rasterizer_scene_gles2.cpp 118 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372
  1. /*************************************************************************/
  2. /* rasterizer_scene_gles2.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "rasterizer_scene_gles2.h"
  31. #include "core/math/math_funcs.h"
  32. #include "core/math/transform.h"
  33. #include "core/os/os.h"
  34. #include "core/project_settings.h"
  35. #include "core/vmap.h"
  36. #include "rasterizer_canvas_gles2.h"
  37. #include "servers/visual/visual_server_raster.h"
  38. #ifndef GLES_OVER_GL
  39. #define glClearDepth glClearDepthf
  40. #endif
  41. static const GLenum _cube_side_enum[6] = {
  42. GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
  43. GL_TEXTURE_CUBE_MAP_POSITIVE_X,
  44. GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
  45. GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
  46. GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
  47. GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
  48. };
  49. /* SHADOW ATLAS API */
  50. RID RasterizerSceneGLES2::shadow_atlas_create() {
  51. ShadowAtlas *shadow_atlas = memnew(ShadowAtlas);
  52. shadow_atlas->fbo = 0;
  53. shadow_atlas->depth = 0;
  54. shadow_atlas->color = 0;
  55. shadow_atlas->size = 0;
  56. shadow_atlas->smallest_subdiv = 0;
  57. for (int i = 0; i < 4; i++) {
  58. shadow_atlas->size_order[i] = i;
  59. }
  60. return shadow_atlas_owner.make_rid(shadow_atlas);
  61. }
  62. void RasterizerSceneGLES2::shadow_atlas_set_size(RID p_atlas, int p_size) {
  63. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  64. ERR_FAIL_COND(!shadow_atlas);
  65. ERR_FAIL_COND(p_size < 0);
  66. p_size = next_power_of_2(p_size);
  67. if (p_size == shadow_atlas->size)
  68. return;
  69. // erase the old atlast
  70. if (shadow_atlas->fbo) {
  71. if (storage->config.use_rgba_3d_shadows) {
  72. glDeleteRenderbuffers(1, &shadow_atlas->depth);
  73. } else {
  74. glDeleteTextures(1, &shadow_atlas->depth);
  75. }
  76. glDeleteFramebuffers(1, &shadow_atlas->fbo);
  77. if (shadow_atlas->color) {
  78. glDeleteTextures(1, &shadow_atlas->color);
  79. }
  80. shadow_atlas->fbo = 0;
  81. shadow_atlas->depth = 0;
  82. shadow_atlas->color = 0;
  83. }
  84. // erase shadow atlast references from lights
  85. for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) {
  86. LightInstance *li = light_instance_owner.getornull(E->key());
  87. ERR_CONTINUE(!li);
  88. li->shadow_atlases.erase(p_atlas);
  89. }
  90. shadow_atlas->shadow_owners.clear();
  91. shadow_atlas->size = p_size;
  92. if (shadow_atlas->size) {
  93. glGenFramebuffers(1, &shadow_atlas->fbo);
  94. glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo);
  95. // create a depth texture
  96. glActiveTexture(GL_TEXTURE0);
  97. if (storage->config.use_rgba_3d_shadows) {
  98. //maximum compatibility, renderbuffer and RGBA shadow
  99. glGenRenderbuffers(1, &shadow_atlas->depth);
  100. glBindRenderbuffer(GL_RENDERBUFFER, directional_shadow.depth);
  101. glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_internalformat, shadow_atlas->size, shadow_atlas->size);
  102. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, shadow_atlas->depth);
  103. glGenTextures(1, &shadow_atlas->color);
  104. glBindTexture(GL_TEXTURE_2D, shadow_atlas->color);
  105. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, shadow_atlas->size, shadow_atlas->size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
  106. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  107. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  108. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  109. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  110. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, shadow_atlas->color, 0);
  111. } else {
  112. //just depth texture
  113. glGenTextures(1, &shadow_atlas->depth);
  114. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  115. glTexImage2D(GL_TEXTURE_2D, 0, storage->config.depth_internalformat, shadow_atlas->size, shadow_atlas->size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, NULL);
  116. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  117. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  118. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  119. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  120. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadow_atlas->depth, 0);
  121. }
  122. glViewport(0, 0, shadow_atlas->size, shadow_atlas->size);
  123. glDepthMask(GL_TRUE);
  124. glClearDepth(0.0f);
  125. glClear(GL_DEPTH_BUFFER_BIT);
  126. glBindFramebuffer(GL_FRAMEBUFFER, 0);
  127. }
  128. }
  129. void RasterizerSceneGLES2::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
  130. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  131. ERR_FAIL_COND(!shadow_atlas);
  132. ERR_FAIL_INDEX(p_quadrant, 4);
  133. ERR_FAIL_INDEX(p_subdivision, 16384);
  134. uint32_t subdiv = next_power_of_2(p_subdivision);
  135. if (subdiv & 0xaaaaaaaa) { // sqrt(subdiv) must be integer
  136. subdiv <<= 1;
  137. }
  138. subdiv = int(Math::sqrt((float)subdiv));
  139. if (shadow_atlas->quadrants[p_quadrant].shadows.size() == (int)subdiv)
  140. return;
  141. // erase all data from the quadrant
  142. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
  143. if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
  144. shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  145. LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  146. ERR_CONTINUE(!li);
  147. li->shadow_atlases.erase(p_atlas);
  148. }
  149. }
  150. shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
  151. shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv);
  152. shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
  153. // cache the smallest subdivision for faster allocations
  154. shadow_atlas->smallest_subdiv = 1 << 30;
  155. for (int i = 0; i < 4; i++) {
  156. if (shadow_atlas->quadrants[i].subdivision) {
  157. shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
  158. }
  159. }
  160. if (shadow_atlas->smallest_subdiv == 1 << 30) {
  161. shadow_atlas->smallest_subdiv = 0;
  162. }
  163. // re-sort the quadrants
  164. int swaps = 0;
  165. do {
  166. swaps = 0;
  167. for (int i = 0; i < 3; i++) {
  168. if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
  169. SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
  170. swaps++;
  171. }
  172. }
  173. } while (swaps > 0);
  174. }
  175. bool RasterizerSceneGLES2::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  176. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  177. int qidx = p_in_quadrants[i];
  178. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  179. return false;
  180. }
  181. // look for an empty space
  182. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  183. ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw();
  184. int found_free_idx = -1; // found a free one
  185. int found_used_idx = -1; // found an existing one, must steal it
  186. uint64_t min_pass = 0; // pass of the existing one, try to use the least recently
  187. for (int j = 0; j < sc; j++) {
  188. if (!sarr[j].owner.is_valid()) {
  189. found_free_idx = j;
  190. break;
  191. }
  192. LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
  193. ERR_CONTINUE(!sli);
  194. if (sli->last_scene_pass != scene_pass) {
  195. // was just allocated, don't kill it so soon, wait a bit...
  196. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  197. continue;
  198. }
  199. if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
  200. found_used_idx = j;
  201. min_pass = sli->last_scene_pass;
  202. }
  203. }
  204. }
  205. if (found_free_idx == -1 && found_used_idx == -1) {
  206. continue; // nothing found
  207. }
  208. if (found_free_idx == -1 && found_used_idx != -1) {
  209. found_free_idx = found_used_idx;
  210. }
  211. r_quadrant = qidx;
  212. r_shadow = found_free_idx;
  213. return true;
  214. }
  215. return false;
  216. }
  217. bool RasterizerSceneGLES2::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
  218. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  219. ERR_FAIL_COND_V(!shadow_atlas, false);
  220. LightInstance *li = light_instance_owner.getornull(p_light_intance);
  221. ERR_FAIL_COND_V(!li, false);
  222. if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
  223. return false;
  224. }
  225. uint32_t quad_size = shadow_atlas->size >> 1;
  226. int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
  227. int valid_quadrants[4];
  228. int valid_quadrant_count = 0;
  229. int best_size = -1;
  230. int best_subdiv = -1;
  231. for (int i = 0; i < 4; i++) {
  232. int q = shadow_atlas->size_order[i];
  233. int sd = shadow_atlas->quadrants[q].subdivision;
  234. if (sd == 0) {
  235. continue;
  236. }
  237. int max_fit = quad_size / sd;
  238. if (best_size != -1 && max_fit > best_size) {
  239. break; // what we asked for is bigger than this.
  240. }
  241. valid_quadrants[valid_quadrant_count] = q;
  242. valid_quadrant_count++;
  243. best_subdiv = sd;
  244. if (max_fit >= desired_fit) {
  245. best_size = max_fit;
  246. }
  247. }
  248. ERR_FAIL_COND_V(valid_quadrant_count == 0, false); // no suitable block available
  249. uint64_t tick = OS::get_singleton()->get_ticks_msec();
  250. if (shadow_atlas->shadow_owners.has(p_light_intance)) {
  251. // light was already known!
  252. uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
  253. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  254. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  255. bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
  256. bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version;
  257. if (!should_realloc) {
  258. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  259. return should_redraw;
  260. }
  261. int new_quadrant;
  262. int new_shadow;
  263. // find a better place
  264. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) {
  265. // found a better place
  266. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  267. if (sh->owner.is_valid()) {
  268. // it is take but invalid, so we can take it
  269. shadow_atlas->shadow_owners.erase(sh->owner);
  270. LightInstance *sli = light_instance_owner.get(sh->owner);
  271. sli->shadow_atlases.erase(p_atlas);
  272. }
  273. // erase previous
  274. shadow_atlas->quadrants[q].shadows.write[s].version = 0;
  275. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  276. sh->owner = p_light_intance;
  277. sh->alloc_tick = tick;
  278. sh->version = p_light_version;
  279. li->shadow_atlases.insert(p_atlas);
  280. // make a new key
  281. key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  282. key |= new_shadow;
  283. // update it in the map
  284. shadow_atlas->shadow_owners[p_light_intance] = key;
  285. // make it dirty, so we redraw
  286. return true;
  287. }
  288. // no better place found, so we keep the current place
  289. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  290. return should_redraw;
  291. }
  292. int new_quadrant;
  293. int new_shadow;
  294. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) {
  295. // found a better place
  296. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  297. if (sh->owner.is_valid()) {
  298. // it is take but invalid, so we can take it
  299. shadow_atlas->shadow_owners.erase(sh->owner);
  300. LightInstance *sli = light_instance_owner.get(sh->owner);
  301. sli->shadow_atlases.erase(p_atlas);
  302. }
  303. sh->owner = p_light_intance;
  304. sh->alloc_tick = tick;
  305. sh->version = p_light_version;
  306. li->shadow_atlases.insert(p_atlas);
  307. // make a new key
  308. uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  309. key |= new_shadow;
  310. // update it in the map
  311. shadow_atlas->shadow_owners[p_light_intance] = key;
  312. // make it dirty, so we redraw
  313. return true;
  314. }
  315. return false;
  316. }
  317. void RasterizerSceneGLES2::set_directional_shadow_count(int p_count) {
  318. directional_shadow.light_count = p_count;
  319. directional_shadow.current_light = 0;
  320. }
  321. int RasterizerSceneGLES2::get_directional_light_shadow_size(RID p_light_intance) {
  322. ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
  323. int shadow_size;
  324. if (directional_shadow.light_count == 1) {
  325. shadow_size = directional_shadow.size;
  326. } else {
  327. shadow_size = directional_shadow.size / 2; //more than 4 not supported anyway
  328. }
  329. LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
  330. ERR_FAIL_COND_V(!light_instance, 0);
  331. switch (light_instance->light_ptr->directional_shadow_mode) {
  332. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
  333. break; //none
  334. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
  335. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
  336. shadow_size /= 2;
  337. break;
  338. }
  339. return shadow_size;
  340. }
  341. //////////////////////////////////////////////////////
  342. RID RasterizerSceneGLES2::reflection_atlas_create() {
  343. return RID();
  344. }
  345. void RasterizerSceneGLES2::reflection_atlas_set_size(RID p_ref_atlas, int p_size) {
  346. }
  347. void RasterizerSceneGLES2::reflection_atlas_set_subdivision(RID p_ref_atlas, int p_subdiv) {
  348. }
  349. ////////////////////////////////////////////////////
  350. RID RasterizerSceneGLES2::reflection_probe_instance_create(RID p_probe) {
  351. RasterizerStorageGLES2::ReflectionProbe *probe = storage->reflection_probe_owner.getornull(p_probe);
  352. ERR_FAIL_COND_V(!probe, RID());
  353. ReflectionProbeInstance *rpi = memnew(ReflectionProbeInstance);
  354. rpi->probe_ptr = probe;
  355. rpi->self = reflection_probe_instance_owner.make_rid(rpi);
  356. rpi->probe = p_probe;
  357. rpi->reflection_atlas_index = -1;
  358. rpi->render_step = -1;
  359. rpi->last_pass = 0;
  360. rpi->current_resolution = 0;
  361. rpi->dirty = true;
  362. rpi->last_pass = 0;
  363. rpi->index = 0;
  364. for (int i = 0; i < 6; i++) {
  365. glGenFramebuffers(1, &rpi->fbo[i]);
  366. glGenTextures(1, &rpi->color[i]);
  367. }
  368. glGenRenderbuffers(1, &rpi->depth);
  369. rpi->cubemap = 0;
  370. //glGenTextures(1, &rpi->cubemap);
  371. return rpi->self;
  372. }
  373. void RasterizerSceneGLES2::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {
  374. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  375. ERR_FAIL_COND(!rpi);
  376. rpi->transform = p_transform;
  377. }
  378. void RasterizerSceneGLES2::reflection_probe_release_atlas_index(RID p_instance) {
  379. }
  380. bool RasterizerSceneGLES2::reflection_probe_instance_needs_redraw(RID p_instance) {
  381. const ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  382. ERR_FAIL_COND_V(!rpi, false);
  383. bool need_redraw = rpi->probe_ptr->resolution != rpi->current_resolution || rpi->dirty || rpi->probe_ptr->update_mode == VS::REFLECTION_PROBE_UPDATE_ALWAYS;
  384. rpi->dirty = false;
  385. return need_redraw;
  386. }
  387. bool RasterizerSceneGLES2::reflection_probe_instance_has_reflection(RID p_instance) {
  388. return true;
  389. }
  390. bool RasterizerSceneGLES2::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
  391. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  392. ERR_FAIL_COND_V(!rpi, false);
  393. rpi->render_step = 0;
  394. if (rpi->probe_ptr->resolution != rpi->current_resolution) {
  395. //update cubemap if resolution changed
  396. int size = rpi->probe_ptr->resolution;
  397. rpi->current_resolution = size;
  398. GLenum internal_format = GL_RGB;
  399. GLenum format = GL_RGB;
  400. GLenum type = GL_UNSIGNED_BYTE;
  401. glActiveTexture(GL_TEXTURE0);
  402. glBindRenderbuffer(GL_RENDERBUFFER, rpi->depth);
  403. glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_internalformat, size, size);
  404. if (rpi->cubemap != 0) {
  405. glDeleteTextures(1, &rpi->cubemap);
  406. }
  407. glGenTextures(1, &rpi->cubemap);
  408. glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap);
  409. #if 1
  410. //Mobile hardware (PowerVR specially) prefers this approach, the other one kills the game
  411. for (int i = 0; i < 6; i++) {
  412. glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, size, size, 0, format, type, NULL);
  413. }
  414. glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
  415. //Generate framebuffers for rendering
  416. for (int i = 0; i < 6; i++) {
  417. glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]);
  418. glBindTexture(GL_TEXTURE_2D, rpi->color[i]);
  419. glTexImage2D(GL_TEXTURE_2D, 0, internal_format, size, size, 0, format, type, NULL);
  420. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rpi->color[i], 0);
  421. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rpi->depth);
  422. GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
  423. ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
  424. }
  425. #else
  426. int lod = 0;
  427. //the approach below is fatal for powervr
  428. // Set the initial (empty) mipmaps, all need to be set for this to work in GLES2, even if later wont be used.
