renderer_scene_render_rd.cpp 163 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262
  1. /*************************************************************************/
  2. /* renderer_scene_render_rd.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "renderer_scene_render_rd.h"
  31. #include "core/config/project_settings.h"
  32. #include "core/os/os.h"
  33. #include "renderer_compositor_rd.h"
  34. #include "servers/rendering/rendering_server_default.h"
  35. void get_vogel_disk(float *r_kernel, int p_sample_count) {
  36. const float golden_angle = 2.4;
  37. for (int i = 0; i < p_sample_count; i++) {
  38. float r = Math::sqrt(float(i) + 0.5) / Math::sqrt(float(p_sample_count));
  39. float theta = float(i) * golden_angle;
  40. r_kernel[i * 4] = Math::cos(theta) * r;
  41. r_kernel[i * 4 + 1] = Math::sin(theta) * r;
  42. }
  43. }
  44. void RendererSceneRenderRD::sdfgi_update(RID p_render_buffers, RID p_environment, const Vector3 &p_world_position) {
  45. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_environment);
  46. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  47. bool needs_sdfgi = env && env->sdfgi_enabled;
  48. if (!needs_sdfgi) {
  49. if (rb->sdfgi != nullptr) {
  50. //erase it
  51. rb->sdfgi->erase();
  52. memdelete(rb->sdfgi);
  53. rb->sdfgi = nullptr;
  54. _render_buffers_uniform_set_changed(p_render_buffers);
  55. }
  56. return;
  57. }
  58. static const uint32_t history_frames_to_converge[RS::ENV_SDFGI_CONVERGE_MAX] = { 5, 10, 15, 20, 25, 30 };
  59. uint32_t requested_history_size = history_frames_to_converge[gi.sdfgi_frames_to_converge];
  60. if (rb->sdfgi && (rb->sdfgi->cascade_mode != env->sdfgi_cascades || rb->sdfgi->min_cell_size != env->sdfgi_min_cell_size || requested_history_size != rb->sdfgi->history_size || rb->sdfgi->uses_occlusion != env->sdfgi_use_occlusion || rb->sdfgi->y_scale_mode != env->sdfgi_y_scale)) {
  61. //configuration changed, erase
  62. rb->sdfgi->erase();
  63. memdelete(rb->sdfgi);
  64. rb->sdfgi = nullptr;
  65. }
  66. RendererSceneGIRD::SDFGI *sdfgi = rb->sdfgi;
  67. if (sdfgi == nullptr) {
  68. // re-create
  69. rb->sdfgi = gi.create_sdfgi(env, p_world_position, requested_history_size);
  70. _render_buffers_uniform_set_changed(p_render_buffers);
  71. } else {
  72. //check for updates
  73. rb->sdfgi->update(env, p_world_position);
  74. }
  75. }
  76. int RendererSceneRenderRD::sdfgi_get_pending_region_count(RID p_render_buffers) const {
  77. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  78. ERR_FAIL_COND_V(rb == nullptr, 0);
  79. if (rb->sdfgi == nullptr) {
  80. return 0;
  81. }
  82. int dirty_count = 0;
  83. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  84. const RendererSceneGIRD::SDFGI::Cascade &c = rb->sdfgi->cascades[i];
  85. if (c.dirty_regions == RendererSceneGIRD::SDFGI::Cascade::DIRTY_ALL) {
  86. dirty_count++;
  87. } else {
  88. for (int j = 0; j < 3; j++) {
  89. if (c.dirty_regions[j] != 0) {
  90. dirty_count++;
  91. }
  92. }
  93. }
  94. }
  95. return dirty_count;
  96. }
  97. AABB RendererSceneRenderRD::sdfgi_get_pending_region_bounds(RID p_render_buffers, int p_region) const {
  98. AABB bounds;
  99. Vector3i from;
  100. Vector3i size;
  101. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  102. ERR_FAIL_COND_V(rb == nullptr, AABB());
  103. ERR_FAIL_COND_V(rb->sdfgi == nullptr, AABB());
  104. int c = rb->sdfgi->get_pending_region_data(p_region, from, size, bounds);
  105. ERR_FAIL_COND_V(c == -1, AABB());
  106. return bounds;
  107. }
  108. uint32_t RendererSceneRenderRD::sdfgi_get_pending_region_cascade(RID p_render_buffers, int p_region) const {
  109. AABB bounds;
  110. Vector3i from;
  111. Vector3i size;
  112. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  113. ERR_FAIL_COND_V(rb == nullptr, -1);
  114. ERR_FAIL_COND_V(rb->sdfgi == nullptr, -1);
  115. return rb->sdfgi->get_pending_region_data(p_region, from, size, bounds);
  116. }
  117. RID RendererSceneRenderRD::sky_allocate() {
  118. return sky.allocate_sky_rid();
  119. }
  120. void RendererSceneRenderRD::sky_initialize(RID p_rid) {
  121. sky.initialize_sky_rid(p_rid);
  122. }
  123. void RendererSceneRenderRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
  124. sky.sky_set_radiance_size(p_sky, p_radiance_size);
  125. }
  126. void RendererSceneRenderRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
  127. sky.sky_set_mode(p_sky, p_mode);
  128. }
  129. void RendererSceneRenderRD::sky_set_material(RID p_sky, RID p_material) {
  130. sky.sky_set_material(p_sky, p_material);
  131. }
  132. Ref<Image> RendererSceneRenderRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) {
  133. return sky.sky_bake_panorama(p_sky, p_energy, p_bake_irradiance, p_size);
  134. }
  135. RID RendererSceneRenderRD::environment_allocate() {
  136. return environment_owner.allocate_rid();
  137. }
  138. void RendererSceneRenderRD::environment_initialize(RID p_rid) {
  139. environment_owner.initialize_rid(p_rid, RendererSceneEnvironmentRD());
  140. }
  141. void RendererSceneRenderRD::environment_set_background(RID p_env, RS::EnvironmentBG p_bg) {
  142. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  143. ERR_FAIL_COND(!env);
  144. env->background = p_bg;
  145. }
  146. void RendererSceneRenderRD::environment_set_sky(RID p_env, RID p_sky) {
  147. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  148. ERR_FAIL_COND(!env);
  149. env->sky = p_sky;
  150. }
  151. void RendererSceneRenderRD::environment_set_sky_custom_fov(RID p_env, float p_scale) {
  152. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  153. ERR_FAIL_COND(!env);
  154. env->sky_custom_fov = p_scale;
  155. }
  156. void RendererSceneRenderRD::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {
  157. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  158. ERR_FAIL_COND(!env);
  159. env->sky_orientation = p_orientation;
  160. }
  161. void RendererSceneRenderRD::environment_set_bg_color(RID p_env, const Color &p_color) {
  162. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  163. ERR_FAIL_COND(!env);
  164. env->bg_color = p_color;
  165. }
  166. void RendererSceneRenderRD::environment_set_bg_energy(RID p_env, float p_energy) {
  167. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  168. ERR_FAIL_COND(!env);
  169. env->bg_energy = p_energy;
  170. }
  171. void RendererSceneRenderRD::environment_set_canvas_max_layer(RID p_env, int p_max_layer) {
  172. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  173. ERR_FAIL_COND(!env);
  174. env->canvas_max_layer = p_max_layer;
  175. }
  176. void RendererSceneRenderRD::environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient, float p_energy, float p_sky_contribution, RS::EnvironmentReflectionSource p_reflection_source, const Color &p_ao_color) {
  177. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  178. ERR_FAIL_COND(!env);
  179. env->set_ambient_light(p_color, p_ambient, p_energy, p_sky_contribution, p_reflection_source, p_ao_color);
  180. }
  181. RS::EnvironmentBG RendererSceneRenderRD::environment_get_background(RID p_env) const {
  182. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  183. ERR_FAIL_COND_V(!env, RS::ENV_BG_MAX);
  184. return env->background;
  185. }
  186. RID RendererSceneRenderRD::environment_get_sky(RID p_env) const {
  187. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  188. ERR_FAIL_COND_V(!env, RID());
  189. return env->sky;
  190. }
  191. float RendererSceneRenderRD::environment_get_sky_custom_fov(RID p_env) const {
  192. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  193. ERR_FAIL_COND_V(!env, 0);
  194. return env->sky_custom_fov;
  195. }
  196. Basis RendererSceneRenderRD::environment_get_sky_orientation(RID p_env) const {
  197. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  198. ERR_FAIL_COND_V(!env, Basis());
  199. return env->sky_orientation;
  200. }
  201. Color RendererSceneRenderRD::environment_get_bg_color(RID p_env) const {
  202. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  203. ERR_FAIL_COND_V(!env, Color());
  204. return env->bg_color;
  205. }
  206. float RendererSceneRenderRD::environment_get_bg_energy(RID p_env) const {
  207. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  208. ERR_FAIL_COND_V(!env, 0);
  209. return env->bg_energy;
  210. }
  211. int RendererSceneRenderRD::environment_get_canvas_max_layer(RID p_env) const {
  212. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  213. ERR_FAIL_COND_V(!env, 0);
  214. return env->canvas_max_layer;
  215. }
  216. Color RendererSceneRenderRD::environment_get_ambient_light_color(RID p_env) const {
  217. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  218. ERR_FAIL_COND_V(!env, Color());
  219. return env->ambient_light;
  220. }
  221. RS::EnvironmentAmbientSource RendererSceneRenderRD::environment_get_ambient_source(RID p_env) const {
  222. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  223. ERR_FAIL_COND_V(!env, RS::ENV_AMBIENT_SOURCE_BG);
  224. return env->ambient_source;
  225. }
  226. float RendererSceneRenderRD::environment_get_ambient_light_energy(RID p_env) const {
  227. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  228. ERR_FAIL_COND_V(!env, 0);
  229. return env->ambient_light_energy;
  230. }
  231. float RendererSceneRenderRD::environment_get_ambient_sky_contribution(RID p_env) const {
  232. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  233. ERR_FAIL_COND_V(!env, 0);
  234. return env->ambient_sky_contribution;
  235. }
  236. RS::EnvironmentReflectionSource RendererSceneRenderRD::environment_get_reflection_source(RID p_env) const {
  237. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  238. ERR_FAIL_COND_V(!env, RS::ENV_REFLECTION_SOURCE_DISABLED);
  239. return env->reflection_source;
  240. }
  241. Color RendererSceneRenderRD::environment_get_ao_color(RID p_env) const {
  242. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  243. ERR_FAIL_COND_V(!env, Color());
  244. return env->ao_color;
  245. }
  246. void RendererSceneRenderRD::environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {
  247. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  248. ERR_FAIL_COND(!env);
  249. env->set_tonemap(p_tone_mapper, p_exposure, p_white, p_auto_exposure, p_min_luminance, p_max_luminance, p_auto_exp_speed, p_auto_exp_scale);
  250. }
  251. void RendererSceneRenderRD::environment_set_glow(RID p_env, bool p_enable, Vector<float> p_levels, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap) {
  252. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  253. ERR_FAIL_COND(!env);
  254. env->set_glow(p_enable, p_levels, p_intensity, p_strength, p_mix, p_bloom_threshold, p_blend_mode, p_hdr_bleed_threshold, p_hdr_bleed_scale, p_hdr_luminance_cap);
  255. }
  256. void RendererSceneRenderRD::environment_glow_set_use_bicubic_upscale(bool p_enable) {
  257. glow_bicubic_upscale = p_enable;
  258. }
  259. void RendererSceneRenderRD::environment_glow_set_use_high_quality(bool p_enable) {
  260. glow_high_quality = p_enable;
  261. }
  262. void RendererSceneRenderRD::environment_set_sdfgi(RID p_env, bool p_enable, RS::EnvironmentSDFGICascades p_cascades, float p_min_cell_size, RS::EnvironmentSDFGIYScale p_y_scale, bool p_use_occlusion, float p_bounce_feedback, bool p_read_sky, float p_energy, float p_normal_bias, float p_probe_bias) {
  263. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  264. ERR_FAIL_COND(!env);
  265. if (!is_dynamic_gi_supported()) {
  266. return;
  267. }
  268. env->set_sdfgi(p_enable, p_cascades, p_min_cell_size, p_y_scale, p_use_occlusion, p_bounce_feedback, p_read_sky, p_energy, p_normal_bias, p_probe_bias);
  269. }
  270. void RendererSceneRenderRD::environment_set_fog(RID p_env, bool p_enable, const Color &p_light_color, float p_light_energy, float p_sun_scatter, float p_density, float p_height, float p_height_density, float p_fog_aerial_perspective) {
  271. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  272. ERR_FAIL_COND(!env);
  273. env->set_fog(p_enable, p_light_color, p_light_energy, p_sun_scatter, p_density, p_height, p_height_density, p_fog_aerial_perspective);
  274. }
  275. bool RendererSceneRenderRD::environment_is_fog_enabled(RID p_env) const {
  276. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  277. ERR_FAIL_COND_V(!env, false);
  278. return env->fog_enabled;
  279. }
  280. Color RendererSceneRenderRD::environment_get_fog_light_color(RID p_env) const {
  281. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  282. ERR_FAIL_COND_V(!env, Color());
  283. return env->fog_light_color;
  284. }
  285. float RendererSceneRenderRD::environment_get_fog_light_energy(RID p_env) const {
  286. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  287. ERR_FAIL_COND_V(!env, 0);
  288. return env->fog_light_energy;
  289. }
  290. float RendererSceneRenderRD::environment_get_fog_sun_scatter(RID p_env) const {
  291. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  292. ERR_FAIL_COND_V(!env, 0);
  293. return env->fog_sun_scatter;
  294. }
  295. float RendererSceneRenderRD::environment_get_fog_density(RID p_env) const {
  296. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  297. ERR_FAIL_COND_V(!env, 0);
  298. return env->fog_density;
  299. }
  300. float RendererSceneRenderRD::environment_get_fog_height(RID p_env) const {
  301. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  302. ERR_FAIL_COND_V(!env, 0);
  303. return env->fog_height;
  304. }
  305. float RendererSceneRenderRD::environment_get_fog_height_density(RID p_env) const {
  306. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  307. ERR_FAIL_COND_V(!env, 0);
  308. return env->fog_height_density;
  309. }
  310. float RendererSceneRenderRD::environment_get_fog_aerial_perspective(RID p_env) const {
  311. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  312. ERR_FAIL_COND_V(!env, 0);
  313. return env->fog_aerial_perspective;
  314. }
  315. void RendererSceneRenderRD::environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_light, float p_light_energy, float p_length, float p_detail_spread, float p_gi_inject, bool p_temporal_reprojection, float p_temporal_reprojection_amount) {
  316. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  317. ERR_FAIL_COND(!env);
  318. if (!is_volumetric_supported()) {
  319. return;
  320. }
  321. env->set_volumetric_fog(p_enable, p_density, p_light, p_light_energy, p_length, p_detail_spread, p_gi_inject, p_temporal_reprojection, p_temporal_reprojection_amount);
  322. }
  323. void RendererSceneRenderRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) {
  324. volumetric_fog_size = p_size;
  325. volumetric_fog_depth = p_depth;
  326. }
  327. void RendererSceneRenderRD::environment_set_volumetric_fog_filter_active(bool p_enable) {
  328. volumetric_fog_filter_active = p_enable;
  329. }
  330. void RendererSceneRenderRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) {
  331. gi.sdfgi_ray_count = p_ray_count;
  332. }
  333. void RendererSceneRenderRD::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) {
  334. gi.sdfgi_frames_to_converge = p_frames;
  335. }
  336. void RendererSceneRenderRD::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) {
  337. gi.sdfgi_frames_to_update_light = p_update;
  338. }
  339. void RendererSceneRenderRD::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance) {
  340. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  341. ERR_FAIL_COND(!env);
  342. env->set_ssr(p_enable, p_max_steps, p_fade_int, p_fade_out, p_depth_tolerance);
  343. }
  344. void RendererSceneRenderRD::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) {
  345. ssr_roughness_quality = p_quality;
  346. }
  347. RS::EnvironmentSSRRoughnessQuality RendererSceneRenderRD::environment_get_ssr_roughness_quality() const {
  348. return ssr_roughness_quality;
  349. }
  350. void RendererSceneRenderRD::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_power, float p_detail, float p_horizon, float p_sharpness, float p_light_affect, float p_ao_channel_affect) {
  351. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  352. ERR_FAIL_COND(!env);
  353. env->set_ssao(p_enable, p_radius, p_intensity, p_power, p_detail, p_horizon, p_sharpness, p_light_affect, p_ao_channel_affect);
  354. }
  355. void RendererSceneRenderRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
  356. ssao_quality = p_quality;
  357. ssao_half_size = p_half_size;
  358. ssao_adaptive_target = p_adaptive_target;
  359. ssao_blur_passes = p_blur_passes;
  360. ssao_fadeout_from = p_fadeout_from;
  361. ssao_fadeout_to = p_fadeout_to;
  362. }
  363. bool RendererSceneRenderRD::environment_is_ssao_enabled(RID p_env) const {
  364. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  365. ERR_FAIL_COND_V(!env, false);
  366. return env->ssao_enabled;
  367. }
  368. float RendererSceneRenderRD::environment_get_ssao_ao_affect(RID p_env) const {
  369. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  370. ERR_FAIL_COND_V(!env, 0.0);
  371. return env->ssao_ao_channel_affect;
  372. }
  373. float RendererSceneRenderRD::environment_get_ssao_light_affect(RID p_env) const {
  374. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  375. ERR_FAIL_COND_V(!env, 0.0);
  376. return env->ssao_direct_light_affect;
  377. }
  378. bool RendererSceneRenderRD::environment_is_ssr_enabled(RID p_env) const {
  379. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  380. ERR_FAIL_COND_V(!env, false);
  381. return env->ssr_enabled;
  382. }
  383. bool RendererSceneRenderRD::environment_is_sdfgi_enabled(RID p_env) const {
  384. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  385. ERR_FAIL_COND_V(!env, false);
  386. return env->sdfgi_enabled;
  387. }
  388. bool RendererSceneRenderRD::is_environment(RID p_env) const {
  389. return environment_owner.owns(p_env);
  390. }
  391. Ref<Image> RendererSceneRenderRD::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) {
  392. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  393. ERR_FAIL_COND_V(!env, Ref<Image>());
  394. if (env->background == RS::ENV_BG_CAMERA_FEED || env->background == RS::ENV_BG_CANVAS || env->background == RS::ENV_BG_KEEP) {
  395. return Ref<Image>(); //nothing to bake
  396. }
  397. if (env->background == RS::ENV_BG_CLEAR_COLOR || env->background == RS::ENV_BG_COLOR) {
  398. Color color;
  399. if (env->background == RS::ENV_BG_CLEAR_COLOR) {
  400. color = storage->get_default_clear_color();
  401. } else {
  402. color = env->bg_color;
  403. }
  404. color.r *= env->bg_energy;
  405. color.g *= env->bg_energy;
  406. color.b *= env->bg_energy;
  407. Ref<Image> ret;
  408. ret.instance();
  409. ret->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF);
  410. for (int i = 0; i < p_size.width; i++) {
  411. for (int j = 0; j < p_size.height; j++) {
  412. ret->set_pixel(i, j, color);
  413. }
  414. }
  415. return ret;
  416. }
