origin_).Length();
  197. }
  198. else
  199. {
  200. result.body_ = 0;
  201. result.position_ = Vector3::ZERO;
  202. result.normal_ = Vector3::ZERO;
  203. result.distance_ = M_INFINITY;
  204. }
  205. }
  206. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  207. {
  208. btSphereShape shape(radius);
  209. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  210. maxDistance * ray.direction_));
  211. convexCallback.m_collisionFilterGroup = (short)0xffff;
  212. convexCallback.m_collisionFilterMask = collisionMask;
  213. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  214. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  215. if (convexCallback.hasHit())
  216. {
  217. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  218. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  219. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  220. result.distance_ = (result.position_ - ray.origin_).Length();
  221. }
  222. else
  223. {
  224. result.body_ = 0;
  225. result.position_ = Vector3::ZERO;
  226. result.normal_ = Vector3::ZERO;
  227. result.distance_ = M_INFINITY;
  228. }
  229. }
  230. Vector3 PhysicsWorld::GetGravity() const
  231. {
  232. return ToVector3(world_->getGravity());
  233. }
  234. void PhysicsWorld::AddRigidBody(RigidBody* body)
  235. {
  236. rigidBodies_.Push(body);
  237. }
  238. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  239. {
  240. PODVector<RigidBody*>::Iterator i = rigidBodies_.Find(body);
  241. if (i != rigidBodies_.End())
  242. rigidBodies_.Erase(i);
  243. }
  244. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  245. {
  246. collisionShapes_.Push(shape);
  247. }
  248. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  249. {
  250. PODVector<CollisionShape*>::Iterator i = collisionShapes_.Find(shape);
  251. if (i != collisionShapes_.End())
  252. collisionShapes_.Erase(i);
  253. }
  254. void PhysicsWorld::AddJoint(Joint* joint)
  255. {
  256. joints_.Push(joint);
  257. }
  258. void PhysicsWorld::RemoveJoint(Joint* joint)
  259. {
  260. PODVector<Joint*>::Iterator i = joints_.Find(joint);
  261. if (i != joints_.End())
  262. joints_.Erase(i);
  263. }
  264. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  265. {
  266. delayedWorldTransforms_[transform.rigidBody_] = transform;
  267. }
  268. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  269. {
  270. PROFILE(PhysicsDrawDebug);
  271. debugDepthTest_ = depthTest;
  272. debugRenderer_ = GetComponent<DebugRenderer>();
  273. world_->debugDrawWorld();
  274. debugRenderer_ = 0;
  275. }
  276. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  277. {
  278. debugRenderer_ = debug;
  279. }
  280. void PhysicsWorld::SetDebugDepthTest(bool enable)
  281. {
  282. debugDepthTest_ = enable;
  283. }
  284. void PhysicsWorld::CleanupGeometryCache()
  285. {
  286. // Remove cached shapes whose only reference is the cache itself
  287. for (Map<String, SharedPtr<CollisionGeometryData> >::Iterator i = geometryCache_.Begin();
  288. i != geometryCache_.End();)
  289. {
  290. Map<String, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  291. if (current->second_.Refs() == 1)
  292. geometryCache_.Erase(current);
  293. }
  294. }
  295. void PhysicsWorld::OnNodeSet(Node* node)
  296. {
  297. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  298. if (node)
  299. {
  300. scene_ = GetScene();
  301. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  302. }
  303. }
  304. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  305. {
  306. using namespace SceneSubsystemUpdate;
  307. Update(eventData[P_TIMESTEP].GetFloat());
  308. }
  309. void PhysicsWorld::PreStep(float timeStep)
  310. {
  311. // Send pre-step event
  312. using namespace PhysicsPreStep;
  313. VariantMap eventData;
  314. eventData[P_WORLD] = (void*)this;
  315. eventData[P_TIMESTEP] = timeStep;
  316. SendEvent(E_PHYSICSPRESTEP, eventData);
  317. delayedWorldTransforms_.Clear();
  318. // Start profiling block for the actual simulation step
  319. #ifdef ENABLE_PROFILING
  320. Profiler* profiler = GetSubsystem<Profiler>();
  321. if (profiler)
  322. profiler->BeginBlock("StepSimulation");
  323. #endif
  324. }
  325. void PhysicsWorld::PostStep(float timeStep)
  326. {
  327. #ifdef ENABLE_PROFILING
  328. GetSubsystem<Profiler>()->EndBlock();
  329. #endif
  330. // Apply delayed (parented) world transforms now
  331. while (!delayedWorldTransforms_.Empty())
  332. {
  333. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  334. i != delayedWorldTransforms_.End(); )
  335. {
  336. HashMap<RigidBody*, DelayedWorldTransform>::Iterator current = i++;
  337. const DelayedWorldTransform& transform = current->second_;
  338. // If parent's transform has already been assigned, can proceed