  429. while (size >= 1) {
  430. for (int i = 0; i < 6; i++) {
  431. glTexImage2D(_cube_side_enum[i], lod, internal_format, size, size, 0, format, type, NULL);
  432. if (size == rpi->current_resolution) {
  433. //adjust framebuffer
  434. glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]);
  435. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _cube_side_enum[i], rpi->cubemap, 0);
  436. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rpi->depth);
  437. #ifdef DEBUG_ENABLED
  438. GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
  439. ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
  440. #endif
  441. }
  442. }
  443. lod++;
  444. size >>= 1;
  445. }
  446. #endif
  447. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
  448. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
  449. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  450. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  451. glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo);
  452. }
  453. return true;
  454. }
  455. bool RasterizerSceneGLES2::reflection_probe_instance_postprocess_step(RID p_instance) {
  456. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  457. ERR_FAIL_COND_V(!rpi, false);
  458. ERR_FAIL_COND_V(rpi->current_resolution == 0, false);
  459. int size = rpi->probe_ptr->resolution;
  460. {
  461. glBindBuffer(GL_ARRAY_BUFFER, 0);
  462. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
  463. glDisable(GL_CULL_FACE);
  464. glDisable(GL_DEPTH_TEST);
  465. glDisable(GL_SCISSOR_TEST);
  466. glDisable(GL_BLEND);
  467. glDepthMask(GL_FALSE);
  468. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  469. glDisableVertexAttribArray(i);
  470. }
  471. }
  472. glActiveTexture(GL_TEXTURE0);
  473. glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap);
  474. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); //use linear, no mipmaps so it does not read from what is being written to
  475. //first of all, copy rendered textures to cubemap
  476. for (int i = 0; i < 6; i++) {
  477. glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]);
  478. glViewport(0, 0, size, size);
  479. glCopyTexImage2D(_cube_side_enum[i], 0, GL_RGB, 0, 0, size, size, 0);
  480. }
  481. //do filtering
  482. //vdc cache
  483. glActiveTexture(GL_TEXTURE1);
  484. glBindTexture(GL_TEXTURE_2D, storage->resources.radical_inverse_vdc_cache_tex);
  485. // now render to the framebuffer, mipmap level for mipmap level
  486. int lod = 1;
  487. size >>= 1;
  488. int mipmaps = 6;
  489. storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES2::USE_SOURCE_PANORAMA, false);
  490. storage->shaders.cubemap_filter.bind();
  491. glBindFramebuffer(GL_FRAMEBUFFER, storage->resources.mipmap_blur_fbo);
  492. //blur
  493. while (size >= 1) {
  494. glActiveTexture(GL_TEXTURE3);
  495. glBindTexture(GL_TEXTURE_2D, storage->resources.mipmap_blur_color);
  496. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, size, size, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL);
  497. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, storage->resources.mipmap_blur_color, 0);
  498. glViewport(0, 0, size, size);
  499. glActiveTexture(GL_TEXTURE0);
  500. for (int i = 0; i < 6; i++) {
  501. storage->bind_quad_array();
  502. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::FACE_ID, i);
  503. float roughness = CLAMP(lod / (float)(mipmaps - 1), 0, 1);
  504. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::ROUGHNESS, roughness);
  505. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::Z_FLIP, false);
  506. glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
  507. glCopyTexImage2D(_cube_side_enum[i], lod, GL_RGB, 0, 0, size, size, 0);
  508. }
  509. size >>= 1;
  510. lod++;
  511. }
  512. // restore ranges
  513. glActiveTexture(GL_TEXTURE0);
  514. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
  515. glBindTexture(GL_TEXTURE_2D, 0);
  516. glActiveTexture(GL_TEXTURE3); //back to panorama
  517. glBindTexture(GL_TEXTURE_2D, 0);
  518. glActiveTexture(GL_TEXTURE1);
  519. glBindTexture(GL_TEXTURE_2D, 0);
  520. glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo);
  521. return true;
  522. }
  523. /* ENVIRONMENT API */
  524. RID RasterizerSceneGLES2::environment_create() {
  525. Environment *env = memnew(Environment);
  526. return environment_owner.make_rid(env);
  527. }
  528. void RasterizerSceneGLES2::environment_set_background(RID p_env, VS::EnvironmentBG p_bg) {
  529. Environment *env = environment_owner.getornull(p_env);
  530. ERR_FAIL_COND(!env);
  531. env->bg_mode = p_bg;
  532. }
  533. void RasterizerSceneGLES2::environment_set_sky(RID p_env, RID p_sky) {
  534. Environment *env = environment_owner.getornull(p_env);
  535. ERR_FAIL_COND(!env);
  536. env->sky = p_sky;
  537. }
  538. void RasterizerSceneGLES2::environment_set_sky_custom_fov(RID p_env, float p_scale) {
  539. Environment *env = environment_owner.getornull(p_env);
  540. ERR_FAIL_COND(!env);
  541. env->sky_custom_fov = p_scale;
  542. }
  543. void RasterizerSceneGLES2::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {
  544. Environment *env = environment_owner.getornull(p_env);
  545. ERR_FAIL_COND(!env);
  546. env->sky_orientation = p_orientation;
  547. }
  548. void RasterizerSceneGLES2::environment_set_bg_color(RID p_env, const Color &p_color) {
  549. Environment *env = environment_owner.getornull(p_env);
  550. ERR_FAIL_COND(!env);
  551. env->bg_color = p_color;
  552. }
  553. void RasterizerSceneGLES2::environment_set_bg_energy(RID p_env, float p_energy) {
  554. Environment *env = environment_owner.getornull(p_env);
  555. ERR_FAIL_COND(!env);
  556. env->bg_energy = p_energy;
  557. }
  558. void RasterizerSceneGLES2::environment_set_canvas_max_layer(RID p_env, int p_max_layer) {
  559. Environment *env = environment_owner.getornull(p_env);
  560. ERR_FAIL_COND(!env);
  561. env->canvas_max_layer = p_max_layer;
  562. }
  563. void RasterizerSceneGLES2::environment_set_ambient_light(RID p_env, const Color &p_color, float p_energy, float p_sky_contribution) {
  564. Environment *env = environment_owner.getornull(p_env);
  565. ERR_FAIL_COND(!env);
  566. env->ambient_color = p_color;
  567. env->ambient_energy = p_energy;
  568. env->ambient_sky_contribution = p_sky_contribution;
  569. }
  570. void RasterizerSceneGLES2::environment_set_dof_blur_far(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) {
  571. Environment *env = environment_owner.getornull(p_env);
  572. ERR_FAIL_COND(!env);
  573. }
  574. void RasterizerSceneGLES2::environment_set_dof_blur_near(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) {
  575. Environment *env = environment_owner.getornull(p_env);
  576. ERR_FAIL_COND(!env);
  577. }
  578. void RasterizerSceneGLES2::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_bloom_threshold, VS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale) {
  579. Environment *env = environment_owner.getornull(p_env);
  580. ERR_FAIL_COND(!env);
  581. }
  582. void RasterizerSceneGLES2::environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) {
  583. Environment *env = environment_owner.getornull(p_env);
  584. ERR_FAIL_COND(!env);
  585. }
  586. void RasterizerSceneGLES2::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_in, float p_fade_out, float p_depth_tolerance, bool p_roughness) {
  587. Environment *env = environment_owner.getornull(p_env);
  588. ERR_FAIL_COND(!env);
  589. }
  590. void RasterizerSceneGLES2::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect, float p_ao_channel_affect, const Color &p_color, VS::EnvironmentSSAOQuality p_quality, VisualServer::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) {
  591. Environment *env = environment_owner.getornull(p_env);
  592. ERR_FAIL_COND(!env);
  593. }
  594. void RasterizerSceneGLES2::environment_set_tonemap(RID p_env, VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {
  595. Environment *env = environment_owner.getornull(p_env);
  596. ERR_FAIL_COND(!env);
  597. }
  598. void RasterizerSceneGLES2::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) {
  599. Environment *env = environment_owner.getornull(p_env);
  600. ERR_FAIL_COND(!env);
  601. }
  602. void RasterizerSceneGLES2::environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount) {
  603. Environment *env = environment_owner.getornull(p_env);
  604. ERR_FAIL_COND(!env);
  605. env->fog_enabled = p_enable;
  606. env->fog_color = p_color;
  607. env->fog_sun_color = p_sun_color;
  608. env->fog_sun_amount = p_sun_amount;
  609. }
  610. void RasterizerSceneGLES2::environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) {
  611. Environment *env = environment_owner.getornull(p_env);
  612. ERR_FAIL_COND(!env);
  613. env->fog_depth_enabled = p_enable;
  614. env->fog_depth_begin = p_depth_begin;
  615. env->fog_depth_end = p_depth_end;
  616. env->fog_depth_curve = p_depth_curve;
  617. env->fog_transmit_enabled = p_transmit;
  618. env->fog_transmit_curve = p_transmit_curve;
  619. }
  620. void RasterizerSceneGLES2::environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) {
  621. Environment *env = environment_owner.getornull(p_env);
  622. ERR_FAIL_COND(!env);
  623. env->fog_height_enabled = p_enable;
  624. env->fog_height_min = p_min_height;
  625. env->fog_height_max = p_max_height;
  626. env->fog_height_curve = p_height_curve;
  627. }
  628. bool RasterizerSceneGLES2::is_environment(RID p_env) {
  629. return environment_owner.owns(p_env);
  630. }
  631. VS::EnvironmentBG RasterizerSceneGLES2::environment_get_background(RID p_env) {
  632. const Environment *env = environment_owner.getornull(p_env);
  633. ERR_FAIL_COND_V(!env, VS::ENV_BG_MAX);
  634. return env->bg_mode;
  635. }
  636. int RasterizerSceneGLES2::environment_get_canvas_max_layer(RID p_env) {
  637. const Environment *env = environment_owner.getornull(p_env);
  638. ERR_FAIL_COND_V(!env, -1);
  639. return env->canvas_max_layer;
  640. }
  641. RID RasterizerSceneGLES2::light_instance_create(RID p_light) {
  642. LightInstance *light_instance = memnew(LightInstance);
  643. light_instance->last_scene_pass = 0;
  644. light_instance->light = p_light;
  645. light_instance->light_ptr = storage->light_owner.getornull(p_light);
  646. light_instance->light_index = 0xFFFF;
  647. ERR_FAIL_COND_V(!light_instance->light_ptr, RID());
  648. light_instance->self = light_instance_owner.make_rid(light_instance);
  649. return light_instance->self;
  650. }
  651. void RasterizerSceneGLES2::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
  652. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  653. ERR_FAIL_COND(!light_instance);
  654. light_instance->transform = p_transform;
  655. }
  656. void RasterizerSceneGLES2::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale) {
  657. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  658. ERR_FAIL_COND(!light_instance);
  659. if (light_instance->light_ptr->type != VS::LIGHT_DIRECTIONAL) {
  660. p_pass = 0;
  661. }
  662. ERR_FAIL_INDEX(p_pass, 4);
  663. light_instance->shadow_transform[p_pass].camera = p_projection;
  664. light_instance->shadow_transform[p_pass].transform = p_transform;
  665. light_instance->shadow_transform[p_pass].farplane = p_far;
  666. light_instance->shadow_transform[p_pass].split = p_split;
  667. light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
  668. }
  669. void RasterizerSceneGLES2::light_instance_mark_visible(RID p_light_instance) {
  670. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  671. ERR_FAIL_COND(!light_instance);
  672. light_instance->last_scene_pass = scene_pass;
  673. }
  674. //////////////////////
  675. RID RasterizerSceneGLES2::gi_probe_instance_create() {
  676. return RID();
  677. }
  678. void RasterizerSceneGLES2::gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data) {
  679. }
  680. void RasterizerSceneGLES2::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {
  681. }
  682. void RasterizerSceneGLES2::gi_probe_instance_set_bounds(RID p_probe, const Vector3 &p_bounds) {
  683. }
  684. ////////////////////////////
  685. ////////////////////////////
  686. ////////////////////////////
  687. void RasterizerSceneGLES2::_add_geometry(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, int p_material, bool p_depth_pass, bool p_shadow_pass) {
  688. RasterizerStorageGLES2::Material *material = NULL;
  689. RID material_src;
  690. if (p_instance->material_override.is_valid()) {
  691. material_src = p_instance->material_override;
  692. } else if (p_material >= 0) {
  693. material_src = p_instance->materials[p_material];
  694. } else {
  695. material_src = p_geometry->material;
  696. }
  697. if (material_src.is_valid()) {
  698. material = storage->material_owner.getornull(material_src);
  699. if (!material->shader || !material->shader->valid) {
  700. material = NULL;
  701. }
  702. }
  703. if (!material) {
  704. material = storage->material_owner.getptr(default_material);
  705. }
  706. ERR_FAIL_COND(!material);
  707. _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass);
  708. while (material->next_pass.is_valid()) {
  709. material = storage->material_owner.getornull(material->next_pass);
  710. if (!material || !material->shader || !material->shader->valid) {
  711. break;
  712. }
  713. _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass);
  714. }
  715. }
  716. void RasterizerSceneGLES2::_add_geometry_with_material(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, RasterizerStorageGLES2::Material *p_material, bool p_depth_pass, bool p_shadow_pass) {
  717. bool has_base_alpha = (p_material->shader->spatial.uses_alpha && !p_material->shader->spatial.uses_alpha_scissor) || p_material->shader->spatial.uses_screen_texture || p_material->shader->spatial.uses_depth_texture;