  417. if (env->background == RS::ENV_BG_SKY && env->sky.is_valid()) {
  418. return sky_bake_panorama(env->sky, env->bg_energy, p_bake_irradiance, p_size);
  419. }
  420. return Ref<Image>();
  421. }
  422. ////////////////////////////////////////////////////////////
  423. RID RendererSceneRenderRD::reflection_atlas_create() {
  424. ReflectionAtlas ra;
  425. ra.count = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_count");
  426. ra.size = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_size");
  427. if (is_clustered_enabled()) {
  428. ra.cluster_builder = memnew(ClusterBuilderRD);
  429. ra.cluster_builder->set_shared(&cluster_builder_shared);
  430. ra.cluster_builder->setup(Size2i(ra.size, ra.size), max_cluster_elements, RID(), RID(), RID());
  431. } else {
  432. ra.cluster_builder = nullptr;
  433. }
  434. return reflection_atlas_owner.make_rid(ra);
  435. }
  436. void RendererSceneRenderRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {
  437. ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas);
  438. ERR_FAIL_COND(!ra);
  439. if (ra->size == p_reflection_size && ra->count == p_reflection_count) {
  440. return; //no changes
  441. }
  442. if (ra->cluster_builder) {
  443. // only if we're using our cluster
  444. ra->cluster_builder->setup(Size2i(ra->size, ra->size), max_cluster_elements, RID(), RID(), RID());
  445. }
  446. ra->size = p_reflection_size;
  447. ra->count = p_reflection_count;
  448. if (ra->reflection.is_valid()) {
  449. //clear and invalidate everything
  450. RD::get_singleton()->free(ra->reflection);
  451. ra->reflection = RID();
  452. RD::get_singleton()->free(ra->depth_buffer);
  453. ra->depth_buffer = RID();
  454. for (int i = 0; i < ra->reflections.size(); i++) {
  455. ra->reflections.write[i].data.clear_reflection_data();
  456. if (ra->reflections[i].owner.is_null()) {
  457. continue;
  458. }
  459. reflection_probe_release_atlas_index(ra->reflections[i].owner);
  460. //rp->atlasindex clear
  461. }
  462. ra->reflections.clear();
  463. }
  464. }
  465. int RendererSceneRenderRD::reflection_atlas_get_size(RID p_ref_atlas) const {
  466. ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas);
  467. ERR_FAIL_COND_V(!ra, 0);
  468. return ra->size;
  469. }
  470. ////////////////////////
  471. RID RendererSceneRenderRD::reflection_probe_instance_create(RID p_probe) {
  472. ReflectionProbeInstance rpi;
  473. rpi.probe = p_probe;
  474. return reflection_probe_instance_owner.make_rid(rpi);
  475. }
  476. void RendererSceneRenderRD::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {
  477. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  478. ERR_FAIL_COND(!rpi);
  479. rpi->transform = p_transform;
  480. rpi->dirty = true;
  481. }
  482. void RendererSceneRenderRD::reflection_probe_release_atlas_index(RID p_instance) {
  483. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  484. ERR_FAIL_COND(!rpi);
  485. if (rpi->atlas.is_null()) {
  486. return; //nothing to release
  487. }
  488. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  489. ERR_FAIL_COND(!atlas);
  490. ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size());
  491. atlas->reflections.write[rpi->atlas_index].owner = RID();
  492. rpi->atlas_index = -1;
  493. rpi->atlas = RID();
  494. }
  495. bool RendererSceneRenderRD::reflection_probe_instance_needs_redraw(RID p_instance) {
  496. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  497. ERR_FAIL_COND_V(!rpi, false);
  498. if (rpi->rendering) {
  499. return false;
  500. }
  501. if (rpi->dirty) {
  502. return true;
  503. }
  504. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  505. return true;
  506. }
  507. return rpi->atlas_index == -1;
  508. }
  509. bool RendererSceneRenderRD::reflection_probe_instance_has_reflection(RID p_instance) {
  510. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  511. ERR_FAIL_COND_V(!rpi, false);
  512. return rpi->atlas.is_valid();
  513. }
  514. bool RendererSceneRenderRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
  515. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
  516. ERR_FAIL_COND_V(!atlas, false);
  517. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  518. ERR_FAIL_COND_V(!rpi, false);
  519. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) {
  520. WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings.");
  521. reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count);
  522. }
  523. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) {
  524. // Invalidate reflection atlas, need to regenerate
  525. RD::get_singleton()->free(atlas->reflection);
  526. atlas->reflection = RID();
  527. for (int i = 0; i < atlas->reflections.size(); i++) {
  528. if (atlas->reflections[i].owner.is_null()) {
  529. continue;
  530. }
  531. reflection_probe_release_atlas_index(atlas->reflections[i].owner);
  532. }
  533. atlas->reflections.clear();
  534. }
  535. if (atlas->reflection.is_null()) {
  536. int mipmaps = MIN(sky.roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1);
  537. mipmaps = storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering
  538. {
  539. //reflection atlas was unused, create:
  540. RD::TextureFormat tf;
  541. tf.array_layers = 6 * atlas->count;
  542. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  543. tf.texture_type = RD::TEXTURE_TYPE_CUBE_ARRAY;
  544. tf.mipmaps = mipmaps;
  545. tf.width = atlas->size;
  546. tf.height = atlas->size;
  547. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  548. atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView());
  549. }
  550. {
  551. RD::TextureFormat tf;
  552. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  553. tf.width = atlas->size;
  554. tf.height = atlas->size;
  555. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  556. atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
  557. }
  558. atlas->reflections.resize(atlas->count);
  559. for (int i = 0; i < atlas->count; i++) {
  560. atlas->reflections.write[i].data.update_reflection_data(atlas->size, mipmaps, false, atlas->reflection, i * 6, storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS, sky.roughness_layers);
  561. for (int j = 0; j < 6; j++) {
  562. Vector<RID> fb;
  563. fb.push_back(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j]);
  564. fb.push_back(atlas->depth_buffer);
  565. atlas->reflections.write[i].fbs[j] = RD::get_singleton()->framebuffer_create(fb);
  566. }
  567. }
  568. Vector<RID> fb;
  569. fb.push_back(atlas->depth_buffer);
  570. atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb);
  571. }
  572. if (rpi->atlas_index == -1) {
  573. for (int i = 0; i < atlas->reflections.size(); i++) {
  574. if (atlas->reflections[i].owner.is_null()) {
  575. rpi->atlas_index = i;
  576. break;
  577. }
  578. }
  579. //find the one used last
  580. if (rpi->atlas_index == -1) {
  581. //everything is in use, find the one least used via LRU
  582. uint64_t pass_min = 0;
  583. for (int i = 0; i < atlas->reflections.size(); i++) {
  584. ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.getornull(atlas->reflections[i].owner);
  585. if (rpi2->last_pass < pass_min) {
  586. pass_min = rpi2->last_pass;
  587. rpi->atlas_index = i;
  588. }
  589. }
  590. }
  591. }
  592. rpi->atlas = p_reflection_atlas;
  593. rpi->rendering = true;
  594. rpi->dirty = false;
  595. rpi->processing_layer = 1;
  596. rpi->processing_side = 0;
  597. return true;
  598. }
  599. bool RendererSceneRenderRD::reflection_probe_instance_postprocess_step(RID p_instance) {
  600. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  601. ERR_FAIL_COND_V(!rpi, false);
  602. ERR_FAIL_COND_V(!rpi->rendering, false);
  603. ERR_FAIL_COND_V(rpi->atlas.is_null(), false);
  604. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  605. if (!atlas || rpi->atlas_index == -1) {
  606. //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering)
  607. rpi->rendering = false;
  608. return false;
  609. }
  610. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  611. // Using real time reflections, all roughness is done in one step
  612. atlas->reflections.write[rpi->atlas_index].data.create_reflection_fast_filter(storage, false);
  613. rpi->rendering = false;
  614. rpi->processing_side = 0;
  615. rpi->processing_layer = 1;
  616. return true;
  617. }
  618. if (rpi->processing_layer > 1) {
  619. atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(storage, false, 10, rpi->processing_layer, sky.sky_ggx_samples_quality);
  620. rpi->processing_layer++;
  621. if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) {
  622. rpi->rendering = false;
  623. rpi->processing_side = 0;
  624. rpi->processing_layer = 1;
  625. return true;
  626. }
  627. return false;
  628. } else {
  629. atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(storage, false, rpi->processing_side, rpi->processing_layer, sky.sky_ggx_samples_quality);
  630. }
  631. rpi->processing_side++;
  632. if (rpi->processing_side == 6) {
  633. rpi->processing_side = 0;
  634. rpi->processing_layer++;
  635. }
  636. return false;
  637. }
  638. uint32_t RendererSceneRenderRD::reflection_probe_instance_get_resolution(RID p_instance) {
  639. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  640. ERR_FAIL_COND_V(!rpi, 0);
  641. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  642. ERR_FAIL_COND_V(!atlas, 0);
  643. return atlas->size;
  644. }
  645. RID RendererSceneRenderRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) {
  646. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  647. ERR_FAIL_COND_V(!rpi, RID());
  648. ERR_FAIL_INDEX_V(p_index, 6, RID());
  649. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  650. ERR_FAIL_COND_V(!atlas, RID());
  651. return atlas->reflections[rpi->atlas_index].fbs[p_index];
  652. }
  653. RID RendererSceneRenderRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) {
  654. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  655. ERR_FAIL_COND_V(!rpi, RID());
  656. ERR_FAIL_INDEX_V(p_index, 6, RID());
  657. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  658. ERR_FAIL_COND_V(!atlas, RID());
  659. return atlas->depth_fb;
  660. }
  661. ///////////////////////////////////////////////////////////
  662. RID RendererSceneRenderRD::shadow_atlas_create() {
  663. return shadow_atlas_owner.make_rid(ShadowAtlas());
  664. }
  665. void RendererSceneRenderRD::_update_shadow_atlas(ShadowAtlas *shadow_atlas) {
  666. if (shadow_atlas->size > 0 && shadow_atlas->depth.is_null()) {
  667. RD::TextureFormat tf;
  668. tf.format = shadow_atlas->use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT;
  669. tf.width = shadow_atlas->size;
  670. tf.height = shadow_atlas->size;
  671. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  672. shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  673. Vector<RID> fb_tex;
  674. fb_tex.push_back(shadow_atlas->depth);
  675. shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb_tex);
  676. }
  677. }
  678. void RendererSceneRenderRD::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) {
  679. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  680. ERR_FAIL_COND(!shadow_atlas);
  681. ERR_FAIL_COND(p_size < 0);
  682. p_size = next_power_of_2(p_size);
  683. if (p_size == shadow_atlas->size && p_16_bits == shadow_atlas->use_16_bits) {
  684. return;
  685. }
  686. // erasing atlas
  687. if (shadow_atlas->depth.is_valid()) {
  688. RD::get_singleton()->free(shadow_atlas->depth);
  689. shadow_atlas->depth = RID();
  690. }
  691. for (int i = 0; i < 4; i++) {
  692. //clear subdivisions
  693. shadow_atlas->quadrants[i].shadows.resize(0);
  694. shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision);
  695. }
  696. //erase shadow atlas reference from lights
  697. for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) {
  698. LightInstance *li = light_instance_owner.getornull(E->key());
  699. ERR_CONTINUE(!li);
  700. li->shadow_atlases.erase(p_atlas);
  701. }
  702. //clear owners
  703. shadow_atlas->shadow_owners.clear();
  704. shadow_atlas->size = p_size;
  705. shadow_atlas->use_16_bits = p_size;
  706. }
  707. void RendererSceneRenderRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
  708. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  709. ERR_FAIL_COND(!shadow_atlas);
  710. ERR_FAIL_INDEX(p_quadrant, 4);
  711. ERR_FAIL_INDEX(p_subdivision, 16384);
  712. uint32_t subdiv = next_power_of_2(p_subdivision);
  713. if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer
  714. subdiv <<= 1;
  715. }
  716. subdiv = int(Math::sqrt((float)subdiv));
  717. //obtain the number that will be x*x
  718. if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) {
  719. return;
  720. }
  721. //erase all data from quadrant
  722. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
  723. if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
  724. shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  725. LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  726. ERR_CONTINUE(!li);
  727. li->shadow_atlases.erase(p_atlas);
  728. }
  729. }
  730. shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
  731. shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv);
  732. shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
  733. //cache the smallest subdiv (for faster allocation in light update)
  734. shadow_atlas->smallest_subdiv = 1 << 30;
  735. for (int i = 0; i < 4; i++) {
  736. if (shadow_atlas->quadrants[i].subdivision) {
  737. shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
  738. }
  739. }
  740. if (shadow_atlas->smallest_subdiv == 1 << 30) {
  741. shadow_atlas->smallest_subdiv = 0;
  742. }
  743. //resort the size orders, simple bublesort for 4 elements..
  744. int swaps = 0;
  745. do {
  746. swaps = 0;
  747. for (int i = 0; i < 3; i++) {
  748. if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
  749. SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
  750. swaps++;
  751. }
  752. }
  753. } while (swaps > 0);
  754. }
  755. bool RendererSceneRenderRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  756. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  757. int qidx = p_in_quadrants[i];
  758. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  759. return false;
  760. }
  761. //look for an empty space
  762. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  763. ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw();
  764. int found_free_idx = -1; //found a free one
  765. int found_used_idx = -1; //found existing one, must steal it
  766. uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion)
  767. for (int j = 0; j < sc; j++) {
  768. if (!sarr[j].owner.is_valid()) {
  769. found_free_idx = j;
  770. break;
  771. }
  772. LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
  773. ERR_CONTINUE(!sli);
  774. if (sli->last_scene_pass != scene_pass) {
  775. //was just allocated, don't kill it so soon, wait a bit..
  776. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  777. continue;
  778. }
  779. if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
  780. found_used_idx = j;
  781. min_pass = sli->last_scene_pass;
  782. }
  783. }
  784. }
  785. if (found_free_idx == -1 && found_used_idx == -1) {
  786. continue; //nothing found
  787. }
  788. if (found_free_idx == -1 && found_used_idx != -1) {
  789. found_free_idx = found_used_idx;
  790. }
  791. r_quadrant = qidx;
  792. r_shadow = found_free_idx;
  793. return true;
  794. }
  795. return false;
  796. }
  797. bool RendererSceneRenderRD::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
  798. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  799. ERR_FAIL_COND_V(!shadow_atlas, false);
  800. LightInstance *li = light_instance_owner.getornull(p_light_intance);
  801. ERR_FAIL_COND_V(!li, false);
  802. if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
  803. return false;
  804. }
  805. uint32_t quad_size = shadow_atlas->size >> 1;
  806. int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
  807. int valid_quadrants[4];
  808. int valid_quadrant_count = 0;
  809. int best_size = -1; //best size found
  810. int best_subdiv = -1; //subdiv for the best size
  811. //find the quadrants this fits into, and the best possible size it can fit into
  812. for (int i = 0; i < 4; i++) {
  813. int q = shadow_atlas->size_order[i];
  814. int sd = shadow_atlas->quadrants[q].subdivision;
  815. if (sd == 0) {
  816. continue; //unused
  817. }
  818. int max_fit = quad_size / sd;
  819. if (best_size != -1 && max_fit > best_size) {
  820. break; //too large
  821. }
  822. valid_quadrants[valid_quadrant_count++] = q;
  823. best_subdiv = sd;
  824. if (max_fit >= desired_fit) {
  825. best_size = max_fit;
  826. }
  827. }
  828. ERR_FAIL_COND_V(valid_quadrant_count == 0, false);
  829. uint64_t tick = OS::get_singleton()->get_ticks_msec();
  830. //see if it already exists
  831. if (shadow_atlas->shadow_owners.has(p_light_intance)) {
  832. //it does!
  833. uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
  834. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  835. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  836. bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
  837. bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version;
  838. if (!should_realloc) {
  839. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  840. //already existing, see if it should redraw or it's just OK
  841. return should_redraw;
  842. }
  843. int new_quadrant, new_shadow;
  844. //find a better place
  845. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) {
  846. //found a better place!
  847. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  848. if (sh->owner.is_valid()) {
  849. //is taken, but is invalid, erasing it
  850. shadow_atlas->shadow_owners.erase(sh->owner);
  851. LightInstance *sli = light_instance_owner.getornull(sh->owner);
  852. sli->shadow_atlases.erase(p_atlas);
  853. }
  854. //erase previous
  855. shadow_atlas->quadrants[q].shadows.write[s].version = 0;
  856. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  857. sh->owner = p_light_intance;
  858. sh->alloc_tick = tick;
  859. sh->version = p_light_version;
  860. li->shadow_atlases.insert(p_atlas);
  861. //make new key
  862. key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  863. key |= new_shadow;
  864. //update it in map
  865. shadow_atlas->shadow_owners[p_light_intance] = key;
  866. //make it dirty, as it should redraw anyway
  867. return true;
  868. }
  869. //no better place for this shadow found, keep current
  870. //already existing, see if it should redraw or it's just OK
  871. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  872. return should_redraw;
  873. }
  874. int new_quadrant, new_shadow;
  875. //find a better place
  876. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) {
  877. //found a better place!