  339. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  340. {
  341. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  342. delayedWorldTransforms_.Erase(current);
  343. }
  344. }
  345. }
  346. SendCollisionEvents();
  347. // Send post-step event
  348. using namespace PhysicsPreStep;
  349. VariantMap eventData;
  350. eventData[P_WORLD] = (void*)this;
  351. eventData[P_TIMESTEP] = timeStep;
  352. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  353. }
  354. void PhysicsWorld::SendCollisionEvents()
  355. {
  356. PROFILE(SendCollisionEvents);
  357. currentCollisions_.Clear();
  358. int numManifolds = collisionDispatcher_->getNumManifolds();
  359. if (numManifolds)
  360. {
  361. VariantMap physicsCollisionData;
  362. VariantMap nodeCollisionData;
  363. VectorBuffer contacts;
  364. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  365. for (int i = 0; i < numManifolds; ++i)
  366. {
  367. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  368. int numContacts = contactManifold->getNumContacts();
  369. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  370. if (!numContacts)
  371. continue;
  372. btCollisionObject* objectA = static_cast<btCollisionObject*>(contactManifold->getBody0());
  373. btCollisionObject* objectB = static_cast<btCollisionObject*>(contactManifold->getBody1());
  374. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  375. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  376. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  377. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  378. continue;
  379. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  380. continue;
  381. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  382. !bodyA->IsActive() && !bodyB->IsActive())
  383. continue;
  384. Node* nodeA = bodyA->GetNode();
  385. Node* nodeB = bodyB->GetNode();
  386. WeakPtr<Node> nodeWeakA(nodeA);
  387. WeakPtr<Node> nodeWeakB(nodeB);
  388. Pair<RigidBody*, RigidBody*> bodyPair;
  389. if (bodyA < bodyB)
  390. bodyPair = MakePair(bodyA, bodyB);
  391. else
  392. bodyPair = MakePair(bodyB, bodyA);
  393. currentCollisions_.Insert(bodyPair);
  394. bool newCollision = !previousCollisions_.Contains(bodyPair);
  395. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)nodeA;
  396. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)nodeB;
  397. physicsCollisionData[PhysicsCollision::P_BODYA] = (void*)bodyA;
  398. physicsCollisionData[PhysicsCollision::P_BODYB] = (void*)bodyB;
  399. physicsCollisionData[PhysicsCollision::P_NEWCOLLISION] = !previousCollisions_.Contains(bodyPair);
  400. contacts.Clear();
  401. for (int j = 0; j < numContacts; ++j)
  402. {
  403. btManifoldPoint& point = contactManifold->getContactPoint(j);
  404. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  405. contacts.WriteVector3(ToVector3(point.m_normalWorldOnB));
  406. contacts.WriteFloat(point.m_distance1);
  407. contacts.WriteFloat(point.m_appliedImpulse);
  408. }
  409. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  410. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  411. // Skip if either of the nodes has been removed as a response to the event
  412. if (!nodeWeakA || !nodeWeakB)
  413. continue;
  414. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyA;
  415. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeB;
  416. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyB;
  417. nodeCollisionData[NodeCollision::P_NEWCOLLISION] = newCollision;
  418. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  419. SendEvent(nodeA, E_NODECOLLISION, nodeCollisionData);
  420. // Skip if either of the nodes has been removed as a response to the event
  421. if (!nodeWeakA || !nodeWeakB)
  422. continue;
  423. contacts.Clear();
  424. for (int j = 0; j < numContacts; ++j)
  425. {
  426. btManifoldPoint& point = contactManifold->getContactPoint(j);
  427. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  428. contacts.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  429. contacts.WriteFloat(point.m_distance1);
  430. contacts.WriteFloat(point.m_appliedImpulse);
  431. }
  432. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyB;
  433. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeA;
  434. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyA;
  435. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  436. SendEvent(nodeB, E_NODECOLLISION, nodeCollisionData);
  437. }
  438. }
  439. previousCollisions_ = currentCollisions_;
  440. }
  441. void RegisterPhysicsLibrary(Context* context)
  442. {
  443. Joint::RegisterObject(context);
  444. RigidBody::RegisterObject(context);
  445. CollisionShape::RegisterObject(context);
  446. PhysicsWorld::RegisterObject(context);
  447. }