  718. bool has_blend_alpha = p_material->shader->spatial.blend_mode != RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX;
  719. bool has_alpha = has_base_alpha || has_blend_alpha;
  720. bool mirror = p_instance->mirror;
  721. if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED) {
  722. mirror = false;
  723. } else if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_FRONT) {
  724. mirror = !mirror;
  725. }
  726. //if (p_material->shader->spatial.uses_sss) {
  727. // state.used_sss = true;
  728. //}
  729. if (p_material->shader->spatial.uses_screen_texture) {
  730. state.used_screen_texture = true;
  731. }
  732. if (p_depth_pass) {
  733. if (has_blend_alpha || p_material->shader->spatial.uses_depth_texture || (has_base_alpha && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS))
  734. return; //bye
  735. if (!p_material->shader->spatial.uses_alpha_scissor && !p_material->shader->spatial.writes_modelview_or_projection && !p_material->shader->spatial.uses_vertex && !p_material->shader->spatial.uses_discard && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
  736. //shader does not use discard and does not write a vertex position, use generic material
  737. if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED) {
  738. p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material_twosided : default_material_twosided);
  739. mirror = false;
  740. } else {
  741. p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material : default_material);
  742. }
  743. }
  744. has_alpha = false;
  745. }
  746. RenderList::Element *e = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
  747. if (!e) {
  748. return;
  749. }
  750. e->geometry = p_geometry;
  751. e->material = p_material;
  752. e->instance = p_instance;
  753. e->owner = p_owner;
  754. e->sort_key = 0;
  755. e->depth_key = 0;
  756. e->use_accum = false;
  757. e->light_index = RenderList::MAX_LIGHTS;
  758. e->use_accum_ptr = &e->use_accum;
  759. e->instancing = (e->instance->base_type == VS::INSTANCE_MULTIMESH) ? 1 : 0;
  760. if (e->geometry->last_pass != render_pass) {
  761. e->geometry->last_pass = render_pass;
  762. e->geometry->index = current_geometry_index++;
  763. }
  764. e->geometry_index = e->geometry->index;
  765. if (e->material->last_pass != render_pass) {
  766. e->material->last_pass = render_pass;
  767. e->material->index = current_material_index++;
  768. if (e->material->shader->last_pass != render_pass) {
  769. e->material->shader->index = current_shader_index++;
  770. }
  771. }
  772. e->material_index = e->material->index;
  773. e->refprobe_0_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default
  774. e->refprobe_1_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default
  775. if (!p_depth_pass) {
  776. e->depth_layer = e->instance->depth_layer;
  777. e->priority = p_material->render_priority;
  778. if (has_alpha && p_material->shader->spatial.depth_draw_mode == RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
  779. //add element to opaque
  780. RenderList::Element *eo = render_list.add_element();
  781. *eo = *e;
  782. eo->use_accum_ptr = &eo->use_accum;
  783. }
  784. int rpsize = e->instance->reflection_probe_instances.size();
  785. if (rpsize > 0) {
  786. bool first = true;
  787. rpsize = MIN(rpsize, 2); //more than 2 per object are not supported, this keeps it stable
  788. for (int i = 0; i < rpsize; i++) {
  789. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(e->instance->reflection_probe_instances[i]);
  790. if (rpi->last_pass != render_pass) {
  791. continue;
  792. }
  793. if (first) {
  794. e->refprobe_0_index = rpi->index;
  795. first = false;
  796. } else {
  797. e->refprobe_1_index = rpi->index;
  798. break;
  799. }
  800. }
  801. /* if (e->refprobe_0_index > e->refprobe_1_index) { //if both are valid, swap them to keep order as best as possible
  802. uint64_t tmp = e->refprobe_0_index;
  803. e->refprobe_0_index = e->refprobe_1_index;
  804. e->refprobe_1_index = tmp;
  805. }*/
  806. }
  807. //add directional lights
  808. if (p_material->shader->spatial.unshaded) {
  809. e->light_mode = LIGHTMODE_UNSHADED;
  810. } else {
  811. bool copy = false;
  812. for (int i = 0; i < render_directional_lights; i++) {
  813. if (copy) {
  814. RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
  815. if (!e2) {
  816. break;
  817. }
  818. *e2 = *e; //this includes accum ptr :)
  819. e = e2;
  820. }
  821. //directional sort key
  822. e->light_type1 = 0;
  823. e->light_type2 = 1;
  824. e->light_index = i;
  825. copy = true;
  826. }
  827. //add omni / spots
  828. for (int i = 0; i < e->instance->light_instances.size(); i++) {
  829. LightInstance *li = light_instance_owner.getornull(e->instance->light_instances[i]);
  830. if (li->light_index >= render_light_instance_count) {
  831. continue; // too many
  832. }
  833. if (copy) {
  834. RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
  835. if (!e2) {
  836. break;
  837. }
  838. *e2 = *e; //this includes accum ptr :)
  839. e = e2;
  840. }
  841. //directional sort key
  842. e->light_type1 = 1;
  843. e->light_type2 = li->light_ptr->type == VisualServer::LIGHT_OMNI ? 0 : 1;
  844. e->light_index = li->light_index;
  845. copy = true;
  846. }
  847. if (e->instance->lightmap.is_valid()) {
  848. e->light_mode = LIGHTMODE_LIGHTMAP;
  849. } else if (!e->instance->lightmap_capture_data.empty()) {
  850. e->light_mode = LIGHTMODE_LIGHTMAP_CAPTURE;
  851. } else {
  852. e->light_mode = LIGHTMODE_NORMAL;
  853. }
  854. }
  855. }
  856. // do not add anything here, as lights are duplicated elements..
  857. if (p_material->shader->spatial.uses_time) {
  858. VisualServerRaster::redraw_request();
  859. }
  860. }
  861. void RasterizerSceneGLES2::_fill_render_list(InstanceBase **p_cull_result, int p_cull_count, bool p_depth_pass, bool p_shadow_pass) {
  862. render_pass++;
  863. current_material_index = 0;
  864. current_geometry_index = 0;
  865. current_light_index = 0;
  866. current_refprobe_index = 0;
  867. current_shader_index = 0;
  868. for (int i = 0; i < p_cull_count; i++) {
  869. InstanceBase *instance = p_cull_result[i];
  870. switch (instance->base_type) {
  871. case VS::INSTANCE_MESH: {
  872. RasterizerStorageGLES2::Mesh *mesh = storage->mesh_owner.getornull(instance->base);
  873. ERR_CONTINUE(!mesh);
  874. int num_surfaces = mesh->surfaces.size();
  875. for (int j = 0; j < num_surfaces; j++) {
  876. int material_index = instance->materials[j].is_valid() ? j : -1;
  877. RasterizerStorageGLES2::Surface *surface = mesh->surfaces[j];
  878. _add_geometry(surface, instance, NULL, material_index, p_depth_pass, p_shadow_pass);
  879. }
  880. } break;
  881. case VS::INSTANCE_MULTIMESH: {
  882. RasterizerStorageGLES2::MultiMesh *multi_mesh = storage->multimesh_owner.getptr(instance->base);
  883. ERR_CONTINUE(!multi_mesh);
  884. if (multi_mesh->size == 0 || multi_mesh->visible_instances == 0)
  885. continue;
  886. RasterizerStorageGLES2::Mesh *mesh = storage->mesh_owner.getptr(multi_mesh->mesh);
  887. if (!mesh)
  888. continue;
  889. int ssize = mesh->surfaces.size();
  890. for (int j = 0; j < ssize; j++) {
  891. RasterizerStorageGLES2::Surface *s = mesh->surfaces[j];
  892. _add_geometry(s, instance, multi_mesh, -1, p_depth_pass, p_shadow_pass);
  893. }
  894. } break;
  895. case VS::INSTANCE_IMMEDIATE: {
  896. RasterizerStorageGLES2::Immediate *im = storage->immediate_owner.getptr(instance->base);
  897. ERR_CONTINUE(!im);
  898. _add_geometry(im, instance, NULL, -1, p_depth_pass, p_shadow_pass);
  899. } break;
  900. default: {}
  901. }
  902. }
  903. }
  904. static const GLenum gl_primitive[] = {
  905. GL_POINTS,
  906. GL_LINES,
  907. GL_LINE_STRIP,
  908. GL_LINE_LOOP,
  909. GL_TRIANGLES,
  910. GL_TRIANGLE_STRIP,
  911. GL_TRIANGLE_FAN
  912. };
  913. bool RasterizerSceneGLES2::_setup_material(RasterizerStorageGLES2::Material *p_material, bool p_reverse_cull, bool p_alpha_pass, Size2i p_skeleton_tex_size) {
  914. // material parameters
  915. state.scene_shader.set_custom_shader(p_material->shader->custom_code_id);
  916. if (p_material->shader->spatial.uses_screen_texture && storage->frame.current_rt) {
  917. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4);
  918. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->copy_screen_effect.color);
  919. }
  920. if (p_material->shader->spatial.uses_depth_texture && storage->frame.current_rt) {
  921. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4);
  922. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth);
  923. }
  924. bool shader_rebind = state.scene_shader.bind();
  925. if (p_material->shader->spatial.no_depth_test || p_material->shader->spatial.uses_depth_texture) {
  926. glDisable(GL_DEPTH_TEST);
  927. } else {
  928. glEnable(GL_DEPTH_TEST);
  929. }
  930. switch (p_material->shader->spatial.depth_draw_mode) {
  931. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS:
  932. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_OPAQUE: {
  933. glDepthMask(!p_alpha_pass && !p_material->shader->spatial.uses_depth_texture);
  934. } break;
  935. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALWAYS: {
  936. glDepthMask(GL_TRUE && !p_material->shader->spatial.uses_depth_texture);
  937. } break;
  938. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_NEVER: {
  939. glDepthMask(GL_FALSE);
  940. } break;
  941. }
  942. switch (p_material->shader->spatial.cull_mode) {
  943. case RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED: {
  944. glDisable(GL_CULL_FACE);
  945. } break;
  946. case RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_BACK: {
  947. glEnable(GL_CULL_FACE);
  948. glCullFace(p_reverse_cull ? GL_FRONT : GL_BACK);
  949. } break;
  950. case RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_FRONT: {
  951. glEnable(GL_CULL_FACE);
  952. glCullFace(p_reverse_cull ? GL_BACK : GL_FRONT);
  953. } break;
  954. }
  955. int tc = p_material->textures.size();
  956. const Pair<StringName, RID> *textures = p_material->textures.ptr();
  957. const ShaderLanguage::ShaderNode::Uniform::Hint *texture_hints = p_material->shader->texture_hints.ptr();
  958. state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_TEXTURE_SIZE, p_skeleton_tex_size);
  959. state.current_main_tex = 0;
  960. for (int i = 0; i < tc; i++) {
  961. glActiveTexture(GL_TEXTURE0 + i);
  962. RasterizerStorageGLES2::Texture *t = storage->texture_owner.getornull(textures[i].second);
  963. if (!t) {
  964. switch (texture_hints[i]) {
  965. case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO:
  966. case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: {
  967. glBindTexture(GL_TEXTURE_2D, storage->resources.black_tex);
  968. } break;
  969. case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: {
  970. glBindTexture(GL_TEXTURE_2D, storage->resources.aniso_tex);
  971. } break;
  972. case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: {
  973. glBindTexture(GL_TEXTURE_2D, storage->resources.normal_tex);
  974. } break;
  975. default: {
  976. glBindTexture(GL_TEXTURE_2D, storage->resources.white_tex);
  977. } break;
  978. }
  979. continue;
  980. }
  981. if (t->redraw_if_visible) { //must check before proxy because this is often used with proxies
  982. VisualServerRaster::redraw_request();
  983. }
  984. t = t->get_ptr();
  985. #ifdef TOOLS_ENABLED
  986. if (t->detect_3d) {
  987. t->detect_3d(t->detect_3d_ud);
  988. }
  989. #endif
  990. #ifdef TOOLS_ENABLED
  991. if (t->detect_normal && texture_hints[i] == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL) {
  992. t->detect_normal(t->detect_normal_ud);
  993. }
  994. #endif
  995. if (t->render_target)
  996. t->render_target->used_in_frame = true;
  997. glBindTexture(t->target, t->tex_id);
  998. if (i == 0) {
  999. state.current_main_tex = t->tex_id;
  1000. }
  1001. }
  1002. state.scene_shader.use_material((void *)p_material);
  1003. return shader_rebind;
  1004. }
  1005. void RasterizerSceneGLES2::_setup_geometry(RenderList::Element *p_element, RasterizerStorageGLES2::Skeleton *p_skeleton) {
  1006. switch (p_element->instance->base_type) {
  1007. case VS::INSTANCE_MESH: {
  1008. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1009. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id);
  1010. if (s->index_array_len > 0) {
  1011. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
  1012. }
  1013. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  1014. if (s->attribs[i].enabled) {
  1015. glEnableVertexAttribArray(i);
  1016. glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, (uint8_t *)0 + s->attribs[i].offset);
  1017. } else {
  1018. glDisableVertexAttribArray(i);
  1019. switch (i) {
  1020. case VS::ARRAY_NORMAL: {
  1021. glVertexAttrib4f(VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1);
  1022. } break;
  1023. case VS::ARRAY_COLOR: {
  1024. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  1025. } break;
  1026. default: {}
  1027. }
  1028. }
  1029. }
  1030. bool clear_skeleton_buffer = !storage->config.float_texture_supported;
  1031. if (p_skeleton) {
  1032. if (storage->config.float_texture_supported) {
  1033. //use float texture workflow
  1034. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 1);
  1035. glBindTexture(GL_TEXTURE_2D, p_skeleton->tex_id);
  1036. } else {
  1037. //use transform buffer workflow
  1038. ERR_FAIL_COND(p_skeleton->use_2d);
  1039. PoolVector<float> &transform_buffer = storage->resources.skeleton_transform_cpu_buffer;
  1040. if (!s->attribs[VS::ARRAY_BONES].enabled || !s->attribs[VS::ARRAY_WEIGHTS].enabled) {
  1041. break; // the whole instance has a skeleton, but this surface is not affected by it.