  878. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  879. if (sh->owner.is_valid()) {
  880. //is taken, but is invalid, erasing it
  881. shadow_atlas->shadow_owners.erase(sh->owner);
  882. LightInstance *sli = light_instance_owner.getornull(sh->owner);
  883. sli->shadow_atlases.erase(p_atlas);
  884. }
  885. sh->owner = p_light_intance;
  886. sh->alloc_tick = tick;
  887. sh->version = p_light_version;
  888. li->shadow_atlases.insert(p_atlas);
  889. //make new key
  890. uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  891. key |= new_shadow;
  892. //update it in map
  893. shadow_atlas->shadow_owners[p_light_intance] = key;
  894. //make it dirty, as it should redraw anyway
  895. return true;
  896. }
  897. //no place to allocate this light, apologies
  898. return false;
  899. }
  900. void RendererSceneRenderRD::_update_directional_shadow_atlas() {
  901. if (directional_shadow.depth.is_null() && directional_shadow.size > 0) {
  902. RD::TextureFormat tf;
  903. tf.format = directional_shadow.use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT;
  904. tf.width = directional_shadow.size;
  905. tf.height = directional_shadow.size;
  906. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  907. directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  908. Vector<RID> fb_tex;
  909. fb_tex.push_back(directional_shadow.depth);
  910. directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb_tex);
  911. }
  912. }
  913. void RendererSceneRenderRD::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) {
  914. p_size = nearest_power_of_2_templated(p_size);
  915. if (directional_shadow.size == p_size && directional_shadow.use_16_bits == p_16_bits) {
  916. return;
  917. }
  918. directional_shadow.size = p_size;
  919. if (directional_shadow.depth.is_valid()) {
  920. RD::get_singleton()->free(directional_shadow.depth);
  921. directional_shadow.depth = RID();
  922. _base_uniforms_changed();
  923. }
  924. }
  925. void RendererSceneRenderRD::set_directional_shadow_count(int p_count) {
  926. directional_shadow.light_count = p_count;
  927. directional_shadow.current_light = 0;
  928. }
  929. static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) {
  930. int split_h = 1;
  931. int split_v = 1;
  932. while (split_h * split_v < p_shadow_count) {
  933. if (split_h == split_v) {
  934. split_h <<= 1;
  935. } else {
  936. split_v <<= 1;
  937. }
  938. }
  939. Rect2i rect(0, 0, p_size, p_size);
  940. rect.size.width /= split_h;
  941. rect.size.height /= split_v;
  942. rect.position.x = rect.size.width * (p_shadow_index % split_h);
  943. rect.position.y = rect.size.height * (p_shadow_index / split_h);
  944. return rect;
  945. }
  946. int RendererSceneRenderRD::get_directional_light_shadow_size(RID p_light_intance) {
  947. ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
  948. Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0);
  949. LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
  950. ERR_FAIL_COND_V(!light_instance, 0);
  951. switch (storage->light_directional_get_shadow_mode(light_instance->light)) {
  952. case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
  953. break; //none
  954. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
  955. r.size.height /= 2;
  956. break;
  957. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
  958. r.size /= 2;
  959. break;
  960. }
  961. return MAX(r.size.width, r.size.height);
  962. }
  963. //////////////////////////////////////////////////
  964. RID RendererSceneRenderRD::camera_effects_allocate() {
  965. return camera_effects_owner.allocate_rid();
  966. }
  967. void RendererSceneRenderRD::camera_effects_initialize(RID p_rid) {
  968. camera_effects_owner.initialize_rid(p_rid, CameraEffects());
  969. }
  970. void RendererSceneRenderRD::camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) {
  971. dof_blur_quality = p_quality;
  972. dof_blur_use_jitter = p_use_jitter;
  973. }
  974. void RendererSceneRenderRD::camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) {
  975. dof_blur_bokeh_shape = p_shape;
  976. }
  977. void RendererSceneRenderRD::camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) {
  978. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  979. ERR_FAIL_COND(!camfx);
  980. camfx->dof_blur_far_enabled = p_far_enable;
  981. camfx->dof_blur_far_distance = p_far_distance;
  982. camfx->dof_blur_far_transition = p_far_transition;
  983. camfx->dof_blur_near_enabled = p_near_enable;
  984. camfx->dof_blur_near_distance = p_near_distance;
  985. camfx->dof_blur_near_transition = p_near_transition;
  986. camfx->dof_blur_amount = p_amount;
  987. }
  988. void RendererSceneRenderRD::camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) {
  989. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  990. ERR_FAIL_COND(!camfx);
  991. camfx->override_exposure_enabled = p_enable;
  992. camfx->override_exposure = p_exposure;
  993. }
  994. RID RendererSceneRenderRD::light_instance_create(RID p_light) {
  995. RID li = light_instance_owner.make_rid(LightInstance());
  996. LightInstance *light_instance = light_instance_owner.getornull(li);
  997. light_instance->self = li;
  998. light_instance->light = p_light;
  999. light_instance->light_type = storage->light_get_type(p_light);
  1000. return li;
  1001. }
  1002. void RendererSceneRenderRD::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
  1003. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  1004. ERR_FAIL_COND(!light_instance);
  1005. light_instance->transform = p_transform;
  1006. }
  1007. void RendererSceneRenderRD::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) {
  1008. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  1009. ERR_FAIL_COND(!light_instance);
  1010. light_instance->aabb = p_aabb;
  1011. }
  1012. void RendererSceneRenderRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
  1013. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  1014. ERR_FAIL_COND(!light_instance);
  1015. ERR_FAIL_INDEX(p_pass, 6);
  1016. light_instance->shadow_transform[p_pass].camera = p_projection;
  1017. light_instance->shadow_transform[p_pass].transform = p_transform;
  1018. light_instance->shadow_transform[p_pass].farplane = p_far;
  1019. light_instance->shadow_transform[p_pass].split = p_split;
  1020. light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
  1021. light_instance->shadow_transform[p_pass].range_begin = p_range_begin;
  1022. light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size;
  1023. light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale;
  1024. }
  1025. void RendererSceneRenderRD::light_instance_mark_visible(RID p_light_instance) {
  1026. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  1027. ERR_FAIL_COND(!light_instance);
  1028. light_instance->last_scene_pass = scene_pass;
  1029. }
  1030. RendererSceneRenderRD::ShadowCubemap *RendererSceneRenderRD::_get_shadow_cubemap(int p_size) {
  1031. if (!shadow_cubemaps.has(p_size)) {
  1032. ShadowCubemap sc;
  1033. {
  1034. RD::TextureFormat tf;
  1035. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  1036. tf.width = p_size;
  1037. tf.height = p_size;
  1038. tf.texture_type = RD::TEXTURE_TYPE_CUBE;
  1039. tf.array_layers = 6;
  1040. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  1041. sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1042. }
  1043. for (int i = 0; i < 6; i++) {
  1044. RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0);
  1045. Vector<RID> fbtex;
  1046. fbtex.push_back(side_texture);
  1047. sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex);
  1048. }
  1049. shadow_cubemaps[p_size] = sc;
  1050. }
  1051. return &shadow_cubemaps[p_size];
  1052. }
  1053. //////////////////////////
  1054. RID RendererSceneRenderRD::decal_instance_create(RID p_decal) {
  1055. DecalInstance di;
  1056. di.decal = p_decal;
  1057. return decal_instance_owner.make_rid(di);
  1058. }
  1059. void RendererSceneRenderRD::decal_instance_set_transform(RID p_decal, const Transform &p_transform) {
  1060. DecalInstance *di = decal_instance_owner.getornull(p_decal);
  1061. ERR_FAIL_COND(!di);
  1062. di->transform = p_transform;
  1063. }
  1064. /////////////////////////////////
  1065. RID RendererSceneRenderRD::lightmap_instance_create(RID p_lightmap) {
  1066. LightmapInstance li;
  1067. li.lightmap = p_lightmap;
  1068. return lightmap_instance_owner.make_rid(li);
  1069. }
  1070. void RendererSceneRenderRD::lightmap_instance_set_transform(RID p_lightmap, const Transform &p_transform) {
  1071. LightmapInstance *li = lightmap_instance_owner.getornull(p_lightmap);
  1072. ERR_FAIL_COND(!li);
  1073. li->transform = p_transform;
  1074. }
  1075. /////////////////////////////////
  1076. RID RendererSceneRenderRD::gi_probe_instance_create(RID p_base) {
  1077. return gi.gi_probe_instance_create(p_base);
  1078. }
  1079. void RendererSceneRenderRD::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {
  1080. gi.gi_probe_instance_set_transform_to_data(p_probe, p_xform);
  1081. }
  1082. bool RendererSceneRenderRD::gi_probe_needs_update(RID p_probe) const {
  1083. if (!is_dynamic_gi_supported()) {
  1084. return false;
  1085. }
  1086. return gi.gi_probe_needs_update(p_probe);
  1087. }
  1088. void RendererSceneRenderRD::gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<GeometryInstance *> &p_dynamic_objects) {
  1089. if (!is_dynamic_gi_supported()) {
  1090. return;
  1091. }
  1092. gi.gi_probe_update(p_probe, p_update_light_instances, p_light_instances, p_dynamic_objects, this);
  1093. }
  1094. void RendererSceneRenderRD::_debug_sdfgi_probes(RID p_render_buffers, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform) {
  1095. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1096. ERR_FAIL_COND(!rb);
  1097. if (!rb->sdfgi) {
  1098. return; //nothing to debug
  1099. }
  1100. rb->sdfgi->debug_probes(p_draw_list, p_framebuffer, p_camera_with_transform);
  1101. }
  1102. ////////////////////////////////
  1103. RID RendererSceneRenderRD::render_buffers_create() {
  1104. RenderBuffers rb;
  1105. rb.data = _create_render_buffer_data();
  1106. return render_buffers_owner.make_rid(rb);
  1107. }
  1108. void RendererSceneRenderRD::_allocate_blur_textures(RenderBuffers *rb) {
  1109. ERR_FAIL_COND(!rb->blur[0].texture.is_null());
  1110. uint32_t mipmaps_required = Image::get_image_required_mipmaps(rb->width, rb->height, Image::FORMAT_RGBAH);
  1111. RD::TextureFormat tf;
  1112. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1113. tf.width = rb->width;
  1114. tf.height = rb->height;
  1115. tf.texture_type = RD::TEXTURE_TYPE_2D;
  1116. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  1117. tf.mipmaps = mipmaps_required;
  1118. rb->blur[0].texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1119. //the second one is smaller (only used for separatable part of blur)
  1120. tf.width >>= 1;
  1121. tf.height >>= 1;
  1122. tf.mipmaps--;
  1123. rb->blur[1].texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1124. int base_width = rb->width;
  1125. int base_height = rb->height;
  1126. for (uint32_t i = 0; i < mipmaps_required; i++) {
  1127. RenderBuffers::Blur::Mipmap mm;
  1128. mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[0].texture, 0, i);
  1129. mm.width = base_width;
  1130. mm.height = base_height;
  1131. rb->blur[0].mipmaps.push_back(mm);
  1132. if (i > 0) {
  1133. mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[1].texture, 0, i - 1);
  1134. rb->blur[1].mipmaps.push_back(mm);
  1135. }
  1136. base_width = MAX(1, base_width >> 1);
  1137. base_height = MAX(1, base_height >> 1);
  1138. }
  1139. }
  1140. void RendererSceneRenderRD::_allocate_luminance_textures(RenderBuffers *rb) {
  1141. ERR_FAIL_COND(!rb->luminance.current.is_null());
  1142. int w = rb->width;
  1143. int h = rb->height;
  1144. while (true) {
  1145. w = MAX(w / 8, 1);
  1146. h = MAX(h / 8, 1);
  1147. RD::TextureFormat tf;
  1148. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  1149. tf.width = w;
  1150. tf.height = h;
  1151. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  1152. bool final = w == 1 && h == 1;
  1153. if (final) {
  1154. tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
  1155. }
  1156. RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1157. rb->luminance.reduce.push_back(texture);
  1158. if (final) {
  1159. rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1160. break;
  1161. }
  1162. }
  1163. }
  1164. void RendererSceneRenderRD::_free_render_buffer_data(RenderBuffers *rb) {
  1165. if (rb->texture.is_valid()) {
  1166. RD::get_singleton()->free(rb->texture);
  1167. rb->texture = RID();
  1168. }
  1169. if (rb->depth_texture.is_valid()) {
  1170. RD::get_singleton()->free(rb->depth_texture);
  1171. rb->depth_texture = RID();
  1172. }
  1173. for (int i = 0; i < 2; i++) {
  1174. if (rb->blur[i].texture.is_valid()) {
  1175. RD::get_singleton()->free(rb->blur[i].texture);
  1176. rb->blur[i].texture = RID();
  1177. rb->blur[i].mipmaps.clear();
  1178. }
  1179. }
  1180. for (int i = 0; i < rb->luminance.reduce.size(); i++) {
  1181. RD::get_singleton()->free(rb->luminance.reduce[i]);
  1182. }
  1183. rb->luminance.reduce.clear();
  1184. if (rb->luminance.current.is_valid()) {
  1185. RD::get_singleton()->free(rb->luminance.current);
  1186. rb->luminance.current = RID();
  1187. }
  1188. if (rb->ssao.depth.is_valid()) {
  1189. RD::get_singleton()->free(rb->ssao.depth);
  1190. RD::get_singleton()->free(rb->ssao.ao_deinterleaved);
  1191. RD::get_singleton()->free(rb->ssao.ao_pong);
  1192. RD::get_singleton()->free(rb->ssao.ao_final);
  1193. RD::get_singleton()->free(rb->ssao.importance_map[0]);
  1194. RD::get_singleton()->free(rb->ssao.importance_map[1]);
  1195. rb->ssao.depth = RID();
  1196. rb->ssao.ao_deinterleaved = RID();
  1197. rb->ssao.ao_pong = RID();
  1198. rb->ssao.ao_final = RID();
  1199. rb->ssao.importance_map[0] = RID();
  1200. rb->ssao.importance_map[1] = RID();
  1201. rb->ssao.depth_slices.clear();
  1202. rb->ssao.ao_deinterleaved_slices.clear();
  1203. rb->ssao.ao_pong_slices.clear();
  1204. }
  1205. if (rb->ssr.blur_radius[0].is_valid()) {
  1206. RD::get_singleton()->free(rb->ssr.blur_radius[0]);
  1207. RD::get_singleton()->free(rb->ssr.blur_radius[1]);
  1208. rb->ssr.blur_radius[0] = RID();
  1209. rb->ssr.blur_radius[1] = RID();
  1210. }
  1211. if (rb->ssr.depth_scaled.is_valid()) {
  1212. RD::get_singleton()->free(rb->ssr.depth_scaled);
  1213. rb->ssr.depth_scaled = RID();
  1214. RD::get_singleton()->free(rb->ssr.normal_scaled);
  1215. rb->ssr.normal_scaled = RID();
  1216. }
  1217. if (rb->ambient_buffer.is_valid()) {
  1218. RD::get_singleton()->free(rb->ambient_buffer);
  1219. RD::get_singleton()->free(rb->reflection_buffer);
  1220. rb->ambient_buffer = RID();
  1221. rb->reflection_buffer = RID();
  1222. }
  1223. }
  1224. void RendererSceneRenderRD::_process_sss(RID p_render_buffers, const CameraMatrix &p_camera) {
  1225. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1226. ERR_FAIL_COND(!rb);
  1227. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  1228. if (!can_use_effects) {
  1229. //just copy
  1230. return;
  1231. }
  1232. if (rb->blur[0].texture.is_null()) {
  1233. _allocate_blur_textures(rb);
  1234. _render_buffers_uniform_set_changed(p_render_buffers);
  1235. }
  1236. storage->get_effects()->sub_surface_scattering(rb->texture, rb->blur[0].mipmaps[0].texture, rb->depth_texture, p_camera, Size2i(rb->width, rb->height), sss_scale, sss_depth_scale, sss_quality);
  1237. }
  1238. void RendererSceneRenderRD::_process_ssr(RID p_render_buffers, RID p_dest_framebuffer, RID p_normal_buffer, RID p_specular_buffer, RID p_metallic, const Color &p_metallic_mask, RID p_environment, const CameraMatrix &p_projection, bool p_use_additive) {
  1239. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1240. ERR_FAIL_COND(!rb);
  1241. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  1242. if (!can_use_effects) {
  1243. //just copy
  1244. storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, RID());
  1245. return;
  1246. }
  1247. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_environment);
  1248. ERR_FAIL_COND(!env);
  1249. ERR_FAIL_COND(!env->ssr_enabled);
  1250. if (rb->ssr.depth_scaled.is_null()) {
  1251. RD::TextureFormat tf;
  1252. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  1253. tf.width = rb->width / 2;
  1254. tf.height = rb->height / 2;
  1255. tf.texture_type = RD::TEXTURE_TYPE_2D;
  1256. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  1257. rb->ssr.depth_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1258. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  1259. rb->ssr.normal_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1260. }
  1261. if (ssr_roughness_quality != RS::ENV_SSR_ROUGNESS_QUALITY_DISABLED && !rb->ssr.blur_radius[0].is_valid()) {
  1262. RD::TextureFormat tf;
  1263. tf.format = RD::DATA_FORMAT_R8_UNORM;
  1264. tf.width = rb->width / 2;
  1265. tf.height = rb->height / 2;
  1266. tf.texture_type = RD::TEXTURE_TYPE_2D;
  1267. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  1268. rb->ssr.blur_radius[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1269. rb->ssr.blur_radius[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1270. }
  1271. if (rb->blur[0].texture.is_null()) {
  1272. _allocate_blur_textures(rb);
  1273. _render_buffers_uniform_set_changed(p_render_buffers);
  1274. }
  1275. storage->get_effects()->screen_space_reflection(rb->texture, p_normal_buffer, ssr_roughness_quality, rb->ssr.blur_radius[0], rb->ssr.blur_radius[1], p_metallic, p_metallic_mask, rb->depth_texture, rb->ssr.depth_scaled, rb->ssr.normal_scaled, rb->blur[0].mipmaps[1].texture, rb->blur[1].mipmaps[0].texture, Size2i(rb->width / 2, rb->height / 2), env->ssr_max_steps, env->ssr_fade_in, env->ssr_fade_out, env->ssr_depth_tolerance, p_projection);
  1276. storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, rb->blur[0].mipmaps[1].texture);
  1277. }
  1278. void RendererSceneRenderRD::_process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection) {
  1279. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1280. ERR_FAIL_COND(!rb);
  1281. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_environment);
  1282. ERR_FAIL_COND(!env);
  1283. RENDER_TIMESTAMP("Process SSAO");
  1284. if (rb->ssao.ao_final.is_valid() && ssao_using_half_size != ssao_half_size) {
  1285. RD::get_singleton()->free(rb->ssao.depth);
  1286. RD::get_singleton()->free(rb->ssao.ao_deinterleaved);
  1287. RD::get_singleton()->free(rb->ssao.ao_pong);
  1288. RD::get_singleton()->free(rb->ssao.ao_final);
  1289. RD::get_singleton()->free(rb->ssao.importance_map[0]);
  1290. RD::get_singleton()->free(rb->ssao.importance_map[1]);
  1291. rb->ssao.depth = RID();
  1292. rb->ssao.ao_deinterleaved = RID();
  1293. rb->ssao.ao_pong = RID();
  1294. rb->ssao.ao_final = RID();
  1295. rb->ssao.importance_map[0] = RID();
  1296. rb->ssao.importance_map[1] = RID();
  1297. rb->ssao.depth_slices.clear();
  1298. rb->ssao.ao_deinterleaved_slices.clear();
  1299. rb->ssao.ao_pong_slices.clear();
  1300. }
  1301. int buffer_width;
  1302. int buffer_height;
  1303. int half_width;
  1304. int half_height;
  1305. if (ssao_half_size) {
  1306. buffer_width = (rb->width + 3) / 4;
  1307. buffer_height = (rb->height + 3) / 4;
  1308. half_width = (rb->width + 7) / 8;
  1309. half_height = (rb->height + 7) / 8;
  1310. } else {
  1311. buffer_width = (rb->width + 1) / 2;
  1312. buffer_height = (rb->height + 1) / 2;
  1313. half_width = (rb->width + 3) / 4;
  1314. half_height = (rb->height + 3) / 4;
  1315. }
  1316. bool uniform_sets_are_invalid = false;
  1317. if (rb->ssao.depth.is_null()) {
  1318. //allocate depth slices
  1319. {
  1320. RD::TextureFormat tf;
  1321. tf.format = RD::DATA_FORMAT_R16_SFLOAT;
  1322. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  1323. tf.width = buffer_width;
  1324. tf.height = buffer_height;
  1325. tf.mipmaps = 4;
  1326. tf.array_layers = 4;
  1327. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1328. rb->ssao.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1329. RD::get_singleton()->set_resource_name(rb->ssao.depth, "SSAO Depth");
  1330. for (uint32_t i = 0; i < tf.mipmaps; i++) {
  1331. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.depth, 0, i, RD::TEXTURE_SLICE_2D_ARRAY);
  1332. rb->ssao.depth_slices.push_back(slice);
  1333. RD::get_singleton()->set_resource_name(rb->ssao.depth_slices[i], "SSAO Depth Mip " + itos(i) + " ");
  1334. }
  1335. }
  1336. {
  1337. RD::TextureFormat tf;
  1338. tf.format = RD::DATA_FORMAT_R8G8_UNORM;
  1339. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  1340. tf.width = buffer_width;
  1341. tf.height = buffer_height;
  1342. tf.array_layers = 4;
  1343. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1344. rb->ssao.ao_deinterleaved = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1345. RD::get_singleton()->set_resource_name(rb->ssao.ao_deinterleaved, "SSAO De-interleaved Array");
  1346. for (uint32_t i = 0; i < 4; i++) {
  1347. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.ao_deinterleaved, i, 0);
  1348. rb->ssao.ao_deinterleaved_slices.push_back(slice);
  1349. RD::get_singleton()->set_resource_name(rb->ssao.ao_deinterleaved_slices[i], "SSAO De-interleaved Array Layer " + itos(i) + " ");
  1350. }
  1351. }
  1352. {
  1353. RD::TextureFormat tf;
  1354. tf.format = RD::DATA_FORMAT_R8G8_UNORM;
  1355. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  1356. tf.width = buffer_width;
  1357. tf.height = buffer_height;
  1358. tf.array_layers = 4;
  1359. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1360. rb->ssao.ao_pong = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1361. RD::get_singleton()->set_resource_name(rb->ssao.ao_pong, "SSAO De-interleaved Array Pong");
  1362. for (uint32_t i = 0; i < 4; i++) {
  1363. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.ao_pong, i, 0);
  1364. rb->ssao.ao_pong_slices.push_back(slice);
  1365. RD::get_singleton()->set_resource_name(rb->ssao.ao_deinterleaved_slices[i], "SSAO De-interleaved Array Layer " + itos(i) + " Pong");
  1366. }
  1367. }
  1368. {
  1369. RD::TextureFormat tf;
  1370. tf.format = RD::DATA_FORMAT_R8_UNORM;
  1371. tf.width = half_width;
  1372. tf.height = half_height;
  1373. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1374. rb->ssao.importance_map[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1375. RD::get_singleton()->set_resource_name(rb->ssao.importance_map[0], "SSAO Importance Map");
  1376. rb->ssao.importance_map[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1377. RD::get_singleton()->set_resource_name(rb->ssao.importance_map[1], "SSAO Importance Map Pong");
  1378. }
  1379. {
  1380. RD::TextureFormat tf;
  1381. tf.format = RD::DATA_FORMAT_R8_UNORM;
  1382. tf.width = rb->width;
  1383. tf.height = rb->height;
  1384. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1385. rb->ssao.ao_final = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1386. RD::get_singleton()->set_resource_name(rb->ssao.ao_final, "SSAO Final");
  1387. _render_buffers_uniform_set_changed(p_render_buffers);
  1388. }
  1389. ssao_using_half_size = ssao_half_size;
  1390. uniform_sets_are_invalid = true;
  1391. }
  1392. EffectsRD::SSAOSettings settings;
  1393. settings.radius = env->ssao_radius;
  1394. settings.intensity = env->ssao_intensity;
  1395. settings.power = env->ssao_power;
  1396. settings.detail = env->ssao_detail;
  1397. settings.horizon = env->ssao_horizon;
  1398. settings.sharpness = env->ssao_sharpness;
  1399. settings.quality = ssao_quality;
  1400. settings.half_size = ssao_half_size;
  1401. settings.adaptive_target = ssao_adaptive_target;
  1402. settings.blur_passes = ssao_blur_passes;
  1403. settings.fadeout_from = ssao_fadeout_from;
  1404. settings.fadeout_to = ssao_fadeout_to;
  1405. settings.full_screen_size = Size2i(rb->width, rb->height);
  1406. settings.half_screen_size = Size2i(buffer_width, buffer_height);
  1407. settings.quarter_screen_size = Size2i(half_width, half_height);
  1408. storage->get_effects()->generate_ssao(rb->depth_texture, p_normal_buffer, rb->ssao.depth, rb->ssao.depth_slices, rb->ssao.ao_deinterleaved, rb->ssao.ao_deinterleaved_slices, rb->ssao.ao_pong, rb->ssao.ao_pong_slices, rb->ssao.ao_final, rb->ssao.importance_map[0], rb->ssao.importance_map[1], p_projection, settings, uniform_sets_are_invalid);
  1409. }
  1410. void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(RID p_render_buffers, RID p_environment, RID p_camera_effects, const CameraMatrix &p_projection) {
  1411. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1412. ERR_FAIL_COND(!rb);
  1413. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_environment);
  1414. //glow (if enabled)
  1415. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  1416. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  1417. if (can_use_effects && camfx && (camfx->dof_blur_near_enabled || camfx->dof_blur_far_enabled) && camfx->dof_blur_amount > 0.0) {
  1418. if (rb->blur[0].texture.is_null()) {
  1419. _allocate_blur_textures(rb);
  1420. _render_buffers_uniform_set_changed(p_render_buffers);
  1421. }
  1422. float bokeh_size = camfx->dof_blur_amount * 64.0;
  1423. storage->get_effects()->bokeh_dof(rb->texture, rb->depth_texture, Size2i(rb->width, rb->height), rb->blur[0].mipmaps[0].texture, rb->blur[1].mipmaps[0].texture, rb->blur[0].mipmaps[1].texture, camfx->dof_blur_far_enabled, camfx->dof_blur_far_distance, camfx->dof_blur_far_transition, camfx->dof_blur_near_enabled, camfx->dof_blur_near_distance, camfx->dof_blur_near_transition, bokeh_size, dof_blur_bokeh_shape, dof_blur_quality, dof_blur_use_jitter, p_projection.get_z_near(), p_projection.get_z_far(), p_projection.is_orthogonal());
  1424. }
  1425. if (can_use_effects && env && env->auto_exposure) {
  1426. if (rb->luminance.current.is_null()) {
  1427. _allocate_luminance_textures(rb);
  1428. _render_buffers_uniform_set_changed(p_render_buffers);
  1429. }
  1430. bool set_immediate = env->auto_exposure_version != rb->auto_exposure_version;
  1431. rb->auto_exposure_version = env->auto_exposure_version;
  1432. double step = env->auto_exp_speed * time_step;
  1433. storage->get_effects()->luminance_reduction(rb->texture, Size2i(rb->width, rb->height), rb->luminance.reduce, rb->luminance.current, env->min_luminance, env->max_luminance, step, set_immediate);