  1042. }
  1043. // 3 * vec4 per vertex
  1044. if (transform_buffer.size() < s->array_len * 12) {
  1045. transform_buffer.resize(s->array_len * 12);
  1046. }
  1047. const size_t bones_offset = s->attribs[VS::ARRAY_BONES].offset;
  1048. const size_t bones_stride = s->attribs[VS::ARRAY_BONES].stride;
  1049. const size_t bone_weight_offset = s->attribs[VS::ARRAY_WEIGHTS].offset;
  1050. const size_t bone_weight_stride = s->attribs[VS::ARRAY_WEIGHTS].stride;
  1051. {
  1052. PoolVector<float>::Write write = transform_buffer.write();
  1053. float *buffer = write.ptr();
  1054. PoolVector<uint8_t>::Read vertex_array_read = s->data.read();
  1055. const uint8_t *vertex_data = vertex_array_read.ptr();
  1056. for (int i = 0; i < s->array_len; i++) {
  1057. // do magic
  1058. size_t bones[4];
  1059. float bone_weight[4];
  1060. if (s->attribs[VS::ARRAY_BONES].type == GL_UNSIGNED_BYTE) {
  1061. // read as byte
  1062. const uint8_t *bones_ptr = vertex_data + bones_offset + (i * bones_stride);
  1063. bones[0] = bones_ptr[0];
  1064. bones[1] = bones_ptr[1];
  1065. bones[2] = bones_ptr[2];
  1066. bones[3] = bones_ptr[3];
  1067. } else {
  1068. // read as short
  1069. const uint16_t *bones_ptr = (const uint16_t *)(vertex_data + bones_offset + (i * bones_stride));
  1070. bones[0] = bones_ptr[0];
  1071. bones[1] = bones_ptr[1];
  1072. bones[2] = bones_ptr[2];
  1073. bones[3] = bones_ptr[3];
  1074. }
  1075. if (s->attribs[VS::ARRAY_WEIGHTS].type == GL_FLOAT) {
  1076. // read as float
  1077. const float *weight_ptr = (const float *)(vertex_data + bone_weight_offset + (i * bone_weight_stride));
  1078. bone_weight[0] = weight_ptr[0];
  1079. bone_weight[1] = weight_ptr[1];
  1080. bone_weight[2] = weight_ptr[2];
  1081. bone_weight[3] = weight_ptr[3];
  1082. } else {
  1083. // read as half
  1084. const uint16_t *weight_ptr = (const uint16_t *)(vertex_data + bone_weight_offset + (i * bone_weight_stride));
  1085. bone_weight[0] = (weight_ptr[0] / (float)0xFFFF);
  1086. bone_weight[1] = (weight_ptr[1] / (float)0xFFFF);
  1087. bone_weight[2] = (weight_ptr[2] / (float)0xFFFF);
  1088. bone_weight[3] = (weight_ptr[3] / (float)0xFFFF);
  1089. }
  1090. Transform transform;
  1091. Transform bone_transforms[4] = {
  1092. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[0]),
  1093. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[1]),
  1094. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[2]),
  1095. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[3]),
  1096. };
  1097. transform.origin =
  1098. bone_weight[0] * bone_transforms[0].origin +
  1099. bone_weight[1] * bone_transforms[1].origin +
  1100. bone_weight[2] * bone_transforms[2].origin +
  1101. bone_weight[3] * bone_transforms[3].origin;
  1102. transform.basis =
  1103. bone_transforms[0].basis * bone_weight[0] +
  1104. bone_transforms[1].basis * bone_weight[1] +
  1105. bone_transforms[2].basis * bone_weight[2] +
  1106. bone_transforms[3].basis * bone_weight[3];
  1107. float row[3][4] = {
  1108. { transform.basis[0][0], transform.basis[0][1], transform.basis[0][2], transform.origin[0] },
  1109. { transform.basis[1][0], transform.basis[1][1], transform.basis[1][2], transform.origin[1] },
  1110. { transform.basis[2][0], transform.basis[2][1], transform.basis[2][2], transform.origin[2] },
  1111. };
  1112. size_t transform_buffer_offset = i * 12;
  1113. copymem(&buffer[transform_buffer_offset], row, sizeof(row));
  1114. }
  1115. }
  1116. storage->_update_skeleton_transform_buffer(transform_buffer, s->array_len * 12);
  1117. //enable transform buffer and bind it
  1118. glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer);
  1119. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1120. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1121. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1122. glVertexAttribPointer(INSTANCE_BONE_BASE + 0, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 0));
  1123. glVertexAttribPointer(INSTANCE_BONE_BASE + 1, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 1));
  1124. glVertexAttribPointer(INSTANCE_BONE_BASE + 2, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 2));
  1125. clear_skeleton_buffer = false;
  1126. }
  1127. }
  1128. if (clear_skeleton_buffer) {
  1129. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1130. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1131. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1132. }
  1133. } break;
  1134. case VS::INSTANCE_MULTIMESH: {
  1135. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1136. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id);
  1137. if (s->index_array_len > 0) {
  1138. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
  1139. }
  1140. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  1141. if (s->attribs[i].enabled) {
  1142. glEnableVertexAttribArray(i);
  1143. glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, (uint8_t *)0 + s->attribs[i].offset);
  1144. } else {
  1145. glDisableVertexAttribArray(i);
  1146. switch (i) {
  1147. case VS::ARRAY_NORMAL: {
  1148. glVertexAttrib4f(VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1);
  1149. } break;
  1150. case VS::ARRAY_COLOR: {
  1151. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  1152. } break;
  1153. default: {}
  1154. }
  1155. }
  1156. }
  1157. // prepare multimesh (disable)
  1158. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 0);
  1159. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 1);
  1160. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 2);
  1161. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 3);
  1162. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 4);
  1163. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1164. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1165. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1166. } break;
  1167. case VS::INSTANCE_IMMEDIATE: {
  1168. } break;
  1169. default: {}
  1170. }
  1171. }
  1172. void RasterizerSceneGLES2::_render_geometry(RenderList::Element *p_element) {
  1173. switch (p_element->instance->base_type) {
  1174. case VS::INSTANCE_MESH: {
  1175. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1176. // drawing
  1177. if (s->index_array_len > 0) {
  1178. glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
  1179. } else {
  1180. glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
  1181. }
  1182. /*
  1183. if (p_element->instance->skeleton.is_valid() && s->attribs[VS::ARRAY_BONES].enabled && s->attribs[VS::ARRAY_WEIGHTS].enabled) {
  1184. //clean up after skeleton
  1185. glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer);
  1186. glDisableVertexAttribArray(VS::ARRAY_MAX + 0);
  1187. glDisableVertexAttribArray(VS::ARRAY_MAX + 1);
  1188. glDisableVertexAttribArray(VS::ARRAY_MAX + 2);
  1189. glVertexAttrib4f(VS::ARRAY_MAX + 0, 1, 0, 0, 0);
  1190. glVertexAttrib4f(VS::ARRAY_MAX + 1, 0, 1, 0, 0);
  1191. glVertexAttrib4f(VS::ARRAY_MAX + 2, 0, 0, 1, 0);
  1192. }
  1193. */
  1194. } break;
  1195. case VS::INSTANCE_MULTIMESH: {
  1196. RasterizerStorageGLES2::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES2::MultiMesh *>(p_element->owner);
  1197. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1198. int amount = MIN(multi_mesh->size, multi_mesh->visible_instances);
  1199. if (amount == -1) {
  1200. amount = multi_mesh->size;
  1201. }
  1202. int stride = multi_mesh->color_floats + multi_mesh->custom_data_floats + multi_mesh->xform_floats;
  1203. int color_ofs = multi_mesh->xform_floats;
  1204. int custom_data_ofs = color_ofs + multi_mesh->color_floats;
  1205. // drawing
  1206. const float *base_buffer = multi_mesh->data.ptr();
  1207. for (int i = 0; i < amount; i++) {
  1208. const float *buffer = base_buffer + i * stride;
  1209. {
  1210. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 0, &buffer[0]);
  1211. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 1, &buffer[4]);
  1212. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 2, &buffer[8]);
  1213. }
  1214. if (multi_mesh->color_floats) {
  1215. if (multi_mesh->color_format == VS::MULTIMESH_COLOR_8BIT) {
  1216. uint8_t *color_data = (uint8_t *)(buffer + color_ofs);
  1217. glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 3, color_data[0] / 255.0, color_data[1] / 255.0, color_data[2] / 255.0, color_data[3] / 255.0);
  1218. } else {
  1219. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 3, buffer + color_ofs);
  1220. }
  1221. } else {
  1222. glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 3, 1.0, 1.0, 1.0, 1.0);
  1223. }
  1224. if (multi_mesh->custom_data_floats) {
  1225. if (multi_mesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) {
  1226. uint8_t *custom_data = (uint8_t *)(buffer + custom_data_ofs);
  1227. glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 4, custom_data[0] / 255.0, custom_data[1] / 255.0, custom_data[2] / 255.0, custom_data[3] / 255.0);
  1228. } else {
  1229. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 4, buffer + custom_data_ofs);
  1230. }
  1231. }
  1232. if (s->index_array_len > 0) {
  1233. glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
  1234. } else {
  1235. glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
  1236. }
  1237. }
  1238. } break;
  1239. case VS::INSTANCE_IMMEDIATE: {
  1240. const RasterizerStorageGLES2::Immediate *im = static_cast<const RasterizerStorageGLES2::Immediate *>(p_element->geometry);
  1241. if (im->building) {
  1242. return;
  1243. }
  1244. bool restore_tex = false;
  1245. glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer);
  1246. for (const List<RasterizerStorageGLES2::Immediate::Chunk>::Element *E = im->chunks.front(); E; E = E->next()) {
  1247. const RasterizerStorageGLES2::Immediate::Chunk &c = E->get();
  1248. if (c.vertices.empty()) {
  1249. continue;
  1250. }
  1251. int vertices = c.vertices.size();
  1252. uint32_t buf_ofs = 0;
  1253. storage->info.render.vertices_count += vertices;
  1254. if (c.texture.is_valid() && storage->texture_owner.owns(c.texture)) {
  1255. RasterizerStorageGLES2::Texture *t = storage->texture_owner.get(c.texture);
  1256. if (t->redraw_if_visible) {
  1257. VisualServerRaster::redraw_request();
  1258. }
  1259. t = t->get_ptr();
  1260. #ifdef TOOLS_ENABLED
  1261. if (t->detect_3d) {
  1262. t->detect_3d(t->detect_3d_ud);
  1263. }
  1264. #endif
  1265. if (t->render_target) {
  1266. t->render_target->used_in_frame = true;
  1267. }
  1268. glActiveTexture(GL_TEXTURE0);
  1269. glBindTexture(t->target, t->tex_id);
  1270. restore_tex = true;
  1271. } else if (restore_tex) {
  1272. glActiveTexture(GL_TEXTURE0);
  1273. glBindTexture(GL_TEXTURE_2D, state.current_main_tex);
  1274. restore_tex = false;
  1275. }
  1276. if (!c.normals.empty()) {
  1277. glEnableVertexAttribArray(VS::ARRAY_NORMAL);
  1278. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.normals.ptr());
  1279. glVertexAttribPointer(VS::ARRAY_NORMAL, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3), ((uint8_t *)NULL) + buf_ofs);
  1280. buf_ofs += sizeof(Vector3) * vertices;
  1281. } else {
  1282. glDisableVertexAttribArray(VS::ARRAY_NORMAL);
  1283. }
  1284. if (!c.tangents.empty()) {
  1285. glEnableVertexAttribArray(VS::ARRAY_TANGENT);
  1286. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Plane) * vertices, c.tangents.ptr());
  1287. glVertexAttribPointer(VS::ARRAY_TANGENT, 4, GL_FLOAT, GL_FALSE, sizeof(Plane), ((uint8_t *)NULL) + buf_ofs);
  1288. buf_ofs += sizeof(Plane) * vertices;
  1289. } else {
  1290. glDisableVertexAttribArray(VS::ARRAY_TANGENT);
  1291. }
  1292. if (!c.colors.empty()) {
  1293. glEnableVertexAttribArray(VS::ARRAY_COLOR);
  1294. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Color) * vertices, c.colors.ptr());
  1295. glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, GL_FALSE, sizeof(Color), ((uint8_t *)NULL) + buf_ofs);
  1296. buf_ofs += sizeof(Color) * vertices;
  1297. } else {
  1298. glDisableVertexAttribArray(VS::ARRAY_COLOR);
  1299. }
  1300. if (!c.uvs.empty()) {
  1301. glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
  1302. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uvs.ptr());
  1303. glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(Vector2), ((uint8_t *)NULL) + buf_ofs);
  1304. buf_ofs += sizeof(Vector2) * vertices;
  1305. } else {
  1306. glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
  1307. }
  1308. if (!c.uv2s.empty()) {
  1309. glEnableVertexAttribArray(VS::ARRAY_TEX_UV2);
  1310. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uv2s.ptr());
  1311. glVertexAttribPointer(VS::ARRAY_TEX_UV2, 2, GL_FLOAT, GL_FALSE, sizeof(Vector2), ((uint8_t *)NULL) + buf_ofs);
  1312. buf_ofs += sizeof(Vector2) * vertices;
  1313. } else {
  1314. glDisableVertexAttribArray(VS::ARRAY_TEX_UV2);
  1315. }
  1316. glEnableVertexAttribArray(VS::ARRAY_VERTEX);
  1317. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.vertices.ptr());
  1318. glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3), ((uint8_t *)NULL) + buf_ofs);
  1319. glDrawArrays(gl_primitive[c.primitive], 0, c.vertices.size());
  1320. }
  1321. if (restore_tex) {
  1322. glActiveTexture(GL_TEXTURE0);
  1323. glBindTexture(GL_TEXTURE_2D, state.current_main_tex);
  1324. restore_tex = false;
  1325. }
  1326. } break;
  1327. default: {}
  1328. }
  1329. }
  1330. void RasterizerSceneGLES2::_setup_light_type(LightInstance *p_light, ShadowAtlas *shadow_atlas) {
  1331. //turn off all by default
  1332. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false);
  1333. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, false);
  1334. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, false);
  1335. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, false);
  1336. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, false);
  1337. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, false);
  1338. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, false);
  1339. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false);
  1340. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false);
  1341. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false);
  1342. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, false);
  1343. if (!p_light) { //no light, return off
  1344. return;
  1345. }
  1346. //turn on lighting
  1347. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, true);
  1348. switch (p_light->light_ptr->type) {
  1349. case VS::LIGHT_DIRECTIONAL: {
  1350. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, true);
  1351. switch (p_light->light_ptr->directional_shadow_mode) {
  1352. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
  1353. //no need
  1354. } break;
  1355. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: {
  1356. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, true);
  1357. } break;
  1358. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: {
  1359. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, true);
  1360. } break;
  1361. }
  1362. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, p_light->light_ptr->directional_blend_splits);
  1363. if (!state.render_no_shadows && p_light->light_ptr->shadow) {
  1364. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1365. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1366. if (storage->config.use_rgba_3d_shadows) {
  1367. glBindTexture(GL_TEXTURE_2D, directional_shadow.color);
  1368. } else {
  1369. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  1370. }