  1434. //swap final reduce with prev luminance
  1435. SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]);
  1436. RenderingServerDefault::redraw_request(); //redraw all the time if auto exposure rendering is on
  1437. }
  1438. int max_glow_level = -1;
  1439. if (can_use_effects && env && env->glow_enabled) {
  1440. /* see that blur textures are allocated */
  1441. if (rb->blur[1].texture.is_null()) {
  1442. _allocate_blur_textures(rb);
  1443. _render_buffers_uniform_set_changed(p_render_buffers);
  1444. }
  1445. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  1446. if (env->glow_levels[i] > 0.0) {
  1447. if (i >= rb->blur[1].mipmaps.size()) {
  1448. max_glow_level = rb->blur[1].mipmaps.size() - 1;
  1449. } else {
  1450. max_glow_level = i;
  1451. }
  1452. }
  1453. }
  1454. for (int i = 0; i < (max_glow_level + 1); i++) {
  1455. int vp_w = rb->blur[1].mipmaps[i].width;
  1456. int vp_h = rb->blur[1].mipmaps[i].height;
  1457. if (i == 0) {
  1458. RID luminance_texture;
  1459. if (env->auto_exposure && rb->luminance.current.is_valid()) {
  1460. luminance_texture = rb->luminance.current;
  1461. }
  1462. storage->get_effects()->gaussian_glow(rb->texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength, glow_high_quality, true, env->glow_hdr_luminance_cap, env->exposure, env->glow_bloom, env->glow_hdr_bleed_threshold, env->glow_hdr_bleed_scale, luminance_texture, env->auto_exp_scale);
  1463. } else {
  1464. storage->get_effects()->gaussian_glow(rb->blur[1].mipmaps[i - 1].texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength, glow_high_quality);
  1465. }
  1466. }
  1467. }
  1468. {
  1469. //tonemap
  1470. EffectsRD::TonemapSettings tonemap;
  1471. if (can_use_effects && env && env->auto_exposure && rb->luminance.current.is_valid()) {
  1472. tonemap.use_auto_exposure = true;
  1473. tonemap.exposure_texture = rb->luminance.current;
  1474. tonemap.auto_exposure_grey = env->auto_exp_scale;
  1475. } else {
  1476. tonemap.exposure_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE);
  1477. }
  1478. if (can_use_effects && env && env->glow_enabled) {
  1479. tonemap.use_glow = true;
  1480. tonemap.glow_mode = EffectsRD::TonemapSettings::GlowMode(env->glow_blend_mode);
  1481. tonemap.glow_intensity = env->glow_blend_mode == RS::ENV_GLOW_BLEND_MODE_MIX ? env->glow_mix : env->glow_intensity;
  1482. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  1483. tonemap.glow_levels[i] = env->glow_levels[i];
  1484. }
  1485. tonemap.glow_texture_size.x = rb->blur[1].mipmaps[0].width;
  1486. tonemap.glow_texture_size.y = rb->blur[1].mipmaps[0].height;
  1487. tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale;
  1488. tonemap.glow_texture = rb->blur[1].texture;
  1489. } else {
  1490. tonemap.glow_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK);
  1491. }
  1492. if (rb->screen_space_aa == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) {
  1493. tonemap.use_fxaa = true;
  1494. }
  1495. tonemap.use_debanding = rb->use_debanding;
  1496. tonemap.texture_size = Vector2i(rb->width, rb->height);
  1497. if (env) {
  1498. tonemap.tonemap_mode = env->tone_mapper;
  1499. tonemap.white = env->white;
  1500. tonemap.exposure = env->exposure;
  1501. }
  1502. tonemap.use_color_correction = false;
  1503. tonemap.use_1d_color_correction = false;
  1504. tonemap.color_correction_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
  1505. if (can_use_effects && env) {
  1506. tonemap.use_bcs = env->adjustments_enabled;
  1507. tonemap.brightness = env->adjustments_brightness;
  1508. tonemap.contrast = env->adjustments_contrast;
  1509. tonemap.saturation = env->adjustments_saturation;
  1510. if (env->adjustments_enabled && env->color_correction.is_valid()) {
  1511. tonemap.use_color_correction = true;
  1512. tonemap.use_1d_color_correction = env->use_1d_color_correction;
  1513. tonemap.color_correction_texture = storage->texture_get_rd_texture(env->color_correction);
  1514. }
  1515. }
  1516. storage->get_effects()->tonemapper(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), tonemap);
  1517. }
  1518. storage->render_target_disable_clear_request(rb->render_target);
  1519. }
  1520. void RendererSceneRenderRD::_render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas, RID p_occlusion_buffer) {
  1521. EffectsRD *effects = storage->get_effects();
  1522. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1523. ERR_FAIL_COND(!rb);
  1524. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
  1525. if (p_shadow_atlas.is_valid()) {
  1526. RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas);
  1527. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1528. effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  1529. }
  1530. }
  1531. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
  1532. if (directional_shadow_get_texture().is_valid()) {
  1533. RID shadow_atlas_texture = directional_shadow_get_texture();
  1534. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1535. effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  1536. }
  1537. }
  1538. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS) {
  1539. RID decal_atlas = storage->decal_atlas_get_texture();
  1540. if (decal_atlas.is_valid()) {
  1541. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1542. effects->copy_to_fb_rect(decal_atlas, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, false, true);
  1543. }
  1544. }
  1545. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) {
  1546. if (rb->luminance.current.is_valid()) {
  1547. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1548. effects->copy_to_fb_rect(rb->luminance.current, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 8), false, true);
  1549. }
  1550. }
  1551. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && rb->ssao.ao_final.is_valid()) {
  1552. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1553. RID ao_buf = rb->ssao.ao_final;
  1554. effects->copy_to_fb_rect(ao_buf, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true);
  1555. }
  1556. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) {
  1557. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1558. effects->copy_to_fb_rect(_render_buffers_get_normal_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false);
  1559. }
  1560. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_GI_BUFFER && rb->ambient_buffer.is_valid()) {
  1561. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1562. RID ambient_texture = rb->ambient_buffer;
  1563. RID reflection_texture = rb->reflection_buffer;
  1564. effects->copy_to_fb_rect(ambient_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false, false, true, reflection_texture);
  1565. }
  1566. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_OCCLUDERS) {
  1567. if (p_occlusion_buffer.is_valid()) {
  1568. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1569. effects->copy_to_fb_rect(storage->texture_get_rd_texture(p_occlusion_buffer), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize), true, false);
  1570. }
  1571. }
  1572. }
  1573. void RendererSceneRenderRD::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, bool p_use_1d_color_correction, RID p_color_correction) {
  1574. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  1575. ERR_FAIL_COND(!env);
  1576. env->adjustments_enabled = p_enable;
  1577. env->adjustments_brightness = p_brightness;
  1578. env->adjustments_contrast = p_contrast;
  1579. env->adjustments_saturation = p_saturation;
  1580. env->use_1d_color_correction = p_use_1d_color_correction;
  1581. env->color_correction = p_color_correction;
  1582. }
  1583. RID RendererSceneRenderRD::render_buffers_get_back_buffer_texture(RID p_render_buffers) {
  1584. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1585. ERR_FAIL_COND_V(!rb, RID());
  1586. if (!rb->blur[0].texture.is_valid()) {
  1587. return RID(); //not valid at the moment
  1588. }
  1589. return rb->blur[0].texture;
  1590. }
  1591. RID RendererSceneRenderRD::render_buffers_get_ao_texture(RID p_render_buffers) {
  1592. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1593. ERR_FAIL_COND_V(!rb, RID());
  1594. return rb->ssao.ao_final;
  1595. }
  1596. RID RendererSceneRenderRD::render_buffers_get_gi_probe_buffer(RID p_render_buffers) {
  1597. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1598. ERR_FAIL_COND_V(!rb, RID());
  1599. if (rb->gi.giprobe_buffer.is_null()) {
  1600. rb->gi.giprobe_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(RendererSceneGIRD::GIProbeData) * RendererSceneGIRD::MAX_GIPROBES);
  1601. }
  1602. return rb->gi.giprobe_buffer;
  1603. }
  1604. RID RendererSceneRenderRD::render_buffers_get_default_gi_probe_buffer() {
  1605. return gi.default_giprobe_buffer;
  1606. }
  1607. RID RendererSceneRenderRD::render_buffers_get_gi_ambient_texture(RID p_render_buffers) {
  1608. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1609. ERR_FAIL_COND_V(!rb, RID());
  1610. return rb->ambient_buffer;
  1611. }
  1612. RID RendererSceneRenderRD::render_buffers_get_gi_reflection_texture(RID p_render_buffers) {
  1613. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1614. ERR_FAIL_COND_V(!rb, RID());
  1615. return rb->reflection_buffer;
  1616. }
  1617. uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_count(RID p_render_buffers) const {
  1618. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1619. ERR_FAIL_COND_V(!rb, 0);
  1620. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  1621. return rb->sdfgi->cascades.size();
  1622. }
  1623. bool RendererSceneRenderRD::render_buffers_is_sdfgi_enabled(RID p_render_buffers) const {
  1624. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1625. ERR_FAIL_COND_V(!rb, false);
  1626. return rb->sdfgi != nullptr;
  1627. }
  1628. RID RendererSceneRenderRD::render_buffers_get_sdfgi_irradiance_probes(RID p_render_buffers) const {
  1629. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1630. ERR_FAIL_COND_V(!rb, RID());
  1631. ERR_FAIL_COND_V(!rb->sdfgi, RID());
  1632. return rb->sdfgi->lightprobe_texture;
  1633. }
  1634. Vector3 RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_offset(RID p_render_buffers, uint32_t p_cascade) const {
  1635. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1636. ERR_FAIL_COND_V(!rb, Vector3());
  1637. ERR_FAIL_COND_V(!rb->sdfgi, Vector3());
  1638. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), Vector3());
  1639. return Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[p_cascade].position)) * rb->sdfgi->cascades[p_cascade].cell_size;
  1640. }
  1641. Vector3i RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_offset(RID p_render_buffers, uint32_t p_cascade) const {
  1642. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1643. ERR_FAIL_COND_V(!rb, Vector3i());
  1644. ERR_FAIL_COND_V(!rb->sdfgi, Vector3i());
  1645. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), Vector3i());
  1646. int32_t probe_divisor = rb->sdfgi->cascade_size / RendererSceneGIRD::SDFGI::PROBE_DIVISOR;
  1647. return rb->sdfgi->cascades[p_cascade].position / probe_divisor;
  1648. }
  1649. float RendererSceneRenderRD::render_buffers_get_sdfgi_normal_bias(RID p_render_buffers) const {
  1650. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1651. ERR_FAIL_COND_V(!rb, 0);
  1652. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  1653. return rb->sdfgi->normal_bias;
  1654. }
  1655. float RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_size(RID p_render_buffers, uint32_t p_cascade) const {
  1656. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1657. ERR_FAIL_COND_V(!rb, 0);
  1658. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  1659. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), 0);
  1660. return float(rb->sdfgi->cascade_size) * rb->sdfgi->cascades[p_cascade].cell_size / float(rb->sdfgi->probe_axis_count - 1);
  1661. }
  1662. uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_count(RID p_render_buffers) const {
  1663. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1664. ERR_FAIL_COND_V(!rb, 0);
  1665. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  1666. return rb->sdfgi->probe_axis_count;
  1667. }
  1668. uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_size(RID p_render_buffers) const {
  1669. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1670. ERR_FAIL_COND_V(!rb, 0);
  1671. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  1672. return rb->sdfgi->cascade_size;
  1673. }
  1674. bool RendererSceneRenderRD::render_buffers_is_sdfgi_using_occlusion(RID p_render_buffers) const {
  1675. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1676. ERR_FAIL_COND_V(!rb, false);
  1677. ERR_FAIL_COND_V(!rb->sdfgi, false);
  1678. return rb->sdfgi->uses_occlusion;
  1679. }
  1680. float RendererSceneRenderRD::render_buffers_get_sdfgi_energy(RID p_render_buffers) const {
  1681. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1682. ERR_FAIL_COND_V(!rb, 0.0);
  1683. ERR_FAIL_COND_V(!rb->sdfgi, 0.0);
  1684. return rb->sdfgi->energy;
  1685. }
  1686. RID RendererSceneRenderRD::render_buffers_get_sdfgi_occlusion_texture(RID p_render_buffers) const {
  1687. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1688. ERR_FAIL_COND_V(!rb, RID());
  1689. ERR_FAIL_COND_V(!rb->sdfgi, RID());
  1690. return rb->sdfgi->occlusion_texture;
  1691. }
  1692. bool RendererSceneRenderRD::render_buffers_has_volumetric_fog(RID p_render_buffers) const {
  1693. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1694. ERR_FAIL_COND_V(!rb, false);
  1695. return rb->volumetric_fog != nullptr;
  1696. }
  1697. RID RendererSceneRenderRD::render_buffers_get_volumetric_fog_texture(RID p_render_buffers) {
  1698. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1699. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, RID());
  1700. return rb->volumetric_fog->fog_map;
  1701. }
  1702. RID RendererSceneRenderRD::render_buffers_get_volumetric_fog_sky_uniform_set(RID p_render_buffers) {
  1703. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1704. ERR_FAIL_COND_V(!rb, RID());
  1705. if (!rb->volumetric_fog) {
  1706. return RID();
  1707. }
  1708. return rb->volumetric_fog->sky_uniform_set;
  1709. }
  1710. float RendererSceneRenderRD::render_buffers_get_volumetric_fog_end(RID p_render_buffers) {
  1711. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1712. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0);
  1713. return rb->volumetric_fog->length;
  1714. }
  1715. float RendererSceneRenderRD::render_buffers_get_volumetric_fog_detail_spread(RID p_render_buffers) {
  1716. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1717. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0);
  1718. return rb->volumetric_fog->spread;
  1719. }
  1720. void RendererSceneRenderRD::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa, RenderingServer::ViewportScreenSpaceAA p_screen_space_aa, bool p_use_debanding) {
  1721. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1722. rb->width = p_width;
  1723. rb->height = p_height;
  1724. rb->render_target = p_render_target;
  1725. rb->msaa = p_msaa;
  1726. rb->screen_space_aa = p_screen_space_aa;
  1727. rb->use_debanding = p_use_debanding;
  1728. if (is_clustered_enabled()) {
  1729. if (rb->cluster_builder == nullptr) {
  1730. rb->cluster_builder = memnew(ClusterBuilderRD);
  1731. }
  1732. rb->cluster_builder->set_shared(&cluster_builder_shared);
  1733. }
  1734. _free_render_buffer_data(rb);
  1735. {
  1736. RD::TextureFormat tf;
  1737. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1738. tf.width = rb->width;
  1739. tf.height = rb->height;
  1740. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1741. if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) {
  1742. tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1743. } else {
  1744. tf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1745. }
  1746. rb->texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1747. }
  1748. {
  1749. RD::TextureFormat tf;
  1750. if (rb->msaa == RS::VIEWPORT_MSAA_DISABLED) {
  1751. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT;
  1752. } else {
  1753. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  1754. }
  1755. tf.width = p_width;
  1756. tf.height = p_height;
  1757. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT;
  1758. if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) {
  1759. tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1760. } else {
  1761. tf.usage_bits |= RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  1762. }
  1763. rb->depth_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1764. }
  1765. rb->data->configure(rb->texture, rb->depth_texture, p_width, p_height, p_msaa);
  1766. _render_buffers_uniform_set_changed(p_render_buffers);
  1767. if (is_clustered_enabled()) {
  1768. rb->cluster_builder->setup(Size2i(p_width, p_height), max_cluster_elements, rb->depth_texture, storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED), rb->texture);
  1769. }
  1770. }
  1771. void RendererSceneRenderRD::gi_set_use_half_resolution(bool p_enable) {
  1772. gi.half_resolution = p_enable;
  1773. }
  1774. void RendererSceneRenderRD::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) {
  1775. sss_quality = p_quality;
  1776. }
  1777. RS::SubSurfaceScatteringQuality RendererSceneRenderRD::sub_surface_scattering_get_quality() const {
  1778. return sss_quality;
  1779. }
  1780. void RendererSceneRenderRD::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) {
  1781. sss_scale = p_scale;
  1782. sss_depth_scale = p_depth_scale;
  1783. }
  1784. void RendererSceneRenderRD::shadows_quality_set(RS::ShadowQuality p_quality) {
  1785. ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
  1786. if (shadows_quality != p_quality) {
  1787. shadows_quality = p_quality;
  1788. switch (shadows_quality) {
  1789. case RS::SHADOW_QUALITY_HARD: {
  1790. penumbra_shadow_samples = 4;
  1791. soft_shadow_samples = 1;
  1792. shadows_quality_radius = 1.0;
  1793. } break;
  1794. case RS::SHADOW_QUALITY_SOFT_LOW: {
  1795. penumbra_shadow_samples = 8;
  1796. soft_shadow_samples = 4;
  1797. shadows_quality_radius = 2.0;
  1798. } break;
  1799. case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
  1800. penumbra_shadow_samples = 12;
  1801. soft_shadow_samples = 8;
  1802. shadows_quality_radius = 2.0;
  1803. } break;
  1804. case RS::SHADOW_QUALITY_SOFT_HIGH: {
  1805. penumbra_shadow_samples = 24;
  1806. soft_shadow_samples = 16;
  1807. shadows_quality_radius = 3.0;
  1808. } break;
  1809. case RS::SHADOW_QUALITY_SOFT_ULTRA: {
  1810. penumbra_shadow_samples = 32;
  1811. soft_shadow_samples = 32;
  1812. shadows_quality_radius = 4.0;
  1813. } break;
  1814. case RS::SHADOW_QUALITY_MAX:
  1815. break;
  1816. }
  1817. get_vogel_disk(penumbra_shadow_kernel, penumbra_shadow_samples);
  1818. get_vogel_disk(soft_shadow_kernel, soft_shadow_samples);
  1819. }
  1820. }
  1821. void RendererSceneRenderRD::directional_shadow_quality_set(RS::ShadowQuality p_quality) {
  1822. ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
  1823. if (directional_shadow_quality != p_quality) {
  1824. directional_shadow_quality = p_quality;
  1825. switch (directional_shadow_quality) {
  1826. case RS::SHADOW_QUALITY_HARD: {
  1827. directional_penumbra_shadow_samples = 4;
  1828. directional_soft_shadow_samples = 1;
  1829. directional_shadow_quality_radius = 1.0;
  1830. } break;
  1831. case RS::SHADOW_QUALITY_SOFT_LOW: {
  1832. directional_penumbra_shadow_samples = 8;
  1833. directional_soft_shadow_samples = 4;
  1834. directional_shadow_quality_radius = 2.0;
  1835. } break;
  1836. case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
  1837. directional_penumbra_shadow_samples = 12;
  1838. directional_soft_shadow_samples = 8;
  1839. directional_shadow_quality_radius = 2.0;
  1840. } break;
  1841. case RS::SHADOW_QUALITY_SOFT_HIGH: {
  1842. directional_penumbra_shadow_samples = 24;
  1843. directional_soft_shadow_samples = 16;
  1844. directional_shadow_quality_radius = 3.0;
  1845. } break;
  1846. case RS::SHADOW_QUALITY_SOFT_ULTRA: {
  1847. directional_penumbra_shadow_samples = 32;
  1848. directional_soft_shadow_samples = 32;
  1849. directional_shadow_quality_radius = 4.0;
  1850. } break;
  1851. case RS::SHADOW_QUALITY_MAX:
  1852. break;
  1853. }
  1854. get_vogel_disk(directional_penumbra_shadow_kernel, directional_penumbra_shadow_samples);
  1855. get_vogel_disk(directional_soft_shadow_kernel, directional_soft_shadow_samples);
  1856. }
  1857. }
  1858. int RendererSceneRenderRD::get_roughness_layers() const {
  1859. return sky.roughness_layers;
  1860. }
  1861. bool RendererSceneRenderRD::is_using_radiance_cubemap_array() const {
  1862. return sky.sky_use_cubemap_array;
  1863. }
  1864. RendererSceneRenderRD::RenderBufferData *RendererSceneRenderRD::render_buffers_get_data(RID p_render_buffers) {
  1865. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1866. ERR_FAIL_COND_V(!rb, nullptr);
  1867. return rb->data;
  1868. }
  1869. void RendererSceneRenderRD::_setup_reflections(const PagedArray<RID> &p_reflections, const Transform &p_camera_inverse_transform, RID p_environment) {
  1870. cluster.reflection_count = 0;
  1871. for (uint32_t i = 0; i < (uint32_t)p_reflections.size(); i++) {
  1872. if (cluster.reflection_count == cluster.max_reflections) {
  1873. break;
  1874. }
  1875. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflections[i]);
  1876. if (!rpi) {
  1877. continue;
  1878. }
  1879. cluster.reflection_sort[cluster.reflection_count].instance = rpi;
  1880. cluster.reflection_sort[cluster.reflection_count].depth = -p_camera_inverse_transform.xform(rpi->transform.origin).z;
  1881. cluster.reflection_count++;
  1882. }
  1883. if (cluster.reflection_count > 0) {
  1884. SortArray<Cluster::InstanceSort<ReflectionProbeInstance>> sort_array;
  1885. sort_array.sort(cluster.reflection_sort, cluster.reflection_count);
  1886. }
  1887. for (uint32_t i = 0; i < cluster.reflection_count; i++) {
  1888. ReflectionProbeInstance *rpi = cluster.reflection_sort[i].instance;
  1889. rpi->render_index = i;
  1890. RID base_probe = rpi->probe;
  1891. Cluster::ReflectionData &reflection_ubo = cluster.reflections[i];
  1892. Vector3 extents = storage->reflection_probe_get_extents(base_probe);
  1893. reflection_ubo.box_extents[0] = extents.x;
  1894. reflection_ubo.box_extents[1] = extents.y;
  1895. reflection_ubo.box_extents[2] = extents.z;
  1896. reflection_ubo.index = rpi->atlas_index;
  1897. Vector3 origin_offset = storage->reflection_probe_get_origin_offset(base_probe);
  1898. reflection_ubo.box_offset[0] = origin_offset.x;
  1899. reflection_ubo.box_offset[1] = origin_offset.y;
  1900. reflection_ubo.box_offset[2] = origin_offset.z;
  1901. reflection_ubo.mask = storage->reflection_probe_get_cull_mask(base_probe);
  1902. reflection_ubo.intensity = storage->reflection_probe_get_intensity(base_probe);
  1903. reflection_ubo.ambient_mode = storage->reflection_probe_get_ambient_mode(base_probe);
  1904. reflection_ubo.exterior = !storage->reflection_probe_is_interior(base_probe);
  1905. reflection_ubo.box_project = storage->reflection_probe_is_box_projection(base_probe);
  1906. Color ambient_linear = storage->reflection_probe_get_ambient_color(base_probe).to_linear();
  1907. float interior_ambient_energy = storage->reflection_probe_get_ambient_color_energy(base_probe);
  1908. reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy;
  1909. reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy;
  1910. reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy;
  1911. Transform transform = rpi->transform;
  1912. Transform proj = (p_camera_inverse_transform * transform).inverse();
  1913. RendererStorageRD::store_transform(proj, reflection_ubo.local_matrix);
  1914. current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_REFLECTION_PROBE, transform, extents);
  1915. rpi->last_pass = RSG::rasterizer->get_frame_number();
  1916. }
  1917. if (cluster.reflection_count) {
  1918. RD::get_singleton()->buffer_update(cluster.reflection_buffer, 0, cluster.reflection_count * sizeof(Cluster::ReflectionData), cluster.reflections, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  1919. }
  1920. }
  1921. void RendererSceneRenderRD::_setup_lights(const PagedArray<RID> &p_lights, const Transform &p_camera_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count) {
  1922. Transform inverse_transform = p_camera_transform.affine_inverse();
  1923. r_directional_light_count = 0;
  1924. r_positional_light_count = 0;
  1925. sky.sky_scene_state.ubo.directional_light_count = 0;
  1926. Plane camera_plane(p_camera_transform.origin, -p_camera_transform.basis.get_axis(Vector3::AXIS_Z).normalized());
  1927. cluster.omni_light_count = 0;
  1928. cluster.spot_light_count = 0;
  1929. for (int i = 0; i < (int)p_lights.size(); i++) {
  1930. LightInstance *li = light_instance_owner.getornull(p_lights[i]);
  1931. if (!li) {
  1932. continue;
  1933. }
  1934. RID base = li->light;
  1935. ERR_CONTINUE(base.is_null());
  1936. RS::LightType type = storage->light_get_type(base);
  1937. switch (type) {
  1938. case RS::LIGHT_DIRECTIONAL: {
  1939. // Copy to SkyDirectionalLightData
  1940. if (r_directional_light_count < sky.sky_scene_state.max_directional_lights) {
  1941. RendererSceneSkyRD::SkyDirectionalLightData &sky_light_data = sky.sky_scene_state.directional_lights[r_directional_light_count];
  1942. Transform light_transform = li->transform;
  1943. Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized();
  1944. sky_light_data.direction[0] = world_direction.x;
  1945. sky_light_data.direction[1] = world_direction.y;
  1946. sky_light_data.direction[2] = -world_direction.z;
  1947. float sign = storage->light_is_negative(base) ? -1 : 1;
  1948. sky_light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY);
  1949. Color linear_col = storage->light_get_color(base).to_linear();
  1950. sky_light_data.color[0] = linear_col.r;
  1951. sky_light_data.color[1] = linear_col.g;
  1952. sky_light_data.color[2] = linear_col.b;
  1953. sky_light_data.enabled = true;
  1954. float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  1955. if (angular_diameter > 0.0) {
  1956. // I know tan(0) is 0, but let's not risk it with numerical precision.
  1957. // technically this will keep expanding until reaching the sun, but all we care
  1958. // is expand until we reach the radius of the near plane (there can't be more occluders than that)
  1959. angular_diameter = Math::tan(Math::deg2rad(angular_diameter));
  1960. } else {
  1961. angular_diameter = 0.0;
  1962. }
  1963. sky_light_data.size = angular_diameter;
  1964. sky.sky_scene_state.ubo.directional_light_count++;
  1965. }
  1966. if (r_directional_light_count >= cluster.max_directional_lights || storage->light_directional_is_sky_only(base)) {
  1967. continue;
  1968. }
  1969. Cluster::DirectionalLightData &light_data = cluster.directional_lights[r_directional_light_count];
  1970. Transform light_transform = li->transform;
  1971. Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();
  1972. light_data.direction[0] = direction.x;
  1973. light_data.direction[1] = direction.y;
  1974. light_data.direction[2] = direction.z;
  1975. float sign = storage->light_is_negative(base) ? -1 : 1;
  1976. light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI;
  1977. Color linear_col = storage->light_get_color(base).to_linear();
  1978. light_data.color[0] = linear_col.r;
  1979. light_data.color[1] = linear_col.g;
  1980. light_data.color[2] = linear_col.b;
  1981. light_data.specular = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
  1982. light_data.mask = storage->light_get_cull_mask(base);
  1983. float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  1984. light_data.size = 1.0 - Math::cos(Math::deg2rad(size)); //angle to cosine offset
  1985. Color shadow_col = storage->light_get_shadow_color(base).to_linear();
  1986. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) {
  1987. light_data.shadow_color1[0] = 1.0;
  1988. light_data.shadow_color1[1] = 0.0;
  1989. light_data.shadow_color1[2] = 0.0;
  1990. light_data.shadow_color1[3] = 1.0;
  1991. light_data.shadow_color2[0] = 0.0;
  1992. light_data.shadow_color2[1] = 1.0;
  1993. light_data.shadow_color2[2] = 0.0;
  1994. light_data.shadow_color2[3] = 1.0;
  1995. light_data.shadow_color3[0] = 0.0;
  1996. light_data.shadow_color3[1] = 0.0;
  1997. light_data.shadow_color3[2] = 1.0;
  1998. light_data.shadow_color3[3] = 1.0;
  1999. light_data.shadow_color4[0] = 1.0;
  2000. light_data.shadow_color4[1] = 1.0;
  2001. light_data.shadow_color4[2] = 0.0;
  2002. light_data.shadow_color4[3] = 1.0;
  2003. } else {
  2004. light_data.shadow_color1[0] = shadow_col.r;
  2005. light_data.shadow_color1[1] = shadow_col.g;
  2006. light_data.shadow_color1[2] = shadow_col.b;
  2007. light_data.shadow_color1[3] = 1.0;
  2008. light_data.shadow_color2[0] = shadow_col.r;
  2009. light_data.shadow_color2[1] = shadow_col.g;
  2010. light_data.shadow_color2[2] = shadow_col.b;
  2011. light_data.shadow_color2[3] = 1.0;
  2012. light_data.shadow_color3[0] = shadow_col.r;
  2013. light_data.shadow_color3[1] = shadow_col.g;
  2014. light_data.shadow_color3[2] = shadow_col.b;
  2015. light_data.shadow_color3[3] = 1.0;
  2016. light_data.shadow_color4[0] = shadow_col.r;
  2017. light_data.shadow_color4[1] = shadow_col.g;
  2018. light_data.shadow_color4[2] = shadow_col.b;
  2019. light_data.shadow_color4[3] = 1.0;
  2020. }
  2021. light_data.shadow_enabled = p_using_shadows && storage->light_has_shadow(base);
  2022. float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  2023. if (angular_diameter > 0.0) {
  2024. // I know tan(0) is 0, but let's not risk it with numerical precision.
  2025. // technically this will keep expanding until reaching the sun, but all we care
  2026. // is expand until we reach the radius of the near plane (there can't be more occluders than that)
  2027. angular_diameter = Math::tan(Math::deg2rad(angular_diameter));
  2028. } else {
  2029. angular_diameter = 0.0;
  2030. }
  2031. if (light_data.shadow_enabled) {
  2032. RS::LightDirectionalShadowMode smode = storage->light_directional_get_shadow_mode(base);
  2033. int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
  2034. light_data.blend_splits = storage->light_directional_get_blend_splits(base);
  2035. for (int j = 0; j < 4; j++) {
  2036. Rect2 atlas_rect = li->shadow_transform[j].atlas_rect;
  2037. CameraMatrix matrix = li->shadow_transform[j].camera;
  2038. float split = li->shadow_transform[MIN(limit, j)].split;
  2039. CameraMatrix bias;
  2040. bias.set_light_bias();
  2041. CameraMatrix rectm;
  2042. rectm.set_light_atlas_rect(atlas_rect);
  2043. Transform modelview = (inverse_transform * li->shadow_transform[j].transform).inverse();
  2044. CameraMatrix shadow_mtx = rectm * bias * matrix * modelview;
  2045. light_data.shadow_split_offsets[j] = split;
  2046. float bias_scale = li->shadow_transform[j].bias_scale;
  2047. light_data.shadow_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_scale;
  2048. light_data.shadow_normal_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * li->shadow_transform[j].shadow_texel_size;
  2049. light_data.shadow_transmittance_bias[j] = storage->light_get_transmittance_bias(base) * bias_scale;
  2050. light_data.shadow_z_range[j] = li->shadow_transform[j].farplane;
  2051. light_data.shadow_range_begin[j] = li->shadow_transform[j].range_begin;
  2052. RendererStorageRD::store_camera(shadow_mtx, light_data.shadow_matrices[j]);
  2053. Vector2 uv_scale = li->shadow_transform[j].uv_scale;
  2054. uv_scale *= atlas_rect.size; //adapt to atlas size
  2055. switch (j) {
  2056. case 0: {
  2057. light_data.uv_scale1[0] = uv_scale.x;
  2058. light_data.uv_scale1[1] = uv_scale.y;
  2059. } break;
  2060. case 1: {
  2061. light_data.uv_scale2[0] = uv_scale.x;
  2062. light_data.uv_scale2[1] = uv_scale.y;
  2063. } break;
  2064. case 2: {
  2065. light_data.uv_scale3[0] = uv_scale.x;
  2066. light_data.uv_scale3[1] = uv_scale.y;
  2067. } break;
  2068. case 3: {
  2069. light_data.uv_scale4[0] = uv_scale.x;
  2070. light_data.uv_scale4[1] = uv_scale.y;
  2071. } break;
  2072. }
  2073. }
  2074. float fade_start = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
  2075. light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep
  2076. light_data.fade_to = -light_data.shadow_split_offsets[3];
  2077. light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base);
  2078. light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
  2079. light_data.softshadow_angle = angular_diameter;
  2080. if (angular_diameter <= 0.0) {
  2081. light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF
  2082. }
  2083. }
  2084. r_directional_light_count++;
  2085. } break;
  2086. case RS::LIGHT_OMNI: {
  2087. if (cluster.omni_light_count >= cluster.max_lights) {
  2088. continue;
  2089. }
  2090. cluster.omni_light_sort[cluster.omni_light_count].instance = li;
  2091. cluster.omni_light_sort[cluster.omni_light_count].depth = camera_plane.distance_to(li->transform.origin);
  2092. cluster.omni_light_count++;
  2093. } break;
  2094. case RS::LIGHT_SPOT: {
  2095. if (cluster.spot_light_count >= cluster.max_lights) {
  2096. continue;
  2097. }
  2098. cluster.spot_light_sort[cluster.spot_light_count].instance = li;
  2099. cluster.spot_light_sort[cluster.spot_light_count].depth = camera_plane.distance_to(li->transform.origin);
  2100. cluster.spot_light_count++;
  2101. } break;
  2102. }
  2103. li->last_pass = RSG::rasterizer->get_frame_number();
  2104. }
  2105. if (cluster.omni_light_count) {
  2106. SortArray<Cluster::InstanceSort<LightInstance>> sorter;
  2107. sorter.sort(cluster.omni_light_sort, cluster.omni_light_count);
  2108. }
  2109. if (cluster.spot_light_count) {
  2110. SortArray<Cluster::InstanceSort<LightInstance>> sorter;
  2111. sorter.sort(cluster.spot_light_sort, cluster.spot_light_count);
  2112. }
  2113. ShadowAtlas *shadow_atlas = nullptr;
  2114. if (p_shadow_atlas.is_valid() && p_using_shadows) {
  2115. shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2116. }
  2117. for (uint32_t i = 0; i < (cluster.omni_light_count + cluster.spot_light_count); i++) {
  2118. uint32_t index = (i < cluster.omni_light_count) ? i : i - (cluster.omni_light_count);
  2119. Cluster::LightData &light_data = (i < cluster.omni_light_count) ? cluster.omni_lights[index] : cluster.spot_lights[index];
  2120. RS::LightType type = (i < cluster.omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT;
  2121. LightInstance *li = (i < cluster.omni_light_count) ? cluster.omni_light_sort[index].instance : cluster.spot_light_sort[index].instance;
  2122. RID base = li->light;
  2123. Transform light_transform = li->transform;
  2124. float sign = storage->light_is_negative(base) ? -1 : 1;
  2125. Color linear_col = storage->light_get_color(base).to_linear();
  2126. light_data.attenuation = storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION);
  2127. float energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI;
  2128. light_data.color[0] = linear_col.r * energy;
  2129. light_data.color[1] = linear_col.g * energy;
  2130. light_data.color[2] = linear_col.b * energy;
  2131. light_data.specular_amount = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0;
  2132. float radius = MAX(0.001, storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
  2133. light_data.inv_radius = 1.0 / radius;
  2134. Vector3 pos = inverse_transform.xform(light_transform.origin);
  2135. light_data.position[0] = pos.x;
  2136. light_data.position[1] = pos.y;
  2137. light_data.position[2] = pos.z;
  2138. Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();
  2139. light_data.direction[0] = direction.x;
  2140. light_data.direction[1] = direction.y;
  2141. light_data.direction[2] = direction.z;
  2142. float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  2143. light_data.size = size;
  2144. light_data.inv_spot_attenuation = 1.0f / storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  2145. float spot_angle = storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
  2146. light_data.cos_spot_angle = Math::cos(Math::deg2rad(spot_angle));
  2147. light_data.mask = storage->light_get_cull_mask(base);
  2148. light_data.atlas_rect[0] = 0;
  2149. light_data.atlas_rect[1] = 0;
  2150. light_data.atlas_rect[2] = 0;
  2151. light_data.atlas_rect[3] = 0;
  2152. RID projector = storage->light_get_projector(base);
  2153. if (projector.is_valid()) {
  2154. Rect2 rect = storage->decal_atlas_get_texture_rect(projector);
  2155. if (type == RS::LIGHT_SPOT) {
  2156. light_data.projector_rect[0] = rect.position.x;
  2157. light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped
  2158. light_data.projector_rect[2] = rect.size.width;
  2159. light_data.projector_rect[3] = -rect.size.height;
  2160. } else {
  2161. light_data.projector_rect[0] = rect.position.x;
  2162. light_data.projector_rect[1] = rect.position.y;
  2163. light_data.projector_rect[2] = rect.size.width;
  2164. light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half
  2165. }
  2166. } else {
  2167. light_data.projector_rect[0] = 0;
  2168. light_data.projector_rect[1] = 0;
  2169. light_data.projector_rect[2] = 0;
  2170. light_data.projector_rect[3] = 0;
  2171. }
  2172. if (shadow_atlas && shadow_atlas->shadow_owners.has(li->self)) {
  2173. // fill in the shadow information
  2174. light_data.shadow_enabled = true;
  2175. if (type == RS::LIGHT_SPOT) {
  2176. light_data.shadow_bias = (storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0);
  2177. float shadow_texel_size = Math::tan(Math::deg2rad(spot_angle)) * radius * 2.0;
  2178. shadow_texel_size *= light_instance_get_shadow_texel_size(li->self, p_shadow_atlas);
  2179. light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size;
  2180. } else { //omni
  2181. light_data.shadow_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0;
  2182. float shadow_texel_size = light_instance_get_shadow_texel_size(li->self, p_shadow_atlas);
  2183. light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 2.0; // applied in -1 .. 1 space
  2184. }
  2185. light_data.transmittance_bias = storage->light_get_transmittance_bias(base);
  2186. Rect2 rect = light_instance_get_shadow_atlas_rect(li->self, p_shadow_atlas);
  2187. light_data.atlas_rect[0] = rect.position.x;
  2188. light_data.atlas_rect[1] = rect.position.y;
  2189. light_data.atlas_rect[2] = rect.size.width;
  2190. light_data.atlas_rect[3] = rect.size.height;
  2191. light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
  2192. light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base);
  2193. if (type == RS::LIGHT_OMNI) {
  2194. light_data.atlas_rect[3] *= 0.5; //one paraboloid on top of another
  2195. Transform proj = (inverse_transform * light_transform).inverse();
  2196. RendererStorageRD::store_transform(proj, light_data.shadow_matrix);
  2197. if (size > 0.0) {
  2198. light_data.soft_shadow_size = size;
  2199. } else {
  2200. light_data.soft_shadow_size = 0.0;
  2201. light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
  2202. }
  2203. } else if (type == RS::LIGHT_SPOT) {
  2204. Transform modelview = (inverse_transform * light_transform).inverse();
  2205. CameraMatrix bias;
  2206. bias.set_light_bias();
  2207. CameraMatrix shadow_mtx = bias * li->shadow_transform[0].camera * modelview;
  2208. RendererStorageRD::store_camera(shadow_mtx, light_data.shadow_matrix);
  2209. if (size > 0.0) {
  2210. CameraMatrix cm = li->shadow_transform[0].camera;
  2211. float half_np = cm.get_z_near() * Math::tan(Math::deg2rad(spot_angle));
  2212. light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width;
  2213. } else {
  2214. light_data.soft_shadow_size = 0.0;
  2215. light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
  2216. }
  2217. }
  2218. } else {
  2219. light_data.shadow_enabled = false;
  2220. }
  2221. li->light_index = index;
  2222. current_cluster_builder->add_light(type == RS::LIGHT_SPOT ? ClusterBuilderRD::LIGHT_TYPE_SPOT : ClusterBuilderRD::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle);
  2223. r_positional_light_count++;
  2224. }
  2225. //update without barriers
  2226. if (cluster.omni_light_count) {
  2227. RD::get_singleton()->buffer_update(cluster.omni_light_buffer, 0, sizeof(Cluster::LightData) * cluster.omni_light_count, cluster.omni_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2228. }
  2229. if (cluster.spot_light_count) {
  2230. RD::get_singleton()->buffer_update(cluster.spot_light_buffer, 0, sizeof(Cluster::LightData) * cluster.spot_light_count, cluster.spot_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2231. }
  2232. if (r_directional_light_count) {
  2233. RD::get_singleton()->buffer_update(cluster.directional_light_buffer, 0, sizeof(Cluster::DirectionalLightData) * r_directional_light_count, cluster.directional_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2234. }
  2235. }
  2236. void RendererSceneRenderRD::_setup_decals(const PagedArray<RID> &p_decals, const Transform &p_camera_inverse_xform) {
  2237. Transform uv_xform;
  2238. uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0));
  2239. uv_xform.origin = Vector3(-1.0, 0.0, -1.0);
  2240. uint32_t decal_count = p_decals.size();
  2241. cluster.decal_count = 0;
  2242. for (uint32_t i = 0; i < decal_count; i++) {
  2243. if (cluster.decal_count == cluster.max_decals) {
  2244. break;
  2245. }
  2246. DecalInstance *di = decal_instance_owner.getornull(p_decals[i]);
  2247. if (!di) {
  2248. continue;
  2249. }
  2250. RID decal = di->decal;
  2251. Transform xform = di->transform;
  2252. real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
  2253. if (storage->decal_is_distance_fade_enabled(decal)) {
  2254. float fade_begin = storage->decal_get_distance_fade_begin(decal);
  2255. float fade_length = storage->decal_get_distance_fade_length(decal);
  2256. if (distance > fade_begin) {
  2257. if (distance > fade_begin + fade_length) {
  2258. continue; // do not use this decal, its invisible
  2259. }
  2260. }
  2261. }
  2262. cluster.decal_sort[cluster.decal_count].instance = di;
  2263. cluster.decal_sort[cluster.decal_count].depth = distance;
  2264. cluster.decal_count++;
  2265. }
  2266. if (cluster.decal_count > 0) {
  2267. SortArray<Cluster::InstanceSort<DecalInstance>> sort_array;
  2268. sort_array.sort(cluster.decal_sort, cluster.decal_count);
  2269. }
  2270. for (uint32_t i = 0; i < cluster.decal_count; i++) {
  2271. DecalInstance *di = cluster.decal_sort[i].instance;
  2272. RID decal = di->decal;
  2273. Transform xform = di->transform;
  2274. float fade = 1.0;
  2275. if (storage->decal_is_distance_fade_enabled(decal)) {
  2276. real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
  2277. float fade_begin = storage->decal_get_distance_fade_begin(decal);
  2278. float fade_length = storage->decal_get_distance_fade_length(decal);
  2279. if (distance > fade_begin) {
  2280. fade = 1.0 - (distance - fade_begin) / fade_length;
  2281. }
  2282. }
  2283. Cluster::DecalData &dd = cluster.decals[i];
  2284. Vector3 decal_extents = storage->decal_get_extents(decal);
  2285. Transform scale_xform;
  2286. scale_xform.basis.scale(Vector3(decal_extents.x, decal_extents.y, decal_extents.z));
  2287. Transform to_decal_xform = (p_camera_inverse_xform * di->transform * scale_xform * uv_xform).affine_inverse();
  2288. RendererStorageRD::store_transform(to_decal_xform, dd.xform);
  2289. Vector3 normal = xform.basis.get_axis(Vector3::AXIS_Y).normalized();
  2290. normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine
  2291. dd.normal[0] = normal.x;
  2292. dd.normal[1] = normal.y;
  2293. dd.normal[2] = normal.z;
  2294. dd.normal_fade = storage->decal_get_normal_fade(decal);
  2295. RID albedo_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO);
  2296. RID emission_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION);
  2297. if (albedo_tex.is_valid()) {
  2298. Rect2 rect = storage->decal_atlas_get_texture_rect(albedo_tex);
  2299. dd.albedo_rect[0] = rect.position.x;
  2300. dd.albedo_rect[1] = rect.position.y;
  2301. dd.albedo_rect[2] = rect.size.x;
  2302. dd.albedo_rect[3] = rect.size.y;
  2303. } else {
  2304. if (!emission_tex.is_valid()) {
  2305. continue; //no albedo, no emission, no decal.