  1371. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1372. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1373. }
  1374. } break;
  1375. case VS::LIGHT_OMNI: {
  1376. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, true);
  1377. if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) {
  1378. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1379. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1380. if (storage->config.use_rgba_3d_shadows) {
  1381. glBindTexture(GL_TEXTURE_2D, shadow_atlas->color);
  1382. } else {
  1383. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  1384. }
  1385. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1386. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1387. }
  1388. } break;
  1389. case VS::LIGHT_SPOT: {
  1390. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, true);
  1391. if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) {
  1392. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1393. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1394. if (storage->config.use_rgba_3d_shadows) {
  1395. glBindTexture(GL_TEXTURE_2D, shadow_atlas->color);
  1396. } else {
  1397. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  1398. }
  1399. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1400. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1401. }
  1402. } break;
  1403. }
  1404. }
  1405. void RasterizerSceneGLES2::_setup_light(LightInstance *light, ShadowAtlas *shadow_atlas, const Transform &p_view_transform) {
  1406. RasterizerStorageGLES2::Light *light_ptr = light->light_ptr;
  1407. //common parameters
  1408. float energy = light_ptr->param[VS::LIGHT_PARAM_ENERGY];
  1409. float specular = light_ptr->param[VS::LIGHT_PARAM_SPECULAR];
  1410. float sign = light_ptr->negative ? -1 : 1;
  1411. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPECULAR, specular);
  1412. Color color = light_ptr->color * sign * energy * Math_PI;
  1413. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_COLOR, color);
  1414. Color shadow_color = light_ptr->shadow_color.to_linear();
  1415. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_COLOR, shadow_color);
  1416. //specific parameters
  1417. switch (light_ptr->type) {
  1418. case VS::LIGHT_DIRECTIONAL: {
  1419. //not using inverse for performance, view should be normalized anyway
  1420. Vector3 direction = p_view_transform.basis.xform_inv(light->transform.basis.xform(Vector3(0, 0, -1))).normalized();
  1421. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction);
  1422. CameraMatrix matrices[4];
  1423. if (!state.render_no_shadows && light_ptr->shadow && directional_shadow.depth) {
  1424. int shadow_count = 0;
  1425. Color split_offsets;
  1426. switch (light_ptr->directional_shadow_mode) {
  1427. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
  1428. shadow_count = 1;
  1429. } break;
  1430. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: {
  1431. shadow_count = 2;
  1432. } break;
  1433. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: {
  1434. shadow_count = 4;
  1435. } break;
  1436. }
  1437. for (int k = 0; k < shadow_count; k++) {
  1438. uint32_t x = light->directional_rect.position.x;
  1439. uint32_t y = light->directional_rect.position.y;
  1440. uint32_t width = light->directional_rect.size.x;
  1441. uint32_t height = light->directional_rect.size.y;
  1442. if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  1443. width /= 2;
  1444. height /= 2;
  1445. if (k == 0) {
  1446. } else if (k == 1) {
  1447. x += width;
  1448. } else if (k == 2) {
  1449. y += height;
  1450. } else if (k == 3) {
  1451. x += width;
  1452. y += height;
  1453. }
  1454. } else if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  1455. height /= 2;
  1456. if (k == 0) {
  1457. } else {
  1458. y += height;
  1459. }
  1460. }
  1461. split_offsets[k] = light->shadow_transform[k].split;
  1462. Transform modelview = (p_view_transform.inverse() * light->shadow_transform[k].transform).affine_inverse();
  1463. CameraMatrix bias;
  1464. bias.set_light_bias();
  1465. CameraMatrix rectm;
  1466. Rect2 atlas_rect = Rect2(float(x) / directional_shadow.size, float(y) / directional_shadow.size, float(width) / directional_shadow.size, float(height) / directional_shadow.size);
  1467. rectm.set_light_atlas_rect(atlas_rect);
  1468. CameraMatrix shadow_mtx = rectm * bias * light->shadow_transform[k].camera * modelview;
  1469. matrices[k] = shadow_mtx;
  1470. /*Color light_clamp;
  1471. light_clamp[0] = atlas_rect.position.x;
  1472. light_clamp[1] = atlas_rect.position.y;
  1473. light_clamp[2] = atlas_rect.size.x;
  1474. light_clamp[3] = atlas_rect.size.y;*/
  1475. }
  1476. // state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1477. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / directional_shadow.size, 1.0 / directional_shadow.size));
  1478. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPLIT_OFFSETS, split_offsets);
  1479. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, matrices[0]);
  1480. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX2, matrices[1]);
  1481. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX3, matrices[2]);
  1482. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX4, matrices[3]);
  1483. }
  1484. } break;
  1485. case VS::LIGHT_OMNI: {
  1486. Vector3 position = p_view_transform.xform_inv(light->transform.origin);
  1487. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position);
  1488. float range = light_ptr->param[VS::LIGHT_PARAM_RANGE];
  1489. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range);
  1490. float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
  1491. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation);
  1492. if (!state.render_no_shadows && light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) {
  1493. uint32_t key = shadow_atlas->shadow_owners[light->self];
  1494. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  1495. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  1496. ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size());
  1497. uint32_t atlas_size = shadow_atlas->size;
  1498. uint32_t quadrant_size = atlas_size >> 1;
  1499. uint32_t x = (quadrant & 1) * quadrant_size;
  1500. uint32_t y = (quadrant >> 1) * quadrant_size;
  1501. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  1502. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1503. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1504. uint32_t width = shadow_size;
  1505. uint32_t height = shadow_size;
  1506. if (light->light_ptr->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  1507. height /= 2;
  1508. } else {
  1509. width /= 2;
  1510. }
  1511. Transform proj = (p_view_transform.inverse() * light->transform).inverse();
  1512. Color light_clamp;
  1513. light_clamp[0] = float(x) / atlas_size;
  1514. light_clamp[1] = float(y) / atlas_size;
  1515. light_clamp[2] = float(width) / atlas_size;
  1516. light_clamp[3] = float(height) / atlas_size;
  1517. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size));
  1518. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, proj);
  1519. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1520. }
  1521. } break;
  1522. case VS::LIGHT_SPOT: {
  1523. Vector3 position = p_view_transform.xform_inv(light->transform.origin);
  1524. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position);
  1525. Vector3 direction = p_view_transform.inverse().basis.xform(light->transform.basis.xform(Vector3(0, 0, -1))).normalized();
  1526. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction);
  1527. float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
  1528. float range = light_ptr->param[VS::LIGHT_PARAM_RANGE];
  1529. float spot_attenuation = light_ptr->param[VS::LIGHT_PARAM_SPOT_ATTENUATION];
  1530. float angle = light_ptr->param[VS::LIGHT_PARAM_SPOT_ANGLE];
  1531. angle = Math::cos(Math::deg2rad(angle));
  1532. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation);
  1533. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ATTENUATION, spot_attenuation);
  1534. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_RANGE, spot_attenuation);
  1535. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ANGLE, angle);
  1536. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range);
  1537. if (!state.render_no_shadows && light->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) {
  1538. uint32_t key = shadow_atlas->shadow_owners[light->self];
  1539. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  1540. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  1541. ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size());
  1542. uint32_t atlas_size = shadow_atlas->size;
  1543. uint32_t quadrant_size = atlas_size >> 1;
  1544. uint32_t x = (quadrant & 1) * quadrant_size;
  1545. uint32_t y = (quadrant >> 1) * quadrant_size;
  1546. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  1547. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1548. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1549. uint32_t width = shadow_size;
  1550. uint32_t height = shadow_size;
  1551. Rect2 rect(float(x) / atlas_size, float(y) / atlas_size, float(width) / atlas_size, float(height) / atlas_size);
  1552. Color light_clamp;
  1553. light_clamp[0] = rect.position.x;
  1554. light_clamp[1] = rect.position.y;
  1555. light_clamp[2] = rect.size.x;
  1556. light_clamp[3] = rect.size.y;
  1557. Transform modelview = (p_view_transform.inverse() * light->transform).inverse();
  1558. CameraMatrix bias;
  1559. bias.set_light_bias();
  1560. CameraMatrix rectm;
  1561. rectm.set_light_atlas_rect(rect);
  1562. CameraMatrix shadow_matrix = rectm * bias * light->shadow_transform[0].camera * modelview;
  1563. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size));
  1564. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, shadow_matrix);
  1565. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1566. }
  1567. } break;
  1568. default: {}
  1569. }
  1570. }
  1571. void RasterizerSceneGLES2::_setup_refprobes(ReflectionProbeInstance *p_refprobe1, ReflectionProbeInstance *p_refprobe2, const Transform &p_view_transform, Environment *p_env) {
  1572. if (p_refprobe1) {
  1573. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_USE_BOX_PROJECT, p_refprobe1->probe_ptr->box_projection);
  1574. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_EXTENTS, p_refprobe1->probe_ptr->extents);
  1575. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_OFFSET, p_refprobe1->probe_ptr->origin_offset);
  1576. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_EXTERIOR, !p_refprobe1->probe_ptr->interior);
  1577. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_INTENSITY, p_refprobe1->probe_ptr->intensity);
  1578. Color ambient;
  1579. if (p_refprobe1->probe_ptr->interior) {
  1580. ambient = p_refprobe1->probe_ptr->interior_ambient * p_refprobe1->probe_ptr->interior_ambient_energy;
  1581. ambient.a = p_refprobe1->probe_ptr->interior_ambient_probe_contrib;
  1582. } else if (p_env) {
  1583. ambient = p_env->ambient_color * p_env->ambient_energy;
  1584. ambient.a = p_env->ambient_sky_contribution;
  1585. }
  1586. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_AMBIENT, ambient);
  1587. Transform proj = (p_view_transform.inverse() * p_refprobe1->transform).affine_inverse();
  1588. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_LOCAL_MATRIX, proj);
  1589. }
  1590. if (p_refprobe2) {
  1591. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_USE_BOX_PROJECT, p_refprobe2->probe_ptr->box_projection);
  1592. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_EXTENTS, p_refprobe2->probe_ptr->extents);
  1593. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_OFFSET, p_refprobe2->probe_ptr->origin_offset);
  1594. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_EXTERIOR, p_refprobe2->probe_ptr->interior);
  1595. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_INTENSITY, p_refprobe2->probe_ptr->intensity);
  1596. Color ambient;
  1597. if (p_refprobe2->probe_ptr->interior) {
  1598. ambient = p_refprobe2->probe_ptr->interior_ambient * p_refprobe2->probe_ptr->interior_ambient_energy;
  1599. ambient.a = p_refprobe2->probe_ptr->interior_ambient_probe_contrib;
  1600. } else if (p_env) {
  1601. ambient = p_env->ambient_color * p_env->ambient_energy;
  1602. ambient.a = p_env->ambient_sky_contribution;
  1603. }
  1604. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_AMBIENT, ambient);
  1605. Transform proj = (p_view_transform.inverse() * p_refprobe2->transform).affine_inverse();
  1606. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_LOCAL_MATRIX, proj);
  1607. }
  1608. }
  1609. void RasterizerSceneGLES2::_render_render_list(RenderList::Element **p_elements, int p_element_count, const Transform &p_view_transform, const CameraMatrix &p_projection, RID p_shadow_atlas, Environment *p_env, GLuint p_base_env, float p_shadow_bias, float p_shadow_normal_bias, bool p_reverse_cull, bool p_alpha_pass, bool p_shadow) {
  1610. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  1611. Vector2 viewport_size = state.viewport_size;
  1612. Vector2 screen_pixel_size = state.screen_pixel_size;
  1613. bool use_radiance_map = false;
  1614. if (!p_shadow && p_base_env) {
  1615. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 2);
  1616. glBindTexture(GL_TEXTURE_CUBE_MAP, p_base_env);
  1617. use_radiance_map = true;
  1618. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, true); //since prev unshaded is false, this needs to be true if exists
  1619. }
  1620. bool prev_unshaded = false;
  1621. bool prev_instancing = false;
  1622. bool prev_depth_prepass = false;
  1623. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  1624. RasterizerStorageGLES2::Material *prev_material = NULL;
  1625. RasterizerStorageGLES2::Geometry *prev_geometry = NULL;
  1626. RasterizerStorageGLES2::Skeleton *prev_skeleton = NULL;
  1627. RasterizerStorageGLES2::GeometryOwner *prev_owner = NULL;
  1628. Transform view_transform_inverse = p_view_transform.inverse();
  1629. CameraMatrix projection_inverse = p_projection.inverse();
  1630. bool prev_base_pass = false;
  1631. LightInstance *prev_light = NULL;
  1632. bool prev_vertex_lit = false;
  1633. ReflectionProbeInstance *prev_refprobe_1 = NULL;
  1634. ReflectionProbeInstance *prev_refprobe_2 = NULL;
  1635. int prev_blend_mode = -2; //will always catch the first go
  1636. if (p_alpha_pass) {
  1637. glEnable(GL_BLEND);
  1638. } else {
  1639. glDisable(GL_BLEND);
  1640. }
  1641. float fog_max_distance = 0;
  1642. bool using_fog = false;
  1643. if (p_env && !p_shadow && p_env->fog_enabled && (p_env->fog_depth_enabled || p_env->fog_height_enabled)) {
  1644. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_DEPTH_ENABLED, p_env->fog_depth_enabled);
  1645. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_HEIGHT_ENABLED, p_env->fog_height_enabled);
  1646. if (p_env->fog_depth_end > 0) {
  1647. fog_max_distance = p_env->fog_depth_end;
  1648. } else {
  1649. fog_max_distance = p_projection.get_z_far();
  1650. }
  1651. using_fog = true;
  1652. }
  1653. RasterizerStorageGLES2::Texture *prev_lightmap = NULL;
  1654. float lightmap_energy = 1.0;
  1655. bool prev_use_lightmap_capture = false;
  1656. for (int i = 0; i < p_element_count; i++) {
  1657. RenderList::Element *e = p_elements[i];
  1658. RasterizerStorageGLES2::Material *material = e->material;
  1659. bool rebind = false;
  1660. bool accum_pass = *e->use_accum_ptr;
  1661. *e->use_accum_ptr = true; //set to accum for next time this is found
  1662. LightInstance *light = NULL;
  1663. ReflectionProbeInstance *refprobe_1 = NULL;
  1664. ReflectionProbeInstance *refprobe_2 = NULL;
  1665. RasterizerStorageGLES2::Texture *lightmap = NULL;
  1666. bool use_lightmap_capture = false;
  1667. bool rebind_light = false;
  1668. bool rebind_reflection = false;
  1669. bool rebind_lightmap = false;
  1670. if (!p_shadow) {
  1671. bool unshaded = material->shader->spatial.unshaded;
  1672. if (unshaded != prev_unshaded) {
  1673. rebind = true;
  1674. if (unshaded) {
  1675. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, true);
  1676. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false);
  1677. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false);
  1678. } else {
  1679. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  1680. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, use_radiance_map);
  1681. }
  1682. prev_unshaded = unshaded;
  1683. }
  1684. bool depth_prepass = false;
  1685. if (!p_alpha_pass && material->shader && material->shader->spatial.depth_draw_mode == RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
  1686. depth_prepass = true;
  1687. }
  1688. if (depth_prepass != prev_depth_prepass) {
  1689. state.scene_shader.set_conditional(SceneShaderGLES2::USE_DEPTH_PREPASS, depth_prepass);
  1690. prev_depth_prepass = depth_prepass;
  1691. rebind = true;
  1692. }
  1693. bool base_pass = !accum_pass && !unshaded; //conditions for a base pass
  1694. if (base_pass != prev_base_pass) {
  1695. state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, base_pass);
  1696. rebind = true;
  1697. prev_base_pass = base_pass;
  1698. }
  1699. if (!unshaded && e->light_index < RenderList::MAX_LIGHTS) {
  1700. light = render_light_instances[e->light_index];
  1701. }
  1702. if (light != prev_light) {
  1703. _setup_light_type(light, shadow_atlas);
  1704. rebind = true;
  1705. rebind_light = true;
  1706. }
  1707. int blend_mode = p_alpha_pass ? material->shader->spatial.blend_mode : -1; // -1 no blend, no mix
  1708. if (accum_pass) { //accum pass force pass
  1709. blend_mode = RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD;
  1710. }
  1711. if (prev_blend_mode != blend_mode) {
  1712. if (prev_blend_mode == -1 && blend_mode != -1) {
  1713. //does blend
  1714. glEnable(GL_BLEND);
  1715. } else if (blend_mode == -1 && prev_blend_mode != -1) {
  1716. //do not blend
  1717. glDisable(GL_BLEND);
  1718. }
  1719. switch (blend_mode) {
  1720. //-1 not handled because not blend is enabled anyway
  1721. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX: {
  1722. glBlendEquation(GL_FUNC_ADD);
  1723. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  1724. glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
  1725. } else {
  1726. glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
  1727. }
  1728. } break;
  1729. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD: {
  1730. glBlendEquation(GL_FUNC_ADD);
  1731. glBlendFunc(p_alpha_pass ? GL_SRC_ALPHA : GL_ONE, GL_ONE);
  1732. } break;
  1733. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_SUB: {
  1734. glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
  1735. glBlendFunc(GL_SRC_ALPHA, GL_ONE);
  1736. } break;
  1737. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MUL: {
  1738. glBlendEquation(GL_FUNC_ADD);
  1739. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  1740. glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO);
  1741. } else {
  1742. glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE);
  1743. }
  1744. } break;
  1745. }
  1746. prev_blend_mode = blend_mode;
  1747. }
  1748. //condition to enable vertex lighting on this object
  1749. bool vertex_lit = (material->shader->spatial.uses_vertex_lighting || storage->config.force_vertex_shading) && ((!unshaded && light) || using_fog); //fog forces vertex lighting because it still applies even if unshaded or no fog
  1750. if (vertex_lit != prev_vertex_lit) {
  1751. state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, vertex_lit);
  1752. prev_vertex_lit = vertex_lit;
  1753. }
  1754. if (!unshaded && !accum_pass && e->refprobe_0_index != RenderList::MAX_REFLECTION_PROBES) {
  1755. ERR_FAIL_INDEX(e->refprobe_0_index, reflection_probe_count);
  1756. refprobe_1 = reflection_probe_instances[e->refprobe_0_index];
  1757. }
  1758. if (!unshaded && !accum_pass && e->refprobe_1_index != RenderList::MAX_REFLECTION_PROBES) {
  1759. ERR_FAIL_INDEX(e->refprobe_1_index, reflection_probe_count);
  1760. refprobe_2 = reflection_probe_instances[e->refprobe_1_index];
  1761. }
  1762. if (refprobe_1 != prev_refprobe_1 || refprobe_2 != prev_refprobe_2) {
  1763. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, refprobe_1 != NULL);
  1764. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, refprobe_2 != NULL);
  1765. if (refprobe_1 != NULL && refprobe_1 != prev_refprobe_1) {
  1766. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 5);
  1767. glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_1->cubemap);
  1768. }
  1769. if (refprobe_2 != NULL && refprobe_2 != prev_refprobe_2) {
  1770. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 6);
  1771. glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_2->cubemap);
  1772. }
  1773. rebind = true;
  1774. rebind_reflection = true;
  1775. }
  1776. use_lightmap_capture = !unshaded && !accum_pass && !e->instance->lightmap_capture_data.empty();
  1777. if (use_lightmap_capture != prev_use_lightmap_capture) {
  1778. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, use_lightmap_capture);
  1779. rebind = true;
  1780. }
  1781. if (!unshaded && !accum_pass && e->instance->lightmap.is_valid()) {
  1782. lightmap = storage->texture_owner.getornull(e->instance->lightmap);
  1783. lightmap_energy = 1.0;
  1784. if (lightmap) {
  1785. RasterizerStorageGLES2::LightmapCapture *capture = storage->lightmap_capture_data_owner.getornull(e->instance->lightmap_capture->base);
  1786. if (capture) {
  1787. lightmap_energy = capture->energy;
  1788. }
  1789. }
  1790. }
  1791. if (lightmap != prev_lightmap) {
  1792. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, lightmap != NULL);
  1793. if (lightmap != NULL) {
  1794. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4);
  1795. glBindTexture(GL_TEXTURE_2D, lightmap->tex_id);
  1796. }
  1797. rebind = true;
  1798. rebind_lightmap = true;
  1799. }
  1800. }
  1801. bool instancing = e->instance->base_type == VS::INSTANCE_MULTIMESH;
  1802. if (instancing != prev_instancing) {
  1803. state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, instancing);
  1804. rebind = true;
  1805. }
  1806. RasterizerStorageGLES2::Skeleton *skeleton = storage->skeleton_owner.getornull(e->instance->skeleton);
  1807. if (skeleton != prev_skeleton) {
  1808. if (skeleton) {
  1809. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, true);
  1810. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, !storage->config.float_texture_supported);
  1811. } else {
  1812. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false);
  1813. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, false);
  1814. }
  1815. rebind = true;
  1816. }
  1817. if (e->owner != prev_owner || e->geometry != prev_geometry || skeleton != prev_skeleton) {
  1818. _setup_geometry(e, skeleton);
  1819. }
  1820. bool shader_rebind = false;
  1821. if (rebind || material != prev_material) {
  1822. shader_rebind = _setup_material(material, p_reverse_cull, p_alpha_pass, Size2i(skeleton ? skeleton->size * 3 : 0, 0));
  1823. }
  1824. if (i == 0 || shader_rebind) { //first time must rebind
  1825. if (p_shadow) {
  1826. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_BIAS, p_shadow_bias);
  1827. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_NORMAL_BIAS, p_shadow_normal_bias);
  1828. if (state.shadow_is_dual_parabolloid) {
  1829. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_SIDE, state.dual_parbolloid_direction);
  1830. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_ZFAR, state.dual_parbolloid_zfar);
  1831. }
  1832. } else {
  1833. if (use_radiance_map) {
  1834. if (p_env) {
  1835. Transform sky_orientation(p_env->sky_orientation, Vector3(0.0, 0.0, 0.0));
  1836. state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, sky_orientation.affine_inverse() * p_view_transform);
  1837. } else {
  1838. // would be a bit weird if we don't have this...
  1839. state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, p_view_transform);
  1840. }
  1841. }
  1842. if (p_env) {
  1843. state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, p_env->bg_energy);
  1844. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, p_env->ambient_sky_contribution);
  1845. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, p_env->ambient_color);
  1846. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, p_env->ambient_energy);
  1847. } else {
  1848. state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, 1.0);
  1849. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, 1.0);
  1850. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, state.default_ambient);
  1851. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, 1.0);
  1852. }
  1853. //rebind all these
  1854. rebind_light = true;
  1855. rebind_reflection = true;
  1856. rebind_lightmap = true;
  1857. if (using_fog) {
  1858. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_COLOR_BASE, p_env->fog_color);
  1859. Color sun_color_amount = p_env->fog_sun_color;
  1860. sun_color_amount.a = p_env->fog_sun_amount;
  1861. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_SUN_COLOR_AMOUNT, sun_color_amount);
  1862. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_TRANSMIT_ENABLED, p_env->fog_transmit_enabled);
  1863. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_TRANSMIT_CURVE, p_env->fog_transmit_curve);
  1864. if (p_env->fog_depth_enabled) {
  1865. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_DEPTH_BEGIN, p_env->fog_depth_begin);
  1866. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_DEPTH_CURVE, p_env->fog_depth_curve);
  1867. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_MAX_DISTANCE, fog_max_distance);
  1868. }
  1869. if (p_env->fog_height_enabled) {
  1870. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MIN, p_env->fog_height_min);
  1871. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MAX, p_env->fog_height_max);
  1872. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MAX, p_env->fog_height_max);
  1873. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_CURVE, p_env->fog_height_curve);
  1874. }
  1875. }
  1876. }
  1877. state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_MATRIX, p_view_transform);
  1878. state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_INVERSE_MATRIX, view_transform_inverse);
  1879. state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_MATRIX, p_projection);
  1880. state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_INVERSE_MATRIX, projection_inverse);
  1881. state.scene_shader.set_uniform(SceneShaderGLES2::TIME, storage->frame.time[0]);
  1882. state.scene_shader.set_uniform(SceneShaderGLES2::VIEWPORT_SIZE, viewport_size);
  1883. state.scene_shader.set_uniform(SceneShaderGLES2::SCREEN_PIXEL_SIZE, screen_pixel_size);
  1884. }
  1885. if (rebind_light && light) {
  1886. _setup_light(light, shadow_atlas, p_view_transform);
  1887. }
  1888. if (rebind_reflection && (refprobe_1 || refprobe_2)) {
  1889. _setup_refprobes(refprobe_1, refprobe_2, p_view_transform, p_env);
  1890. }
  1891. if (rebind_lightmap && lightmap) {
  1892. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_ENERGY, lightmap_energy);
  1893. }
  1894. state.scene_shader.set_uniform(SceneShaderGLES2::WORLD_TRANSFORM, e->instance->transform);
  1895. if (skeleton) {
  1896. state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_IN_WORLD_COORDS, skeleton->use_world_transform);
  1897. state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_TRANSFORM, skeleton->world_transform);
  1898. state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_TRANSFORM_INVERSE, skeleton->world_transform_inverse);
  1899. }
  1900. if (use_lightmap_capture) { //this is per instance, must be set always if present
  1901. glUniform4fv(state.scene_shader.get_uniform_location(SceneShaderGLES2::LIGHTMAP_CAPTURES), 12, (const GLfloat *)e->instance->lightmap_capture_data.ptr());
  1902. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_CAPTURE_SKY, false);
  1903. }
  1904. _render_geometry(e);
  1905. prev_geometry = e->geometry;
  1906. prev_owner = e->owner;
  1907. prev_material = material;
  1908. prev_skeleton = skeleton;
  1909. prev_instancing = instancing;
  1910. prev_light = light;
  1911. prev_refprobe_1 = refprobe_1;
  1912. prev_refprobe_2 = refprobe_2;
  1913. prev_lightmap = lightmap;
  1914. prev_use_lightmap_capture = use_lightmap_capture;
  1915. }
  1916. _setup_light_type(NULL, NULL); //clear light stuff
  1917. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false);
  1918. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  1919. state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, false);
  1920. state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, false);
  1921. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false);
  1922. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false);
  1923. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false);
  1924. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false);
  1925. state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, false);
  1926. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, false);
  1927. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, false);
  1928. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, false);
  1929. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, false);
  1930. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_DEPTH_ENABLED, false);
  1931. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_HEIGHT_ENABLED, false);
  1932. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false);
  1933. state.scene_shader.set_conditional(SceneShaderGLES2::USE_DEPTH_PREPASS, false);
  1934. }
  1935. void RasterizerSceneGLES2::_draw_sky(RasterizerStorageGLES2::Sky *p_sky, const CameraMatrix &p_projection, const Transform &p_transform, bool p_vflip, float p_custom_fov, float p_energy, const Basis &p_sky_orientation) {
  1936. ERR_FAIL_COND(!p_sky);
  1937. RasterizerStorageGLES2::Texture *tex = storage->texture_owner.getornull(p_sky->panorama);
  1938. ERR_FAIL_COND(!tex);
  1939. glActiveTexture(GL_TEXTURE0);
  1940. glBindTexture(tex->target, tex->tex_id);
  1941. glDepthMask(GL_TRUE);
  1942. glEnable(GL_DEPTH_TEST);
  1943. glDisable(GL_CULL_FACE);
  1944. glDisable(GL_BLEND);
  1945. glDepthFunc(GL_LEQUAL);
  1946. // Camera
  1947. CameraMatrix camera;
  1948. if (p_custom_fov) {
  1949. float near_plane = p_projection.get_z_near();
  1950. float far_plane = p_projection.get_z_far();
  1951. float aspect = p_projection.get_aspect();
  1952. camera.set_perspective(p_custom_fov, aspect, near_plane, far_plane);
  1953. } else {
  1954. camera = p_projection;
  1955. }
  1956. float flip_sign = p_vflip ? -1 : 1;
  1957. // If matrix[2][0] or matrix[2][1] we're dealing with an asymmetrical projection matrix. This is the case for stereoscopic rendering (i.e. VR).