  2306. }
  2307. dd.albedo_rect[0] = 0;
  2308. dd.albedo_rect[1] = 0;
  2309. dd.albedo_rect[2] = 0;
  2310. dd.albedo_rect[3] = 0;
  2311. }
  2312. RID normal_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL);
  2313. if (normal_tex.is_valid()) {
  2314. Rect2 rect = storage->decal_atlas_get_texture_rect(normal_tex);
  2315. dd.normal_rect[0] = rect.position.x;
  2316. dd.normal_rect[1] = rect.position.y;
  2317. dd.normal_rect[2] = rect.size.x;
  2318. dd.normal_rect[3] = rect.size.y;
  2319. Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized();
  2320. RendererStorageRD::store_basis_3x4(normal_xform, dd.normal_xform);
  2321. } else {
  2322. dd.normal_rect[0] = 0;
  2323. dd.normal_rect[1] = 0;
  2324. dd.normal_rect[2] = 0;
  2325. dd.normal_rect[3] = 0;
  2326. }
  2327. RID orm_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM);
  2328. if (orm_tex.is_valid()) {
  2329. Rect2 rect = storage->decal_atlas_get_texture_rect(orm_tex);
  2330. dd.orm_rect[0] = rect.position.x;
  2331. dd.orm_rect[1] = rect.position.y;
  2332. dd.orm_rect[2] = rect.size.x;
  2333. dd.orm_rect[3] = rect.size.y;
  2334. } else {
  2335. dd.orm_rect[0] = 0;
  2336. dd.orm_rect[1] = 0;
  2337. dd.orm_rect[2] = 0;
  2338. dd.orm_rect[3] = 0;
  2339. }
  2340. if (emission_tex.is_valid()) {
  2341. Rect2 rect = storage->decal_atlas_get_texture_rect(emission_tex);
  2342. dd.emission_rect[0] = rect.position.x;
  2343. dd.emission_rect[1] = rect.position.y;
  2344. dd.emission_rect[2] = rect.size.x;
  2345. dd.emission_rect[3] = rect.size.y;
  2346. } else {
  2347. dd.emission_rect[0] = 0;
  2348. dd.emission_rect[1] = 0;
  2349. dd.emission_rect[2] = 0;
  2350. dd.emission_rect[3] = 0;
  2351. }
  2352. Color modulate = storage->decal_get_modulate(decal);
  2353. dd.modulate[0] = modulate.r;
  2354. dd.modulate[1] = modulate.g;
  2355. dd.modulate[2] = modulate.b;
  2356. dd.modulate[3] = modulate.a * fade;
  2357. dd.emission_energy = storage->decal_get_emission_energy(decal) * fade;
  2358. dd.albedo_mix = storage->decal_get_albedo_mix(decal);
  2359. dd.mask = storage->decal_get_cull_mask(decal);
  2360. dd.upper_fade = storage->decal_get_upper_fade(decal);
  2361. dd.lower_fade = storage->decal_get_lower_fade(decal);
  2362. current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_DECAL, xform, decal_extents);
  2363. }
  2364. if (cluster.decal_count > 0) {
  2365. RD::get_singleton()->buffer_update(cluster.decal_buffer, 0, sizeof(Cluster::DecalData) * cluster.decal_count, cluster.decals, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2366. }
  2367. }
  2368. void RendererSceneRenderRD::_volumetric_fog_erase(RenderBuffers *rb) {
  2369. ERR_FAIL_COND(!rb->volumetric_fog);
  2370. RD::get_singleton()->free(rb->volumetric_fog->prev_light_density_map);
  2371. RD::get_singleton()->free(rb->volumetric_fog->light_density_map);
  2372. RD::get_singleton()->free(rb->volumetric_fog->fog_map);
  2373. if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  2374. RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
  2375. }
  2376. if (rb->volumetric_fog->uniform_set2.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set2)) {
  2377. RD::get_singleton()->free(rb->volumetric_fog->uniform_set2);
  2378. }
  2379. if (rb->volumetric_fog->sdfgi_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) {
  2380. RD::get_singleton()->free(rb->volumetric_fog->sdfgi_uniform_set);
  2381. }
  2382. if (rb->volumetric_fog->sky_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sky_uniform_set)) {
  2383. RD::get_singleton()->free(rb->volumetric_fog->sky_uniform_set);
  2384. }
  2385. memdelete(rb->volumetric_fog);
  2386. rb->volumetric_fog = nullptr;
  2387. }
  2388. void RendererSceneRenderRD::_update_volumetric_fog(RID p_render_buffers, RID p_environment, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_gi_probe_count) {
  2389. ERR_FAIL_COND(!is_clustered_enabled()); // can't use volumetric fog without clustered
  2390. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2391. ERR_FAIL_COND(!rb);
  2392. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_environment);
  2393. float ratio = float(rb->width) / float((rb->width + rb->height) / 2);
  2394. uint32_t target_width = uint32_t(float(volumetric_fog_size) * ratio);
  2395. uint32_t target_height = uint32_t(float(volumetric_fog_size) / ratio);
  2396. if (rb->volumetric_fog) {
  2397. //validate
  2398. if (!env || !env->volumetric_fog_enabled || rb->volumetric_fog->width != target_width || rb->volumetric_fog->height != target_height || rb->volumetric_fog->depth != volumetric_fog_depth) {
  2399. _volumetric_fog_erase(rb);
  2400. _render_buffers_uniform_set_changed(p_render_buffers);
  2401. }
  2402. }
  2403. if (!env || !env->volumetric_fog_enabled) {
  2404. //no reason to enable or update, bye
  2405. return;
  2406. }
  2407. RENDER_TIMESTAMP(">Volumetric Fog");
  2408. if (env && env->volumetric_fog_enabled && !rb->volumetric_fog) {
  2409. //required volumetric fog but not existing, create
  2410. rb->volumetric_fog = memnew(VolumetricFog);
  2411. rb->volumetric_fog->width = target_width;
  2412. rb->volumetric_fog->height = target_height;
  2413. rb->volumetric_fog->depth = volumetric_fog_depth;
  2414. RD::TextureFormat tf;
  2415. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  2416. tf.width = target_width;
  2417. tf.height = target_height;
  2418. tf.depth = volumetric_fog_depth;
  2419. tf.texture_type = RD::TEXTURE_TYPE_3D;
  2420. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  2421. rb->volumetric_fog->light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2422. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  2423. rb->volumetric_fog->prev_light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2424. RD::get_singleton()->texture_clear(rb->volumetric_fog->prev_light_density_map, Color(0, 0, 0, 0), 0, 1, 0, 1);
  2425. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  2426. rb->volumetric_fog->fog_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2427. _render_buffers_uniform_set_changed(p_render_buffers);
  2428. Vector<RD::Uniform> uniforms;
  2429. {
  2430. RD::Uniform u;
  2431. u.binding = 0;
  2432. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2433. u.ids.push_back(rb->volumetric_fog->fog_map);
  2434. uniforms.push_back(u);
  2435. }
  2436. rb->volumetric_fog->sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky.sky_shader.default_shader_rd, RendererSceneSkyRD::SKY_SET_FOG);
  2437. }
  2438. //update volumetric fog
  2439. if (rb->volumetric_fog->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  2440. //re create uniform set if needed
  2441. Vector<RD::Uniform> uniforms;
  2442. {
  2443. RD::Uniform u;
  2444. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2445. u.binding = 1;
  2446. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2447. if (shadow_atlas == nullptr || shadow_atlas->depth.is_null()) {
  2448. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK));
  2449. } else {
  2450. u.ids.push_back(shadow_atlas->depth);
  2451. }
  2452. uniforms.push_back(u);
  2453. }
  2454. {
  2455. RD::Uniform u;
  2456. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2457. u.binding = 2;
  2458. if (directional_shadow.depth.is_valid()) {
  2459. u.ids.push_back(directional_shadow.depth);
  2460. } else {
  2461. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK));
  2462. }
  2463. uniforms.push_back(u);
  2464. }
  2465. {
  2466. RD::Uniform u;
  2467. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2468. u.binding = 3;
  2469. u.ids.push_back(get_omni_light_buffer());
  2470. uniforms.push_back(u);
  2471. }
  2472. {
  2473. RD::Uniform u;
  2474. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2475. u.binding = 4;
  2476. u.ids.push_back(get_spot_light_buffer());
  2477. uniforms.push_back(u);
  2478. }
  2479. {
  2480. RD::Uniform u;
  2481. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2482. u.binding = 5;
  2483. u.ids.push_back(get_directional_light_buffer());
  2484. uniforms.push_back(u);
  2485. }
  2486. {
  2487. RD::Uniform u;
  2488. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2489. u.binding = 6;
  2490. u.ids.push_back(rb->cluster_builder->get_cluster_buffer());
  2491. uniforms.push_back(u);
  2492. }
  2493. {
  2494. RD::Uniform u;
  2495. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2496. u.binding = 7;
  2497. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2498. uniforms.push_back(u);
  2499. }
  2500. {
  2501. RD::Uniform u;
  2502. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2503. u.binding = 8;
  2504. u.ids.push_back(rb->volumetric_fog->light_density_map);
  2505. uniforms.push_back(u);
  2506. }
  2507. {
  2508. RD::Uniform u;
  2509. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2510. u.binding = 9;
  2511. u.ids.push_back(rb->volumetric_fog->fog_map);
  2512. uniforms.push_back(u);
  2513. }
  2514. {
  2515. RD::Uniform u;
  2516. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2517. u.binding = 10;
  2518. u.ids.push_back(shadow_sampler);
  2519. uniforms.push_back(u);
  2520. }
  2521. {
  2522. RD::Uniform u;
  2523. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2524. u.binding = 11;
  2525. u.ids.push_back(render_buffers_get_gi_probe_buffer(p_render_buffers));
  2526. uniforms.push_back(u);
  2527. }
  2528. {
  2529. RD::Uniform u;
  2530. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2531. u.binding = 12;
  2532. for (int i = 0; i < RendererSceneGIRD::MAX_GIPROBES; i++) {
  2533. u.ids.push_back(rb->gi.giprobe_textures[i]);
  2534. }
  2535. uniforms.push_back(u);
  2536. }
  2537. {
  2538. RD::Uniform u;
  2539. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2540. u.binding = 13;
  2541. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2542. uniforms.push_back(u);
  2543. }
  2544. {
  2545. RD::Uniform u;
  2546. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2547. u.binding = 14;
  2548. u.ids.push_back(volumetric_fog.params_ubo);
  2549. uniforms.push_back(u);
  2550. }
  2551. {
  2552. RD::Uniform u;
  2553. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2554. u.binding = 15;
  2555. u.ids.push_back(rb->volumetric_fog->prev_light_density_map);
  2556. uniforms.push_back(u);
  2557. }
  2558. rb->volumetric_fog->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0);
  2559. SWAP(uniforms.write[7].ids.write[0], uniforms.write[8].ids.write[0]);
  2560. rb->volumetric_fog->uniform_set2 = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0);
  2561. }
  2562. bool using_sdfgi = env->volumetric_fog_gi_inject > 0.0001 && env->sdfgi_enabled && (rb->sdfgi != nullptr);
  2563. if (using_sdfgi) {
  2564. if (rb->volumetric_fog->sdfgi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) {
  2565. Vector<RD::Uniform> uniforms;
  2566. {
  2567. RD::Uniform u;
  2568. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2569. u.binding = 0;
  2570. u.ids.push_back(gi.sdfgi_ubo);
  2571. uniforms.push_back(u);
  2572. }
  2573. {
  2574. RD::Uniform u;
  2575. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2576. u.binding = 1;
  2577. u.ids.push_back(rb->sdfgi->ambient_texture);
  2578. uniforms.push_back(u);
  2579. }
  2580. {
  2581. RD::Uniform u;
  2582. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2583. u.binding = 2;
  2584. u.ids.push_back(rb->sdfgi->occlusion_texture);
  2585. uniforms.push_back(u);
  2586. }
  2587. rb->volumetric_fog->sdfgi_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI), 1);
  2588. }
  2589. }
  2590. rb->volumetric_fog->length = env->volumetric_fog_length;
  2591. rb->volumetric_fog->spread = env->volumetric_fog_detail_spread;
  2592. VolumetricFogShader::ParamsUBO params;
  2593. Vector2 frustum_near_size = p_cam_projection.get_viewport_half_extents();
  2594. Vector2 frustum_far_size = p_cam_projection.get_far_plane_half_extents();
  2595. float z_near = p_cam_projection.get_z_near();
  2596. float z_far = p_cam_projection.get_z_far();
  2597. float fog_end = env->volumetric_fog_length;
  2598. Vector2 fog_far_size = frustum_near_size.lerp(frustum_far_size, (fog_end - z_near) / (z_far - z_near));
  2599. Vector2 fog_near_size;
  2600. if (p_cam_projection.is_orthogonal()) {
  2601. fog_near_size = fog_far_size;
  2602. } else {
  2603. fog_near_size = Vector2();
  2604. }
  2605. params.fog_frustum_size_begin[0] = fog_near_size.x;
  2606. params.fog_frustum_size_begin[1] = fog_near_size.y;
  2607. params.fog_frustum_size_end[0] = fog_far_size.x;
  2608. params.fog_frustum_size_end[1] = fog_far_size.y;
  2609. params.z_near = z_near;
  2610. params.z_far = z_far;
  2611. params.fog_frustum_end = fog_end;
  2612. params.fog_volume_size[0] = rb->volumetric_fog->width;
  2613. params.fog_volume_size[1] = rb->volumetric_fog->height;
  2614. params.fog_volume_size[2] = rb->volumetric_fog->depth;
  2615. params.directional_light_count = p_directional_light_count;
  2616. Color light = env->volumetric_fog_light.to_linear();
  2617. params.light_energy[0] = light.r * env->volumetric_fog_light_energy;
  2618. params.light_energy[1] = light.g * env->volumetric_fog_light_energy;
  2619. params.light_energy[2] = light.b * env->volumetric_fog_light_energy;
  2620. params.base_density = env->volumetric_fog_density;
  2621. params.detail_spread = env->volumetric_fog_detail_spread;
  2622. params.gi_inject = env->volumetric_fog_gi_inject;
  2623. params.cam_rotation[0] = p_cam_transform.basis[0][0];
  2624. params.cam_rotation[1] = p_cam_transform.basis[1][0];
  2625. params.cam_rotation[2] = p_cam_transform.basis[2][0];
  2626. params.cam_rotation[3] = 0;
  2627. params.cam_rotation[4] = p_cam_transform.basis[0][1];
  2628. params.cam_rotation[5] = p_cam_transform.basis[1][1];
  2629. params.cam_rotation[6] = p_cam_transform.basis[2][1];
  2630. params.cam_rotation[7] = 0;
  2631. params.cam_rotation[8] = p_cam_transform.basis[0][2];
  2632. params.cam_rotation[9] = p_cam_transform.basis[1][2];
  2633. params.cam_rotation[10] = p_cam_transform.basis[2][2];
  2634. params.cam_rotation[11] = 0;
  2635. params.filter_axis = 0;
  2636. params.max_gi_probes = env->volumetric_fog_gi_inject > 0.001 ? p_gi_probe_count : 0;
  2637. params.temporal_frame = RSG::rasterizer->get_frame_number() % VolumetricFog::MAX_TEMPORAL_FRAMES;
  2638. Transform to_prev_cam_view = rb->volumetric_fog->prev_cam_transform.affine_inverse() * p_cam_transform;
  2639. storage->store_transform(to_prev_cam_view, params.to_prev_view);
  2640. params.use_temporal_reprojection = env->volumetric_fog_temporal_reprojection;
  2641. params.temporal_blend = env->volumetric_fog_temporal_reprojection_amount;
  2642. {
  2643. uint32_t cluster_size = rb->cluster_builder->get_cluster_size();
  2644. params.cluster_shift = get_shift_from_power_of_2(cluster_size);
  2645. uint32_t cluster_screen_width = (rb->width - 1) / cluster_size + 1;
  2646. uint32_t cluster_screen_height = (rb->height - 1) / cluster_size + 1;
  2647. params.cluster_type_size = cluster_screen_width * cluster_screen_height * (32 + 32);
  2648. params.cluster_width = cluster_screen_width;
  2649. params.max_cluster_element_count_div_32 = max_cluster_elements / 32;
  2650. params.screen_size[0] = rb->width;
  2651. params.screen_size[1] = rb->height;
  2652. }
  2653. /* Vector2 dssize = directional_shadow_get_size();
  2654. push_constant.directional_shadow_pixel_size[0] = 1.0 / dssize.x;
  2655. push_constant.directional_shadow_pixel_size[1] = 1.0 / dssize.y;
  2656. */
  2657. RD::get_singleton()->draw_command_begin_label("Render Volumetric Fog");
  2658. RENDER_TIMESTAMP("Render Fog");
  2659. RD::get_singleton()->buffer_update(volumetric_fog.params_ubo, 0, sizeof(VolumetricFogShader::ParamsUBO), &params, RD::BARRIER_MASK_COMPUTE);
  2660. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2661. bool use_filter = volumetric_fog_filter_active;
  2662. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[using_sdfgi ? VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI : VOLUMETRIC_FOG_SHADER_DENSITY]);
  2663. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  2664. if (using_sdfgi) {
  2665. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->sdfgi_uniform_set, 1);
  2666. }
  2667. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth);
  2668. RD::get_singleton()->draw_command_end_label();
  2669. RD::get_singleton()->compute_list_end();
  2670. RD::get_singleton()->texture_copy(rb->volumetric_fog->light_density_map, rb->volumetric_fog->prev_light_density_map, Vector3(0, 0, 0), Vector3(0, 0, 0), Vector3(rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth), 0, 0, 0, 0);
  2671. compute_list = RD::get_singleton()->compute_list_begin();
  2672. if (use_filter) {
  2673. RD::get_singleton()->draw_command_begin_label("Filter Fog");
  2674. RENDER_TIMESTAMP("Filter Fog");
  2675. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FILTER]);
  2676. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  2677. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth);
  2678. RD::get_singleton()->compute_list_end();
  2679. //need restart for buffer update
  2680. params.filter_axis = 1;
  2681. RD::get_singleton()->buffer_update(volumetric_fog.params_ubo, 0, sizeof(VolumetricFogShader::ParamsUBO), &params);
  2682. compute_list = RD::get_singleton()->compute_list_begin();
  2683. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FILTER]);
  2684. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set2, 0);
  2685. if (using_sdfgi) {
  2686. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->sdfgi_uniform_set, 1);
  2687. }
  2688. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth);
  2689. RD::get_singleton()->compute_list_add_barrier(compute_list);
  2690. RD::get_singleton()->draw_command_end_label();
  2691. }
  2692. RENDER_TIMESTAMP("Integrate Fog");
  2693. RD::get_singleton()->draw_command_begin_label("Integrate Fog");
  2694. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FOG]);
  2695. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  2696. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, 1);
  2697. RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_RASTER);
  2698. RENDER_TIMESTAMP("<Volumetric Fog");
  2699. RD::get_singleton()->draw_command_end_label();
  2700. rb->volumetric_fog->prev_cam_transform = p_cam_transform;
  2701. }
  2702. uint32_t RendererSceneRenderRD::_get_render_state_directional_light_count() const {
  2703. return render_state.directional_light_count;
  2704. }
  2705. bool RendererSceneRenderRD::_needs_post_prepass_render(bool p_use_gi) {
  2706. if (render_state.render_buffers.is_valid()) {
  2707. RenderBuffers *rb = render_buffers_owner.getornull(render_state.render_buffers);
  2708. if (rb->sdfgi != nullptr) {
  2709. return true;
  2710. }
  2711. }
  2712. return false;
  2713. }
  2714. void RendererSceneRenderRD::_post_prepass_render(bool p_use_gi) {
  2715. if (render_state.render_buffers.is_valid()) {
  2716. if (p_use_gi) {
  2717. RenderBuffers *rb = render_buffers_owner.getornull(render_state.render_buffers);
  2718. ERR_FAIL_COND(rb == nullptr);
  2719. if (rb->sdfgi == nullptr) {
  2720. return;
  2721. }
  2722. RendererSceneEnvironmentRD *env = environment_owner.getornull(render_state.environment);
  2723. rb->sdfgi->update_probes(env, sky.sky_owner.getornull(env->sky));
  2724. }
  2725. }
  2726. }
  2727. void RendererSceneRenderRD::_pre_resolve_render(bool p_use_gi) {
  2728. if (render_state.render_buffers.is_valid()) {
  2729. if (p_use_gi) {
  2730. RD::get_singleton()->compute_list_end();
  2731. }
  2732. }
  2733. }
  2734. void RendererSceneRenderRD::_pre_opaque_render(bool p_use_ssao, bool p_use_gi, RID p_normal_roughness_buffer, RID p_gi_probe_buffer) {
  2735. // Render shadows while GI is rendering, due to how barriers are handled, this should happen at the same time
  2736. if (render_state.render_buffers.is_valid() && p_use_gi) {
  2737. RenderBuffers *rb = render_buffers_owner.getornull(render_state.render_buffers);
  2738. ERR_FAIL_COND(rb == nullptr);
  2739. if (rb->sdfgi == nullptr) {
  2740. return;
  2741. }
  2742. rb->sdfgi->store_probes();
  2743. }
  2744. render_state.cube_shadows.clear();
  2745. render_state.shadows.clear();
  2746. render_state.directional_shadows.clear();
  2747. Plane camera_plane(render_state.cam_transform.origin, -render_state.cam_transform.basis.get_axis(Vector3::AXIS_Z));
  2748. float lod_distance_multiplier = render_state.cam_projection.get_lod_multiplier();
  2749. {
  2750. for (int i = 0; i < render_state.render_shadow_count; i++) {
  2751. LightInstance *li = light_instance_owner.getornull(render_state.render_shadows[i].light);
  2752. if (storage->light_get_type(li->light) == RS::LIGHT_DIRECTIONAL) {
  2753. render_state.directional_shadows.push_back(i);
  2754. } else if (storage->light_get_type(li->light) == RS::LIGHT_OMNI && storage->light_omni_get_shadow_mode(li->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
  2755. render_state.cube_shadows.push_back(i);
  2756. } else {
  2757. render_state.shadows.push_back(i);
  2758. }
  2759. }
  2760. //cube shadows are rendered in their own way
  2761. for (uint32_t i = 0; i < render_state.cube_shadows.size(); i++) {
  2762. _render_shadow_pass(render_state.render_shadows[render_state.cube_shadows[i]].light, render_state.shadow_atlas, render_state.render_shadows[render_state.cube_shadows[i]].pass, render_state.render_shadows[render_state.cube_shadows[i]].instances, camera_plane, lod_distance_multiplier, render_state.screen_lod_threshold, true, true, true);
  2763. }
  2764. if (render_state.directional_shadows.size()) {
  2765. //open the pass for directional shadows
  2766. _update_directional_shadow_atlas();
  2767. RD::get_singleton()->draw_list_begin(directional_shadow.fb, RD::INITIAL_ACTION_DROP, RD::FINAL_ACTION_DISCARD, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_CONTINUE);
  2768. RD::get_singleton()->draw_list_end();
  2769. }
  2770. }
  2771. // Render GI
  2772. bool render_shadows = render_state.directional_shadows.size() || render_state.shadows.size();
  2773. bool render_gi = render_state.render_buffers.is_valid() && p_use_gi;
  2774. if (render_shadows && render_gi) {
  2775. RENDER_TIMESTAMP("Render GI + Render Shadows (parallel)");
  2776. } else if (render_shadows) {
  2777. RENDER_TIMESTAMP("Render Shadows");
  2778. } else if (render_gi) {
  2779. RENDER_TIMESTAMP("Render GI");
  2780. }
  2781. //prepare shadow rendering
  2782. if (render_shadows) {
  2783. _render_shadow_begin();
  2784. //render directional shadows
  2785. for (uint32_t i = 0; i < render_state.directional_shadows.size(); i++) {
  2786. _render_shadow_pass(render_state.render_shadows[render_state.directional_shadows[i]].light, render_state.shadow_atlas, render_state.render_shadows[render_state.directional_shadows[i]].pass, render_state.render_shadows[render_state.directional_shadows[i]].instances, camera_plane, lod_distance_multiplier, render_state.screen_lod_threshold, false, i == render_state.directional_shadows.size() - 1, false);
  2787. }
  2788. //render positional shadows
  2789. for (uint32_t i = 0; i < render_state.shadows.size(); i++) {
  2790. _render_shadow_pass(render_state.render_shadows[render_state.shadows[i]].light, render_state.shadow_atlas, render_state.render_shadows[render_state.shadows[i]].pass, render_state.render_shadows[render_state.shadows[i]].instances, camera_plane, lod_distance_multiplier, render_state.screen_lod_threshold, i == 0, i == render_state.shadows.size() - 1, true);
  2791. }
  2792. _render_shadow_process();
  2793. }
  2794. //start GI
  2795. if (render_gi) {
  2796. gi.process_gi(render_state.render_buffers, p_normal_roughness_buffer, p_gi_probe_buffer, render_state.environment, render_state.cam_projection, render_state.cam_transform, *render_state.gi_probes, this);
  2797. }
  2798. //Do shadow rendering (in parallel with GI)
  2799. if (render_shadows) {
  2800. _render_shadow_end(RD::BARRIER_MASK_NO_BARRIER);
  2801. }
  2802. if (render_gi) {
  2803. RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER); //use a later barrier
  2804. }
  2805. if (render_state.render_buffers.is_valid()) {
  2806. if (p_use_ssao) {
  2807. _process_ssao(render_state.render_buffers, render_state.environment, p_normal_roughness_buffer, render_state.cam_projection);
  2808. }
  2809. }
  2810. //full barrier here, we need raster, transfer and compute and it depends from the previous work
  2811. RD::get_singleton()->barrier(RD::BARRIER_MASK_ALL, RD::BARRIER_MASK_ALL);
  2812. if (current_cluster_builder) {
  2813. current_cluster_builder->begin(render_state.cam_transform, render_state.cam_projection, !render_state.reflection_probe.is_valid());
  2814. }
  2815. bool using_shadows = true;
  2816. if (render_state.reflection_probe.is_valid()) {
  2817. if (!storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(render_state.reflection_probe))) {
  2818. using_shadows = false;
  2819. }
  2820. } else {
  2821. //do not render reflections when rendering a reflection probe
  2822. _setup_reflections(*render_state.reflection_probes, render_state.cam_transform.affine_inverse(), render_state.environment);
  2823. }
  2824. uint32_t directional_light_count = 0;
  2825. uint32_t positional_light_count = 0;
  2826. _setup_lights(*render_state.lights, render_state.cam_transform, render_state.shadow_atlas, using_shadows, directional_light_count, positional_light_count);
  2827. _setup_decals(*render_state.decals, render_state.cam_transform.affine_inverse());
  2828. render_state.directional_light_count = directional_light_count;
  2829. if (current_cluster_builder) {
  2830. current_cluster_builder->bake_cluster();
  2831. }
  2832. if (render_state.render_buffers.is_valid()) {
  2833. bool directional_shadows = false;
  2834. for (uint32_t i = 0; i < directional_light_count; i++) {
  2835. if (cluster.directional_lights[i].shadow_enabled) {
  2836. directional_shadows = true;
  2837. break;
  2838. }
  2839. }
  2840. if (is_volumetric_supported()) {
  2841. _update_volumetric_fog(render_state.render_buffers, render_state.environment, render_state.cam_projection, render_state.cam_transform, render_state.shadow_atlas, directional_light_count, directional_shadows, positional_light_count, render_state.gi_probe_count);
  2842. }
  2843. }
  2844. }
  2845. void RendererSceneRenderRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, const PagedArray<GeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_gi_probes, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data) {
  2846. // getting this here now so we can direct call a bunch of things more easily
  2847. RenderBuffers *rb = nullptr;
  2848. if (p_render_buffers.is_valid()) {
  2849. rb = render_buffers_owner.getornull(p_render_buffers);
  2850. ERR_FAIL_COND(!rb); // !BAS! Do we fail here or skip the parts that won't work. can't really see a case why we would be rendering without buffers....
  2851. }
  2852. //assign render data
  2853. {
  2854. render_state.render_buffers = p_render_buffers;
  2855. render_state.cam_transform = p_cam_transform;
  2856. render_state.cam_projection = p_cam_projection;
  2857. render_state.cam_ortogonal = p_cam_projection.is_orthogonal();
  2858. render_state.instances = &p_instances;
  2859. render_state.lights = &p_lights;
  2860. render_state.reflection_probes = &p_reflection_probes;
  2861. render_state.gi_probes = &p_gi_probes;
  2862. render_state.decals = &p_decals;
  2863. render_state.lightmaps = &p_lightmaps;
  2864. render_state.environment = p_environment;
  2865. render_state.camera_effects = p_camera_effects;
  2866. render_state.shadow_atlas = p_shadow_atlas;
  2867. render_state.reflection_atlas = p_reflection_atlas;
  2868. render_state.reflection_probe = p_reflection_probe;
  2869. render_state.reflection_probe_pass = p_reflection_probe_pass;
  2870. render_state.screen_lod_threshold = p_screen_lod_threshold;
  2871. render_state.render_shadows = p_render_shadows;
  2872. render_state.render_shadow_count = p_render_shadow_count;
  2873. render_state.render_sdfgi_regions = p_render_sdfgi_regions;
  2874. render_state.render_sdfgi_region_count = p_render_sdfgi_region_count;
  2875. render_state.sdfgi_update_data = p_sdfgi_update_data;
  2876. }
  2877. PagedArray<RID> empty;
  2878. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
  2879. render_state.lights = &empty;
  2880. render_state.reflection_probes = &empty;
  2881. render_state.gi_probes = &empty;
  2882. }
  2883. //sdfgi first
  2884. if (rb != nullptr && rb->sdfgi != nullptr) {
  2885. for (int i = 0; i < render_state.render_sdfgi_region_count; i++) {
  2886. rb->sdfgi->render_region(p_render_buffers, render_state.render_sdfgi_regions[i].region, render_state.render_sdfgi_regions[i].instances, this);
  2887. }
  2888. if (render_state.sdfgi_update_data->update_static) {
  2889. rb->sdfgi->render_static_lights(p_render_buffers, render_state.sdfgi_update_data->static_cascade_count, p_sdfgi_update_data->static_cascade_indices, render_state.sdfgi_update_data->static_positional_lights, this);
  2890. }
  2891. }
  2892. Color clear_color;
  2893. if (p_render_buffers.is_valid()) {
  2894. clear_color = storage->render_target_get_clear_request_color(rb->render_target);
  2895. } else {
  2896. clear_color = storage->get_default_clear_color();
  2897. }
  2898. //assign render indices to giprobes
  2899. for (uint32_t i = 0; i < (uint32_t)p_gi_probes.size(); i++) {
  2900. RendererSceneGIRD::GIProbeInstance *giprobe_inst = gi.gi_probe_instance_owner.getornull(p_gi_probes[i]);
  2901. if (giprobe_inst) {
  2902. giprobe_inst->render_index = i;
  2903. }
  2904. }
  2905. if (render_buffers_owner.owns(render_state.render_buffers)) {
  2906. // render_state.render_buffers == p_render_buffers so we can use our already retrieved rb
  2907. current_cluster_builder = rb->cluster_builder;
  2908. } else if (reflection_probe_instance_owner.owns(render_state.reflection_probe)) {
  2909. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(render_state.reflection_probe);
  2910. ReflectionAtlas *ra = reflection_atlas_owner.getornull(rpi->atlas);
  2911. if (!ra) {
  2912. ERR_PRINT("reflection probe has no reflection atlas! Bug?");
  2913. current_cluster_builder = nullptr;
  2914. } else {
  2915. current_cluster_builder = ra->cluster_builder;
  2916. }
  2917. } else {
  2918. ERR_PRINT("No render buffer nor reflection atlas, bug"); //should never happen, will crash
  2919. current_cluster_builder = nullptr;
  2920. }
  2921. if (rb != nullptr && rb->sdfgi != nullptr) {
  2922. rb->sdfgi->update_cascades();
  2923. rb->sdfgi->pre_process_gi(p_cam_transform, this);
  2924. }
  2925. render_state.gi_probe_count = 0;
  2926. if (rb != nullptr && rb->sdfgi != nullptr) {
  2927. gi.setup_giprobes(render_state.render_buffers, render_state.cam_transform, *render_state.gi_probes, render_state.gi_probe_count, this);
  2928. rb->sdfgi->update_light();
  2929. }
  2930. render_state.depth_prepass_used = false;
  2931. //calls _pre_opaque_render between depth pre-pass and opaque pass
  2932. _render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_instances, *render_state.gi_probes, p_lightmaps, p_environment, current_cluster_builder->get_cluster_buffer(), current_cluster_builder->get_cluster_size(), current_cluster_builder->get_max_cluster_elements(), p_camera_effects, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass, clear_color, p_screen_lod_threshold);
  2933. if (p_render_buffers.is_valid()) {
  2934. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS || debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS || debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS || debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES) {
  2935. ClusterBuilderRD::ElementType elem_type = ClusterBuilderRD::ELEMENT_TYPE_MAX;
  2936. switch (debug_draw) {
  2937. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS:
  2938. elem_type = ClusterBuilderRD::ELEMENT_TYPE_OMNI_LIGHT;
  2939. break;
  2940. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS:
  2941. elem_type = ClusterBuilderRD::ELEMENT_TYPE_SPOT_LIGHT;
  2942. break;
  2943. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS:
  2944. elem_type = ClusterBuilderRD::ELEMENT_TYPE_DECAL;
  2945. break;
  2946. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES:
  2947. elem_type = ClusterBuilderRD::ELEMENT_TYPE_REFLECTION_PROBE;
  2948. break;
  2949. default: {
  2950. }
  2951. }
  2952. current_cluster_builder->debug(elem_type);
  2953. }
  2954. RENDER_TIMESTAMP("Tonemap");
  2955. _render_buffers_post_process_and_tonemap(p_render_buffers, p_environment, p_camera_effects, p_cam_projection);
  2956. _render_buffers_debug_draw(p_render_buffers, p_shadow_atlas, p_occluder_debug_tex);
  2957. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SDFGI && rb != nullptr && rb->sdfgi != nullptr) {
  2958. rb->sdfgi->debug_draw(p_cam_projection, p_cam_transform, rb->width, rb->height, rb->render_target, rb->texture);
  2959. }
  2960. }
  2961. }
  2962. void RendererSceneRenderRD::_render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray<GeometryInstance *> &p_instances, const Plane &p_camera_plane, float p_lod_distance_multiplier, float p_screen_lod_threshold, bool p_open_pass, bool p_close_pass, bool p_clear_region) {
  2963. LightInstance *light_instance = light_instance_owner.getornull(p_light);
  2964. ERR_FAIL_COND(!light_instance);
  2965. Rect2i atlas_rect;
  2966. uint32_t atlas_size;
  2967. RID atlas_fb;
  2968. bool using_dual_paraboloid = false;
  2969. bool using_dual_paraboloid_flip = false;
  2970. RID render_fb;
  2971. RID render_texture;
  2972. float zfar;
  2973. bool use_pancake = false;
  2974. bool render_cubemap = false;
  2975. bool finalize_cubemap = false;
  2976. bool flip_y = false;
  2977. CameraMatrix light_projection;
  2978. Transform light_transform;
  2979. if (storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) {
  2980. //set pssm stuff
  2981. if (light_instance->last_scene_shadow_pass != scene_pass) {
  2982. light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light);
  2983. directional_shadow.current_light++;
  2984. light_instance->last_scene_shadow_pass = scene_pass;
  2985. }
  2986. use_pancake = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0;
  2987. light_projection = light_instance->shadow_transform[p_pass].camera;
  2988. light_transform = light_instance->shadow_transform[p_pass].transform;
  2989. atlas_rect.position.x = light_instance->directional_rect.position.x;
  2990. atlas_rect.position.y = light_instance->directional_rect.position.y;
  2991. atlas_rect.size.width = light_instance->directional_rect.size.x;
  2992. atlas_rect.size.height = light_instance->directional_rect.size.y;
  2993. if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  2994. atlas_rect.size.width /= 2;
  2995. atlas_rect.size.height /= 2;
  2996. if (p_pass == 1) {
  2997. atlas_rect.position.x += atlas_rect.size.width;
  2998. } else if (p_pass == 2) {
  2999. atlas_rect.position.y += atlas_rect.size.height;
  3000. } else if (p_pass == 3) {
  3001. atlas_rect.position.x += atlas_rect.size.width;
  3002. atlas_rect.position.y += atlas_rect.size.height;
  3003. }
  3004. } else if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  3005. atlas_rect.size.height /= 2;
  3006. if (p_pass == 0) {
  3007. } else {
  3008. atlas_rect.position.y += atlas_rect.size.height;
  3009. }
  3010. }
  3011. light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect;
  3012. light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size;
  3013. light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size;
  3014. zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  3015. render_fb = directional_shadow.fb;
  3016. render_texture = RID();
  3017. flip_y = true;
  3018. } else {
  3019. //set from shadow atlas
  3020. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  3021. ERR_FAIL_COND(!shadow_atlas);
  3022. ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
  3023. _update_shadow_atlas(shadow_atlas);
  3024. uint32_t key = shadow_atlas->shadow_owners[p_light];
  3025. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  3026. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  3027. ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
  3028. uint32_t quadrant_size = shadow_atlas->size >> 1;
  3029. atlas_rect.position.x = (quadrant & 1) * quadrant_size;
  3030. atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
  3031. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  3032. atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  3033. atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  3034. atlas_rect.size.width = shadow_size;
  3035. atlas_rect.size.height = shadow_size;
  3036. zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  3037. if (storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) {
  3038. if (storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
  3039. ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2);
  3040. render_fb = cubemap->side_fb[p_pass];
  3041. render_texture = cubemap->cubemap;
  3042. light_projection = light_instance->shadow_transform[p_pass].camera;
  3043. light_transform = light_instance->shadow_transform[p_pass].transform;
  3044. render_cubemap = true;
  3045. finalize_cubemap = p_pass == 5;
  3046. atlas_fb = shadow_atlas->fb;
  3047. atlas_size = shadow_atlas->size;
  3048. if (p_pass == 0) {
  3049. _render_shadow_begin();
  3050. }
  3051. } else {
  3052. light_projection = light_instance->shadow_transform[0].camera;
  3053. light_transform = light_instance->shadow_transform[0].transform;
  3054. atlas_rect.size.height /= 2;
  3055. atlas_rect.position.y += p_pass * atlas_rect.size.height;
  3056. using_dual_paraboloid = true;
  3057. using_dual_paraboloid_flip = p_pass == 1;
  3058. render_fb = shadow_atlas->fb;
  3059. flip_y = true;
  3060. }
  3061. } else if (storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) {
  3062. light_projection = light_instance->shadow_transform[0].camera;
  3063. light_transform = light_instance->shadow_transform[0].transform;
  3064. render_fb = shadow_atlas->fb;
  3065. flip_y = true;
  3066. }
  3067. }
  3068. if (render_cubemap) {
  3069. //rendering to cubemap
  3070. _render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, false, false, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_lod_threshold, Rect2(), false, true, true, true);
  3071. if (finalize_cubemap) {
  3072. _render_shadow_process();
  3073. _render_shadow_end();
  3074. //reblit
  3075. Rect2 atlas_rect_norm = atlas_rect;
  3076. atlas_rect_norm.position.x /= float(atlas_size);
  3077. atlas_rect_norm.position.y /= float(atlas_size);
  3078. atlas_rect_norm.size.x /= float(atlas_size);
  3079. atlas_rect_norm.size.y /= float(atlas_size);
  3080. atlas_rect_norm.size.height /= 2;
  3081. storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, light_projection.get_z_near(), light_projection.get_z_far(), false);
  3082. atlas_rect_norm.position.y += atlas_rect_norm.size.height;
  3083. storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, light_projection.get_z_near(), light_projection.get_z_far(), true);
  3084. //restore transform so it can be properly used
  3085. light_instance_set_shadow_transform(p_light, CameraMatrix(), light_instance->transform, zfar, 0, 0, 0);
  3086. }
  3087. } else {
  3088. //render shadow
  3089. _render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, using_dual_paraboloid, using_dual_paraboloid_flip, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_lod_threshold, atlas_rect, flip_y, p_clear_region, p_open_pass, p_close_pass);
  3090. }
  3091. }
  3092. void RendererSceneRenderRD::render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, const PagedArray<GeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) {
  3093. _render_material(p_cam_transform, p_cam_projection, p_cam_ortogonal, p_instances, p_framebuffer, p_region);
  3094. }
  3095. void RendererSceneRenderRD::render_particle_collider_heightfield(RID p_collider, const Transform &p_transform, const PagedArray<GeometryInstance *> &p_instances) {
  3096. ERR_FAIL_COND(!storage->particles_collision_is_heightfield(p_collider));
  3097. Vector3 extents = storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale();
  3098. CameraMatrix cm;
  3099. cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0);
  3100. Vector3 cam_pos = p_transform.origin;
  3101. cam_pos.y += extents.y;
  3102. Transform cam_xform;
  3103. cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_axis(Vector3::AXIS_Y), -p_transform.basis.get_axis(Vector3::AXIS_Z).normalized());
  3104. RID fb = storage->particles_collision_get_heightfield_framebuffer(p_collider);
  3105. _render_particle_collider_heightfield(fb, cam_xform, cm, p_instances);
  3106. }
  3107. bool RendererSceneRenderRD::free(RID p_rid) {
  3108. if (render_buffers_owner.owns(p_rid)) {
  3109. RenderBuffers *rb = render_buffers_owner.getornull(p_rid);
  3110. _free_render_buffer_data(rb);
  3111. memdelete(rb->data);
  3112. if (rb->sdfgi) {
  3113. rb->sdfgi->erase();
  3114. memdelete(rb->sdfgi);
  3115. rb->sdfgi = nullptr;
  3116. }
  3117. if (rb->volumetric_fog) {
  3118. _volumetric_fog_erase(rb);
  3119. }
  3120. if (rb->cluster_builder) {
  3121. memdelete(rb->cluster_builder);
  3122. }
  3123. render_buffers_owner.free(p_rid);
  3124. } else if (environment_owner.owns(p_rid)) {
  3125. //not much to delete, just free it
  3126. environment_owner.free(p_rid);
  3127. } else if (camera_effects_owner.owns(p_rid)) {
  3128. //not much to delete, just free it
  3129. camera_effects_owner.free(p_rid);
  3130. } else if (reflection_atlas_owner.owns(p_rid)) {
  3131. reflection_atlas_set_size(p_rid, 0, 0);
  3132. ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_rid);
  3133. if (ra->cluster_builder) {
  3134. memdelete(ra->cluster_builder);
  3135. }
  3136. reflection_atlas_owner.free(p_rid);
  3137. } else if (reflection_probe_instance_owner.owns(p_rid)) {
  3138. //not much to delete, just free it
  3139. //ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_rid);
  3140. reflection_probe_release_atlas_index(p_rid);
  3141. reflection_probe_instance_owner.free(p_rid);
  3142. } else if (decal_instance_owner.owns(p_rid)) {
  3143. decal_instance_owner.free(p_rid);
  3144. } else if (lightmap_instance_owner.owns(p_rid)) {
  3145. lightmap_instance_owner.free(p_rid);
  3146. } else if (gi.gi_probe_instance_owner.owns(p_rid)) {
  3147. RendererSceneGIRD::GIProbeInstance *gi_probe = gi.gi_probe_instance_owner.getornull(p_rid);
  3148. if (gi_probe->texture.is_valid()) {
  3149. RD::get_singleton()->free(gi_probe->texture);
  3150. RD::get_singleton()->free(gi_probe->write_buffer);
  3151. }
  3152. for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) {
  3153. RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture);
  3154. RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth);
  3155. }
  3156. gi.gi_probe_instance_owner.free(p_rid);
  3157. } else if (sky.sky_owner.owns(p_rid)) {
  3158. sky.update_dirty_skys();
  3159. sky.free_sky(p_rid);
  3160. } else if (light_instance_owner.owns(p_rid)) {
  3161. LightInstance *light_instance = light_instance_owner.getornull(p_rid);
  3162. //remove from shadow atlases..