  1958. // To ensure the image rendered is perspective correct we need to move some logic into the shader. For this the USE_ASYM_PANO option is introduced.
  1959. // It also means the uv coordinates are ignored in this mode and we don't need our loop.
  1960. bool asymmetrical = ((camera.matrix[2][0] != 0.0) || (camera.matrix[2][1] != 0.0));
  1961. Vector3 vertices[8] = {
  1962. Vector3(-1, -1 * flip_sign, 1),
  1963. Vector3(0, 1, 0),
  1964. Vector3(1, -1 * flip_sign, 1),
  1965. Vector3(1, 1, 0),
  1966. Vector3(1, 1 * flip_sign, 1),
  1967. Vector3(1, 0, 0),
  1968. Vector3(-1, 1 * flip_sign, 1),
  1969. Vector3(0, 0, 0),
  1970. };
  1971. if (!asymmetrical) {
  1972. float vw, vh, zn;
  1973. camera.get_viewport_size(vw, vh);
  1974. zn = p_projection.get_z_near();
  1975. for (int i = 0; i < 4; i++) {
  1976. Vector3 uv = vertices[i * 2 + 1];
  1977. uv.x = (uv.x * 2.0 - 1.0) * vw;
  1978. uv.y = -(uv.y * 2.0 - 1.0) * vh;
  1979. uv.z = -zn;
  1980. vertices[i * 2 + 1] = p_transform.basis.xform(uv).normalized();
  1981. vertices[i * 2 + 1].z = -vertices[i * 2 + 1].z;
  1982. }
  1983. }
  1984. glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts);
  1985. glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(Vector3) * 8, vertices);
  1986. // bind sky vertex array....
  1987. glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, 0);
  1988. glVertexAttribPointer(VS::ARRAY_TEX_UV, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, ((uint8_t *)NULL) + sizeof(Vector3));
  1989. glEnableVertexAttribArray(VS::ARRAY_VERTEX);
  1990. glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
  1991. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_ASYM_PANO, asymmetrical);
  1992. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, !asymmetrical);
  1993. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, true);
  1994. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  1995. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  1996. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  1997. storage->shaders.copy.bind();
  1998. storage->shaders.copy.set_uniform(CopyShaderGLES2::MULTIPLIER, p_energy);
  1999. // don't know why but I always have problems setting a uniform mat3, so we're using a transform
  2000. storage->shaders.copy.set_uniform(CopyShaderGLES2::SKY_TRANSFORM, Transform(p_sky_orientation, Vector3(0.0, 0.0, 0.0)).affine_inverse());
  2001. if (asymmetrical) {
  2002. // pack the bits we need from our projection matrix
  2003. storage->shaders.copy.set_uniform(CopyShaderGLES2::ASYM_PROJ, camera.matrix[2][0], camera.matrix[0][0], camera.matrix[2][1], camera.matrix[1][1]);
  2004. ///@TODO I couldn't get mat3 + p_transform.basis to work, that would be better here.
  2005. storage->shaders.copy.set_uniform(CopyShaderGLES2::PANO_TRANSFORM, p_transform);
  2006. }
  2007. glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
  2008. glDisableVertexAttribArray(VS::ARRAY_VERTEX);
  2009. glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
  2010. glBindBuffer(GL_ARRAY_BUFFER, 0);
  2011. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_ASYM_PANO, false);
  2012. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  2013. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  2014. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2015. }
  2016. void RasterizerSceneGLES2::render_scene(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
  2017. Transform cam_transform = p_cam_transform;
  2018. GLuint current_fb = 0;
  2019. Environment *env = NULL;
  2020. int viewport_width, viewport_height;
  2021. bool probe_interior = false;
  2022. bool reverse_cull = false;
  2023. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) {
  2024. cam_transform.basis.set_axis(1, -cam_transform.basis.get_axis(1));
  2025. reverse_cull = true;
  2026. }
  2027. if (p_reflection_probe.is_valid()) {
  2028. ReflectionProbeInstance *probe = reflection_probe_instance_owner.getornull(p_reflection_probe);
  2029. ERR_FAIL_COND(!probe);
  2030. state.render_no_shadows = !probe->probe_ptr->enable_shadows;
  2031. if (!probe->probe_ptr->interior) { //use env only if not interior
  2032. env = environment_owner.getornull(p_environment);
  2033. }
  2034. current_fb = probe->fbo[p_reflection_probe_pass];
  2035. viewport_width = probe->probe_ptr->resolution;
  2036. viewport_height = probe->probe_ptr->resolution;
  2037. probe_interior = probe->probe_ptr->interior;
  2038. } else {
  2039. state.render_no_shadows = false;
  2040. current_fb = storage->frame.current_rt->fbo;
  2041. env = environment_owner.getornull(p_environment);
  2042. viewport_width = storage->frame.current_rt->width;
  2043. viewport_height = storage->frame.current_rt->height;
  2044. }
  2045. state.used_screen_texture = false;
  2046. state.viewport_size.x = viewport_width;
  2047. state.viewport_size.y = viewport_height;
  2048. state.screen_pixel_size.x = 1.0 / viewport_width;
  2049. state.screen_pixel_size.y = 1.0 / viewport_height;
  2050. //push back the directional lights
  2051. if (p_light_cull_count) {
  2052. //hardcoded limit of 256 lights
  2053. render_light_instance_count = MIN(RenderList::MAX_LIGHTS, p_light_cull_count);
  2054. render_light_instances = (LightInstance **)alloca(sizeof(LightInstance *) * render_light_instance_count);
  2055. render_directional_lights = 0;
  2056. //doing this because directional lights are at the end, put them at the beginning
  2057. int index = 0;
  2058. for (int i = render_light_instance_count - 1; i >= 0; i--) {
  2059. RID light_rid = p_light_cull_result[i];
  2060. LightInstance *light = light_instance_owner.getornull(light_rid);
  2061. if (light->light_ptr->type == VS::LIGHT_DIRECTIONAL) {
  2062. render_directional_lights++;
  2063. //as going in reverse, directional lights are always first anyway
  2064. }
  2065. light->light_index = index;
  2066. render_light_instances[index] = light;
  2067. index++;
  2068. }
  2069. } else {
  2070. render_light_instances = NULL;
  2071. render_directional_lights = 0;
  2072. render_light_instance_count = 0;
  2073. }
  2074. if (p_reflection_probe_cull_count) {
  2075. reflection_probe_instances = (ReflectionProbeInstance **)alloca(sizeof(ReflectionProbeInstance *) * p_reflection_probe_cull_count);
  2076. reflection_probe_count = p_reflection_probe_cull_count;
  2077. for (int i = 0; i < p_reflection_probe_cull_count; i++) {
  2078. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflection_probe_cull_result[i]);
  2079. ERR_CONTINUE(!rpi);
  2080. rpi->last_pass = render_pass + 1; //will be incremented later
  2081. rpi->index = i;
  2082. reflection_probe_instances[i] = rpi;
  2083. }
  2084. } else {
  2085. reflection_probe_instances = NULL;
  2086. reflection_probe_count = 0;
  2087. }
  2088. // render list stuff
  2089. render_list.clear();
  2090. _fill_render_list(p_cull_result, p_cull_count, false, false);
  2091. // other stuff
  2092. glBindFramebuffer(GL_FRAMEBUFFER, current_fb);
  2093. glViewport(0, 0, viewport_width, viewport_height);
  2094. glDepthFunc(GL_LEQUAL);
  2095. glDepthMask(GL_TRUE);
  2096. glClearDepth(1.0f);
  2097. glEnable(GL_DEPTH_TEST);
  2098. // clear color
  2099. Color clear_color(0, 0, 0, 1);
  2100. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  2101. clear_color = Color(0, 0, 0, 0);
  2102. storage->frame.clear_request = false;
  2103. } else if (!env || env->bg_mode == VS::ENV_BG_CLEAR_COLOR || env->bg_mode == VS::ENV_BG_SKY) {
  2104. if (storage->frame.clear_request) {
  2105. clear_color = storage->frame.clear_request_color;
  2106. storage->frame.clear_request = false;
  2107. }
  2108. } else if (env->bg_mode == VS::ENV_BG_CANVAS || env->bg_mode == VS::ENV_BG_COLOR || env->bg_mode == VS::ENV_BG_COLOR_SKY) {
  2109. clear_color = env->bg_color;
  2110. storage->frame.clear_request = false;
  2111. } else {
  2112. storage->frame.clear_request = false;
  2113. }
  2114. if (!env || env->bg_mode != VS::ENV_BG_KEEP) {
  2115. glClearColor(clear_color.r, clear_color.g, clear_color.b, clear_color.a);
  2116. }
  2117. state.default_ambient = Color(clear_color.r, clear_color.g, clear_color.b, 1.0);
  2118. glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
  2119. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  2120. glBlendEquation(GL_FUNC_ADD);
  2121. glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
  2122. // render sky
  2123. RasterizerStorageGLES2::Sky *sky = NULL;
  2124. GLuint env_radiance_tex = 0;
  2125. if (env) {
  2126. switch (env->bg_mode) {
  2127. case VS::ENV_BG_COLOR_SKY:
  2128. case VS::ENV_BG_SKY: {
  2129. sky = storage->sky_owner.getornull(env->sky);
  2130. if (sky) {
  2131. env_radiance_tex = sky->radiance;
  2132. }
  2133. } break;
  2134. default: {
  2135. // FIXME: implement other background modes
  2136. } break;
  2137. }
  2138. }
  2139. if (env && env->bg_mode == VS::ENV_BG_SKY && (!storage->frame.current_rt || !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT])) {
  2140. if (sky && sky->panorama.is_valid()) {
  2141. _draw_sky(sky, p_cam_projection, cam_transform, false, env->sky_custom_fov, env->bg_energy, env->sky_orientation);
  2142. }
  2143. }
  2144. if (probe_interior) {
  2145. env_radiance_tex = 0; //do not use radiance texture on interiors
  2146. state.default_ambient = Color(0, 0, 0, 1); //black as default ambient for interior
  2147. }
  2148. // render opaque things first
  2149. render_list.sort_by_key(false);
  2150. _render_render_list(render_list.elements, render_list.element_count, cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, reverse_cull, false, false);
  2151. if (storage->frame.current_rt && state.used_screen_texture) {
  2152. //copy screen texture
  2153. storage->canvas->_copy_screen(Rect2());
  2154. }
  2155. // alpha pass
  2156. glBlendEquation(GL_FUNC_ADD);
  2157. glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
  2158. render_list.sort_by_depth(true);
  2159. _render_render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, reverse_cull, true, false);
  2160. glDisable(GL_DEPTH_TEST);
  2161. //#define GLES2_SHADOW_ATLAS_DEBUG_VIEW
  2162. #ifdef GLES2_SHADOW_ATLAS_DEBUG_VIEW
  2163. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2164. if (shadow_atlas) {
  2165. glActiveTexture(GL_TEXTURE0);
  2166. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  2167. glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4);
  2168. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2169. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  2170. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  2171. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  2172. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  2173. storage->shaders.copy.bind();
  2174. storage->_copy_screen();
  2175. }
  2176. #endif
  2177. //#define GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW
  2178. #ifdef GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW
  2179. if (true) {
  2180. glActiveTexture(GL_TEXTURE0);
  2181. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  2182. glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4);
  2183. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2184. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  2185. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  2186. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  2187. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  2188. storage->shaders.copy.bind();
  2189. storage->_copy_screen();
  2190. }
  2191. #endif
  2192. }
  2193. void RasterizerSceneGLES2::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) {
  2194. state.render_no_shadows = false;
  2195. LightInstance *light_instance = light_instance_owner.getornull(p_light);
  2196. ERR_FAIL_COND(!light_instance);
  2197. RasterizerStorageGLES2::Light *light = light_instance->light_ptr;
  2198. ERR_FAIL_COND(!light);
  2199. uint32_t x;
  2200. uint32_t y;
  2201. uint32_t width;
  2202. uint32_t height;
  2203. float zfar = 0;
  2204. bool flip_facing = false;
  2205. int custom_vp_size = 0;
  2206. GLuint fbo = 0;
  2207. state.shadow_is_dual_parabolloid = false;
  2208. state.dual_parbolloid_direction = 0.0;
  2209. int current_cubemap = -1;
  2210. float bias = 0;
  2211. float normal_bias = 0;
  2212. CameraMatrix light_projection;
  2213. Transform light_transform;
  2214. // TODO directional light
  2215. if (light->type == VS::LIGHT_DIRECTIONAL) {
  2216. // set pssm stuff
  2217. // TODO set this only when changed
  2218. light_instance->light_directional_index = directional_shadow.current_light;
  2219. light_instance->last_scene_shadow_pass = scene_pass;
  2220. directional_shadow.current_light++;
  2221. if (directional_shadow.light_count == 1) {
  2222. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size);
  2223. } else if (directional_shadow.light_count == 2) {
  2224. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size / 2);
  2225. if (light_instance->light_directional_index == 1) {
  2226. light_instance->directional_rect.position.x += light_instance->directional_rect.size.x;
  2227. }
  2228. } else { //3 and 4
  2229. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size / 2, directional_shadow.size / 2);
  2230. if (light_instance->light_directional_index & 1) {
  2231. light_instance->directional_rect.position.x += light_instance->directional_rect.size.x;
  2232. }
  2233. if (light_instance->light_directional_index / 2) {
  2234. light_instance->directional_rect.position.y += light_instance->directional_rect.size.y;
  2235. }
  2236. }
  2237. light_projection = light_instance->shadow_transform[p_pass].camera;
  2238. light_transform = light_instance->shadow_transform[p_pass].transform;
  2239. x = light_instance->directional_rect.position.x;
  2240. y = light_instance->directional_rect.position.y;
  2241. width = light_instance->directional_rect.size.width;
  2242. height = light_instance->directional_rect.size.height;
  2243. if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  2244. width /= 2;
  2245. height /= 2;
  2246. if (p_pass == 0) {
  2247. } else if (p_pass == 1) {
  2248. x += width;
  2249. } else if (p_pass == 2) {
  2250. y += height;
  2251. } else if (p_pass == 3) {
  2252. x += width;
  2253. y += height;
  2254. }
  2255. } else if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  2256. height /= 2;
  2257. if (p_pass == 0) {
  2258. } else {
  2259. y += height;
  2260. }
  2261. }
  2262. float bias_mult = Math::lerp(1.0f, light_instance->shadow_transform[p_pass].bias_scale, light->param[VS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE]);
  2263. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2264. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS] * bias_mult;
  2265. normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] * bias_mult;
  2266. fbo = directional_shadow.fbo;