  3163. for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) {
  3164. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(E->get());
  3165. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
  3166. uint32_t key = shadow_atlas->shadow_owners[p_rid];
  3167. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  3168. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  3169. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  3170. shadow_atlas->shadow_owners.erase(p_rid);
  3171. }
  3172. light_instance_owner.free(p_rid);
  3173. } else if (shadow_atlas_owner.owns(p_rid)) {
  3174. shadow_atlas_set_size(p_rid, 0);
  3175. shadow_atlas_owner.free(p_rid);
  3176. } else {
  3177. return false;
  3178. }
  3179. return true;
  3180. }
  3181. void RendererSceneRenderRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {
  3182. debug_draw = p_debug_draw;
  3183. }
  3184. void RendererSceneRenderRD::update() {
  3185. sky.update_dirty_skys();
  3186. }
  3187. void RendererSceneRenderRD::set_time(double p_time, double p_step) {
  3188. time = p_time;
  3189. time_step = p_step;
  3190. }
  3191. void RendererSceneRenderRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) {
  3192. screen_space_roughness_limiter = p_enable;
  3193. screen_space_roughness_limiter_amount = p_amount;
  3194. screen_space_roughness_limiter_limit = p_limit;
  3195. }
  3196. bool RendererSceneRenderRD::screen_space_roughness_limiter_is_active() const {
  3197. return screen_space_roughness_limiter;
  3198. }
  3199. float RendererSceneRenderRD::screen_space_roughness_limiter_get_amount() const {
  3200. return screen_space_roughness_limiter_amount;
  3201. }
  3202. float RendererSceneRenderRD::screen_space_roughness_limiter_get_limit() const {
  3203. return screen_space_roughness_limiter_limit;
  3204. }
  3205. TypedArray<Image> RendererSceneRenderRD::bake_render_uv2(RID p_base, const Vector<RID> &p_material_overrides, const Size2i &p_image_size) {
  3206. RD::TextureFormat tf;
  3207. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  3208. tf.width = p_image_size.width; // Always 64x64
  3209. tf.height = p_image_size.height;
  3210. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  3211. RID albedo_alpha_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3212. RID normal_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3213. RID orm_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3214. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  3215. RID emission_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3216. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  3217. RID depth_write_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3218. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  3219. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  3220. RID depth_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3221. Vector<RID> fb_tex;
  3222. fb_tex.push_back(albedo_alpha_tex);
  3223. fb_tex.push_back(normal_tex);
  3224. fb_tex.push_back(orm_tex);
  3225. fb_tex.push_back(emission_tex);
  3226. fb_tex.push_back(depth_write_tex);
  3227. fb_tex.push_back(depth_tex);
  3228. RID fb = RD::get_singleton()->framebuffer_create(fb_tex);
  3229. //RID sampled_light;
  3230. GeometryInstance *gi = geometry_instance_create(p_base);
  3231. uint32_t sc = RSG::storage->mesh_get_surface_count(p_base);
  3232. Vector<RID> materials;
  3233. materials.resize(sc);
  3234. for (uint32_t i = 0; i < sc; i++) {
  3235. if (i < (uint32_t)p_material_overrides.size()) {
  3236. materials.write[i] = p_material_overrides[i];
  3237. }
  3238. }
  3239. geometry_instance_set_surface_materials(gi, materials);
  3240. if (cull_argument.size() == 0) {
  3241. cull_argument.push_back(nullptr);
  3242. }
  3243. cull_argument[0] = gi;
  3244. _render_uv2(cull_argument, fb, Rect2i(0, 0, p_image_size.width, p_image_size.height));
  3245. geometry_instance_free(gi);
  3246. TypedArray<Image> ret;
  3247. {
  3248. PackedByteArray data = RD::get_singleton()->texture_get_data(albedo_alpha_tex, 0);
  3249. Ref<Image> img;
  3250. img.instance();
  3251. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  3252. RD::get_singleton()->free(albedo_alpha_tex);
  3253. ret.push_back(img);
  3254. }
  3255. {
  3256. PackedByteArray data = RD::get_singleton()->texture_get_data(normal_tex, 0);
  3257. Ref<Image> img;
  3258. img.instance();
  3259. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  3260. RD::get_singleton()->free(normal_tex);
  3261. ret.push_back(img);
  3262. }
  3263. {
  3264. PackedByteArray data = RD::get_singleton()->texture_get_data(orm_tex, 0);
  3265. Ref<Image> img;
  3266. img.instance();
  3267. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  3268. RD::get_singleton()->free(orm_tex);
  3269. ret.push_back(img);
  3270. }
  3271. {
  3272. PackedByteArray data = RD::get_singleton()->texture_get_data(emission_tex, 0);
  3273. Ref<Image> img;
  3274. img.instance();
  3275. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBAH, data);
  3276. RD::get_singleton()->free(emission_tex);
  3277. ret.push_back(img);
  3278. }
  3279. RD::get_singleton()->free(depth_write_tex);
  3280. RD::get_singleton()->free(depth_tex);
  3281. return ret;
  3282. }
  3283. void RendererSceneRenderRD::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) {
  3284. gi.sdfgi_debug_probe_pos = p_position;
  3285. gi.sdfgi_debug_probe_dir = p_dir;
  3286. }
  3287. RendererSceneRenderRD *RendererSceneRenderRD::singleton = nullptr;
  3288. RID RendererSceneRenderRD::get_reflection_probe_buffer() {
  3289. return cluster.reflection_buffer;
  3290. }
  3291. RID RendererSceneRenderRD::get_omni_light_buffer() {
  3292. return cluster.omni_light_buffer;
  3293. }
  3294. RID RendererSceneRenderRD::get_spot_light_buffer() {
  3295. return cluster.spot_light_buffer;
  3296. }
  3297. RID RendererSceneRenderRD::get_directional_light_buffer() {
  3298. return cluster.directional_light_buffer;
  3299. }
  3300. RID RendererSceneRenderRD::get_decal_buffer() {
  3301. return cluster.decal_buffer;
  3302. }
  3303. int RendererSceneRenderRD::get_max_directional_lights() const {
  3304. return cluster.max_directional_lights;
  3305. }
  3306. bool RendererSceneRenderRD::is_dynamic_gi_supported() const {
  3307. // usable by default (unless low end = true)
  3308. return true;
  3309. }
  3310. bool RendererSceneRenderRD::is_clustered_enabled() const {
  3311. // used by default.
  3312. return true;
  3313. }
  3314. bool RendererSceneRenderRD::is_volumetric_supported() const {
  3315. // usable by default (unless low end = true)
  3316. return true;
  3317. }
  3318. RendererSceneRenderRD::RendererSceneRenderRD(RendererStorageRD *p_storage) {
  3319. max_cluster_elements = GLOBAL_GET("rendering/limits/cluster_builder/max_clustered_elements");
  3320. storage = p_storage;
  3321. singleton = this;
  3322. directional_shadow.size = GLOBAL_GET("rendering/shadows/directional_shadow/size");
  3323. directional_shadow.use_16_bits = GLOBAL_GET("rendering/shadows/directional_shadow/16_bits");
  3324. /* SKY SHADER */
  3325. sky.init(storage);
  3326. /* GI */
  3327. if (is_dynamic_gi_supported()) {
  3328. gi.init(storage, &sky);
  3329. }
  3330. { //decals
  3331. cluster.max_decals = max_cluster_elements;
  3332. uint32_t decal_buffer_size = cluster.max_decals * sizeof(Cluster::DecalData);
  3333. cluster.decals = memnew_arr(Cluster::DecalData, cluster.max_decals);
  3334. cluster.decal_sort = memnew_arr(Cluster::InstanceSort<DecalInstance>, cluster.max_decals);
  3335. cluster.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size);
  3336. }
  3337. { //reflections
  3338. cluster.max_reflections = max_cluster_elements;
  3339. cluster.reflections = memnew_arr(Cluster::ReflectionData, cluster.max_reflections);
  3340. cluster.reflection_sort = memnew_arr(Cluster::InstanceSort<ReflectionProbeInstance>, cluster.max_reflections);
  3341. cluster.reflection_buffer = RD::get_singleton()->storage_buffer_create(sizeof(Cluster::ReflectionData) * cluster.max_reflections);
  3342. }
  3343. { //lights
  3344. cluster.max_lights = max_cluster_elements;
  3345. uint32_t light_buffer_size = cluster.max_lights * sizeof(Cluster::LightData);
  3346. cluster.omni_lights = memnew_arr(Cluster::LightData, cluster.max_lights);
  3347. cluster.omni_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
  3348. cluster.omni_light_sort = memnew_arr(Cluster::InstanceSort<LightInstance>, cluster.max_lights);
  3349. cluster.spot_lights = memnew_arr(Cluster::LightData, cluster.max_lights);
  3350. cluster.spot_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
  3351. cluster.spot_light_sort = memnew_arr(Cluster::InstanceSort<LightInstance>, cluster.max_lights);
  3352. //defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n";
  3353. cluster.max_directional_lights = MAX_DIRECTIONAL_LIGHTS;
  3354. uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData);
  3355. cluster.directional_lights = memnew_arr(Cluster::DirectionalLightData, cluster.max_directional_lights);
  3356. cluster.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
  3357. }
  3358. if (is_volumetric_supported()) {
  3359. String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(cluster.max_directional_lights) + "\n";
  3360. Vector<String> volumetric_fog_modes;
  3361. volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n");
  3362. volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n#define ENABLE_SDFGI\n");
  3363. volumetric_fog_modes.push_back("\n#define MODE_FILTER\n");
  3364. volumetric_fog_modes.push_back("\n#define MODE_FOG\n");
  3365. volumetric_fog.shader.initialize(volumetric_fog_modes, defines);
  3366. volumetric_fog.shader_version = volumetric_fog.shader.version_create();
  3367. for (int i = 0; i < VOLUMETRIC_FOG_SHADER_MAX; i++) {
  3368. volumetric_fog.pipelines[i] = RD::get_singleton()->compute_pipeline_create(volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, i));
  3369. }
  3370. volumetric_fog.params_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(VolumetricFogShader::ParamsUBO));
  3371. }
  3372. {
  3373. RD::SamplerState sampler;
  3374. sampler.mag_filter = RD::SAMPLER_FILTER_NEAREST;
  3375. sampler.min_filter = RD::SAMPLER_FILTER_NEAREST;
  3376. sampler.enable_compare = true;
  3377. sampler.compare_op = RD::COMPARE_OP_LESS;
  3378. shadow_sampler = RD::get_singleton()->sampler_create(sampler);
  3379. }
  3380. camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_shape"))));
  3381. camera_effects_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_use_jitter"));
  3382. environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/environment/ssao/quality"))), GLOBAL_GET("rendering/environment/ssao/half_size"), GLOBAL_GET("rendering/environment/ssao/adaptive_target"), GLOBAL_GET("rendering/environment/ssao/blur_passes"), GLOBAL_GET("rendering/environment/ssao/fadeout_from"), GLOBAL_GET("rendering/environment/ssao/fadeout_to"));
  3383. screen_space_roughness_limiter = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/enabled");
  3384. screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/amount");
  3385. screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/limit");
  3386. glow_bicubic_upscale = int(GLOBAL_GET("rendering/environment/glow/upscale_mode")) > 0;
  3387. glow_high_quality = GLOBAL_GET("rendering/environment/glow/use_high_quality");
  3388. ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/environment/screen_space_reflection/roughness_quality")));
  3389. sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_quality")));
  3390. sss_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_scale");
  3391. sss_depth_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_depth_scale");
  3392. directional_penumbra_shadow_kernel = memnew_arr(float, 128);
  3393. directional_soft_shadow_kernel = memnew_arr(float, 128);
  3394. penumbra_shadow_kernel = memnew_arr(float, 128);
  3395. soft_shadow_kernel = memnew_arr(float, 128);
  3396. shadows_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/shadows/shadows/soft_shadow_quality"))));
  3397. directional_shadow_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/shadows/directional_shadow/soft_shadow_quality"))));
  3398. environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/environment/volumetric_fog/volume_size"), GLOBAL_GET("rendering/environment/volumetric_fog/volume_depth"));
  3399. environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/environment/volumetric_fog/use_filter"));
  3400. cull_argument.set_page_pool(&cull_argument_pool);
  3401. }
  3402. RendererSceneRenderRD::~RendererSceneRenderRD() {
  3403. for (Map<int, ShadowCubemap>::Element *E = shadow_cubemaps.front(); E; E = E->next()) {
  3404. RD::get_singleton()->free(E->get().cubemap);
  3405. }
  3406. if (sky.sky_scene_state.uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky.sky_scene_state.uniform_set)) {
  3407. RD::get_singleton()->free(sky.sky_scene_state.uniform_set);
  3408. }
  3409. if (is_dynamic_gi_supported()) {
  3410. gi.free();
  3411. volumetric_fog.shader.version_free(volumetric_fog.shader_version);
  3412. RD::get_singleton()->free(volumetric_fog.params_ubo);
  3413. }
  3414. RendererSceneSkyRD::SkyMaterialData *md = (RendererSceneSkyRD::SkyMaterialData *)storage->material_get_data(sky.sky_shader.default_material, RendererStorageRD::SHADER_TYPE_SKY);
  3415. sky.sky_shader.shader.version_free(md->shader_data->version);
  3416. RD::get_singleton()->free(sky.sky_scene_state.directional_light_buffer);
  3417. RD::get_singleton()->free(sky.sky_scene_state.uniform_buffer);
  3418. memdelete_arr(sky.sky_scene_state.directional_lights);
  3419. memdelete_arr(sky.sky_scene_state.last_frame_directional_lights);
  3420. storage->free(sky.sky_shader.default_shader);
  3421. storage->free(sky.sky_shader.default_material);
  3422. storage->free(sky.sky_scene_state.fog_shader);
  3423. storage->free(sky.sky_scene_state.fog_material);
  3424. memdelete_arr(directional_penumbra_shadow_kernel);
  3425. memdelete_arr(directional_soft_shadow_kernel);
  3426. memdelete_arr(penumbra_shadow_kernel);
  3427. memdelete_arr(soft_shadow_kernel);
  3428. {
  3429. RD::get_singleton()->free(cluster.directional_light_buffer);
  3430. RD::get_singleton()->free(cluster.omni_light_buffer);
  3431. RD::get_singleton()->free(cluster.spot_light_buffer);
  3432. RD::get_singleton()->free(cluster.reflection_buffer);
  3433. RD::get_singleton()->free(cluster.decal_buffer);
  3434. memdelete_arr(cluster.directional_lights);
  3435. memdelete_arr(cluster.omni_lights);
  3436. memdelete_arr(cluster.spot_lights);
  3437. memdelete_arr(cluster.omni_light_sort);
  3438. memdelete_arr(cluster.spot_light_sort);
  3439. memdelete_arr(cluster.reflections);
  3440. memdelete_arr(cluster.reflection_sort);
  3441. memdelete_arr(cluster.decals);
  3442. memdelete_arr(cluster.decal_sort);
  3443. }
  3444. RD::get_singleton()->free(shadow_sampler);
  3445. directional_shadow_atlas_set_size(0);
  3446. cull_argument.reset(); //avoid exit error
  3447. }