  2267. } else {
  2268. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2269. ERR_FAIL_COND(!shadow_atlas);
  2270. ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
  2271. fbo = shadow_atlas->fbo;
  2272. uint32_t key = shadow_atlas->shadow_owners[p_light];
  2273. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  2274. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  2275. ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
  2276. uint32_t quadrant_size = shadow_atlas->size >> 1;
  2277. x = (quadrant & 1) * quadrant_size;
  2278. y = (quadrant >> 1) * quadrant_size;
  2279. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  2280. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2281. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2282. width = shadow_size;
  2283. height = shadow_size;
  2284. if (light->type == VS::LIGHT_OMNI) {
  2285. // cubemap only
  2286. if (light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE && storage->config.support_shadow_cubemaps) {
  2287. int cubemap_index = shadow_cubemaps.size() - 1;
  2288. // find an appropriate cubemap to render to
  2289. for (int i = shadow_cubemaps.size() - 1; i >= 0; i--) {
  2290. if (shadow_cubemaps[i].size > shadow_size * 2) {
  2291. break;
  2292. }
  2293. cubemap_index = i;
  2294. }
  2295. fbo = shadow_cubemaps[cubemap_index].fbo[p_pass];
  2296. light_projection = light_instance->shadow_transform[0].camera;
  2297. light_transform = light_instance->shadow_transform[0].transform;
  2298. custom_vp_size = shadow_cubemaps[cubemap_index].size;
  2299. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2300. current_cubemap = cubemap_index;
  2301. } else {
  2302. //dual parabolloid
  2303. state.shadow_is_dual_parabolloid = true;
  2304. light_projection = light_instance->shadow_transform[0].camera;
  2305. light_transform = light_instance->shadow_transform[0].transform;
  2306. if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  2307. height /= 2;
  2308. y += p_pass * height;
  2309. } else {
  2310. width /= 2;
  2311. x += p_pass * width;
  2312. }
  2313. state.dual_parbolloid_direction = p_pass == 0 ? 1.0 : -1.0;
  2314. flip_facing = (p_pass == 1);
  2315. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2316. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
  2317. state.dual_parbolloid_zfar = zfar;
  2318. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, true);
  2319. }
  2320. } else if (light->type == VS::LIGHT_SPOT) {
  2321. light_projection = light_instance->shadow_transform[0].camera;
  2322. light_transform = light_instance->shadow_transform[0].transform;
  2323. flip_facing = false;
  2324. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2325. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
  2326. normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS];
  2327. }
  2328. }
  2329. render_list.clear();
  2330. _fill_render_list(p_cull_result, p_cull_count, true, true);
  2331. render_list.sort_by_depth(false);
  2332. glDisable(GL_BLEND);
  2333. glDisable(GL_DITHER);
  2334. glEnable(GL_DEPTH_TEST);
  2335. glBindFramebuffer(GL_FRAMEBUFFER, fbo);
  2336. glDepthMask(GL_TRUE);
  2337. if (!storage->config.use_rgba_3d_shadows) {
  2338. glColorMask(0, 0, 0, 0);
  2339. }
  2340. if (custom_vp_size) {
  2341. glViewport(0, 0, custom_vp_size, custom_vp_size);
  2342. glScissor(0, 0, custom_vp_size, custom_vp_size);
  2343. } else {
  2344. glViewport(x, y, width, height);
  2345. glScissor(x, y, width, height);
  2346. }
  2347. glEnable(GL_SCISSOR_TEST);
  2348. glClearDepth(1.0f);
  2349. glClear(GL_DEPTH_BUFFER_BIT);
  2350. glDisable(GL_SCISSOR_TEST);
  2351. if (light->reverse_cull) {
  2352. flip_facing = !flip_facing;
  2353. }
  2354. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, true);
  2355. _render_render_list(render_list.elements, render_list.element_count, light_transform, light_projection, RID(), NULL, 0, bias, normal_bias, flip_facing, false, true);
  2356. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, false);
  2357. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, false);
  2358. // convert cubemap to dual paraboloid if needed
  2359. if (light->type == VS::LIGHT_OMNI && (light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE && storage->config.support_shadow_cubemaps) && p_pass == 5) {
  2360. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2361. glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo);
  2362. state.cube_to_dp_shader.bind();
  2363. glActiveTexture(GL_TEXTURE0);
  2364. glBindTexture(GL_TEXTURE_CUBE_MAP, shadow_cubemaps[current_cubemap].cubemap);
  2365. glDisable(GL_CULL_FACE);
  2366. for (int i = 0; i < 2; i++) {
  2367. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_FLIP, i == 1);
  2368. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_NEAR, light_projection.get_z_near());
  2369. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_FAR, light_projection.get_z_far());
  2370. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::BIAS, light->param[VS::LIGHT_PARAM_SHADOW_BIAS]);
  2371. uint32_t local_width = width;
  2372. uint32_t local_height = height;
  2373. uint32_t local_x = x;
  2374. uint32_t local_y = y;
  2375. if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  2376. local_height /= 2;
  2377. local_y += i * local_height;
  2378. } else {
  2379. local_width /= 2;
  2380. local_x += i * local_width;
  2381. }
  2382. glViewport(local_x, local_y, local_width, local_height);
  2383. glScissor(local_x, local_y, local_width, local_height);
  2384. glEnable(GL_SCISSOR_TEST);
  2385. glClearDepth(1.0f);
  2386. glClear(GL_DEPTH_BUFFER_BIT);
  2387. glDisable(GL_SCISSOR_TEST);
  2388. glDisable(GL_BLEND);
  2389. storage->_copy_screen();
  2390. }
  2391. }
  2392. if (storage->frame.current_rt) {
  2393. glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
  2394. }
  2395. if (!storage->config.use_rgba_3d_shadows) {
  2396. glColorMask(1, 1, 1, 1);
  2397. }
  2398. }
  2399. void RasterizerSceneGLES2::set_scene_pass(uint64_t p_pass) {
  2400. scene_pass = p_pass;
  2401. }
  2402. bool RasterizerSceneGLES2::free(RID p_rid) {
  2403. if (light_instance_owner.owns(p_rid)) {
  2404. LightInstance *light_instance = light_instance_owner.getptr(p_rid);
  2405. //remove from shadow atlases..
  2406. for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) {
  2407. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(E->get());
  2408. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
  2409. uint32_t key = shadow_atlas->shadow_owners[p_rid];
  2410. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  2411. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  2412. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  2413. shadow_atlas->shadow_owners.erase(p_rid);
  2414. }
  2415. light_instance_owner.free(p_rid);
  2416. memdelete(light_instance);
  2417. } else if (shadow_atlas_owner.owns(p_rid)) {
  2418. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(p_rid);
  2419. shadow_atlas_set_size(p_rid, 0);
  2420. shadow_atlas_owner.free(p_rid);
  2421. memdelete(shadow_atlas);
  2422. } else if (reflection_probe_instance_owner.owns(p_rid)) {
  2423. ReflectionProbeInstance *reflection_instance = reflection_probe_instance_owner.get(p_rid);
  2424. for (int i = 0; i < 6; i++) {
  2425. glDeleteFramebuffers(1, &reflection_instance->fbo[i]);
  2426. glDeleteTextures(1, &reflection_instance->color[i]);
  2427. }
  2428. if (reflection_instance->cubemap != 0) {
  2429. glDeleteTextures(1, &reflection_instance->cubemap);
  2430. }
  2431. glDeleteRenderbuffers(1, &reflection_instance->depth);
  2432. reflection_probe_release_atlas_index(p_rid);
  2433. reflection_probe_instance_owner.free(p_rid);
  2434. memdelete(reflection_instance);
  2435. } else {
  2436. return false;
  2437. }
  2438. return true;
  2439. }
  2440. void RasterizerSceneGLES2::set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw) {
  2441. }
  2442. void RasterizerSceneGLES2::initialize() {
  2443. state.scene_shader.init();
  2444. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RGBA_SHADOWS, storage->config.use_rgba_3d_shadows);
  2445. state.cube_to_dp_shader.init();
  2446. render_list.init();
  2447. render_pass = 1;
  2448. shadow_atlas_realloc_tolerance_msec = 500;
  2449. {
  2450. //default material and shader
  2451. default_shader = storage->shader_create();
  2452. storage->shader_set_code(default_shader, "shader_type spatial;\n");
  2453. default_material = storage->material_create();
  2454. storage->material_set_shader(default_material, default_shader);
  2455. default_shader_twosided = storage->shader_create();
  2456. default_material_twosided = storage->material_create();
  2457. storage->shader_set_code(default_shader_twosided, "shader_type spatial; render_mode cull_disabled;\n");
  2458. storage->material_set_shader(default_material_twosided, default_shader_twosided);
  2459. }
  2460. {
  2461. default_worldcoord_shader = storage->shader_create();
  2462. storage->shader_set_code(default_worldcoord_shader, "shader_type spatial; render_mode world_vertex_coords;\n");
  2463. default_worldcoord_material = storage->material_create();
  2464. storage->material_set_shader(default_worldcoord_material, default_worldcoord_shader);
  2465. default_worldcoord_shader_twosided = storage->shader_create();
  2466. default_worldcoord_material_twosided = storage->material_create();
  2467. storage->shader_set_code(default_worldcoord_shader_twosided, "shader_type spatial; render_mode cull_disabled,world_vertex_coords;\n");
  2468. storage->material_set_shader(default_worldcoord_material_twosided, default_worldcoord_shader_twosided);
  2469. }
  2470. {
  2471. //default material and shader
  2472. default_overdraw_shader = storage->shader_create();
  2473. storage->shader_set_code(default_overdraw_shader, "shader_type spatial;\nrender_mode blend_add,unshaded;\n void fragment() { ALBEDO=vec3(0.4,0.8,0.8); ALPHA=0.2; }");
  2474. default_overdraw_material = storage->material_create();
  2475. storage->material_set_shader(default_overdraw_material, default_overdraw_shader);
  2476. }
  2477. {
  2478. glGenBuffers(1, &state.sky_verts);
  2479. glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts);
  2480. glBufferData(GL_ARRAY_BUFFER, sizeof(Vector3) * 8, NULL, GL_DYNAMIC_DRAW);
  2481. glBindBuffer(GL_ARRAY_BUFFER, 0);
  2482. }
  2483. {
  2484. uint32_t immediate_buffer_size = GLOBAL_DEF("rendering/limits/buffers/immediate_buffer_size_kb", 2048);
  2485. ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/buffers/immediate_buffer_size_kb", PropertyInfo(Variant::INT, "rendering/limits/buffers/immediate_buffer_size_kb", PROPERTY_HINT_RANGE, "0,8192,1,or_greater"));
  2486. glGenBuffers(1, &state.immediate_buffer);
  2487. glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer);
  2488. glBufferData(GL_ARRAY_BUFFER, immediate_buffer_size * 1024, NULL, GL_DYNAMIC_DRAW);
  2489. glBindBuffer(GL_ARRAY_BUFFER, 0);
  2490. }
  2491. // cubemaps for shadows
  2492. if (storage->config.support_shadow_cubemaps) { //not going to be used
  2493. int max_shadow_cubemap_sampler_size = 512;
  2494. int cube_size = max_shadow_cubemap_sampler_size;
  2495. glActiveTexture(GL_TEXTURE0);
  2496. while (cube_size >= 32) {
  2497. ShadowCubeMap cube;
  2498. cube.size = cube_size;
  2499. glGenTextures(1, &cube.cubemap);
  2500. glBindTexture(GL_TEXTURE_CUBE_MAP, cube.cubemap);
  2501. for (int i = 0; i < 6; i++) {
  2502. glTexImage2D(_cube_side_enum[i], 0, storage->config.depth_internalformat, cube_size, cube_size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, NULL);
  2503. }
  2504. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  2505. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  2506. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  2507. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  2508. glGenFramebuffers(6, cube.fbo);
  2509. for (int i = 0; i < 6; i++) {
  2510. glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo[i]);
  2511. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, _cube_side_enum[i], cube.cubemap, 0);
  2512. }
  2513. shadow_cubemaps.push_back(cube);
  2514. cube_size >>= 1;
  2515. }
  2516. }
  2517. {
  2518. // directional shadows
  2519. directional_shadow.light_count = 0;
  2520. directional_shadow.size = next_power_of_2(GLOBAL_GET("rendering/quality/directional_shadow/size"));
  2521. glGenFramebuffers(1, &directional_shadow.fbo);
  2522. glBindFramebuffer(GL_FRAMEBUFFER, directional_shadow.fbo);
  2523. if (storage->config.use_rgba_3d_shadows) {
  2524. //maximum compatibility, renderbuffer and RGBA shadow
  2525. glGenRenderbuffers(1, &directional_shadow.depth);
  2526. glBindRenderbuffer(GL_RENDERBUFFER, directional_shadow.depth);
  2527. glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_internalformat, directional_shadow.size, directional_shadow.size);
  2528. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, directional_shadow.depth);
  2529. glGenTextures(1, &directional_shadow.color);
  2530. glBindTexture(GL_TEXTURE_2D, directional_shadow.color);
  2531. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, directional_shadow.size, directional_shadow.size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
  2532. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  2533. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  2534. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  2535. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  2536. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, directional_shadow.color, 0);
  2537. } else {
  2538. //just a depth buffer
  2539. glGenTextures(1, &directional_shadow.depth);
  2540. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  2541. glTexImage2D(GL_TEXTURE_2D, 0, storage->config.depth_internalformat, directional_shadow.size, directional_shadow.size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, NULL);
  2542. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  2543. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  2544. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  2545. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  2546. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, directional_shadow.depth, 0);
  2547. }
  2548. GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
  2549. if (status != GL_FRAMEBUFFER_COMPLETE) {
  2550. ERR_PRINT("Directional shadow framebuffer status invalid");
  2551. }
  2552. }
  2553. shadow_filter_mode = SHADOW_FILTER_NEAREST;
  2554. glFrontFace(GL_CW);
  2555. }
  2556. void RasterizerSceneGLES2::iteration() {
  2557. shadow_filter_mode = ShadowFilterMode(int(GLOBAL_GET("rendering/quality/shadows/filter_mode")));
  2558. }
  2559. void RasterizerSceneGLES2::finalize() {
  2560. }
  2561. RasterizerSceneGLES2::RasterizerSceneGLES2() {
  2562. }