123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508 |
- #[compute]
- #version 450
- VERSION_DEFINES
- layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
- #define MAX_CASCADES 8
- layout(set = 0, binding = 1) uniform texture3D sdf_cascades[MAX_CASCADES];
- layout(set = 0, binding = 2) uniform sampler linear_sampler;
- layout(set = 0, binding = 3, std430) restrict readonly buffer DispatchData {
- uint x;
- uint y;
- uint z;
- uint total_count;
- }
- dispatch_data;
- struct ProcessVoxel {
- uint position; //xyz 7 bit packed, extra 11 bits for neigbours
- uint albedo; //rgb bits 0-15 albedo, bits 16-21 are normal bits (set if geometry exists toward that side), extra 11 bits for neibhbours
- uint light; //rgbe8985 encoded total saved light, extra 2 bits for neighbours
- uint light_aniso; //55555 light anisotropy, extra 2 bits for neighbours
- //total neighbours: 26
- };
- #ifdef MODE_PROCESS_STATIC
- layout(set = 0, binding = 4, std430) restrict buffer ProcessVoxels {
- #else
- layout(set = 0, binding = 4, std430) restrict buffer readonly ProcessVoxels {
- #endif
- ProcessVoxel data[];
- }
- process_voxels;
- layout(r32ui, set = 0, binding = 5) uniform restrict uimage3D dst_light;
- layout(rgba8, set = 0, binding = 6) uniform restrict image3D dst_aniso0;
- layout(rg8, set = 0, binding = 7) uniform restrict image3D dst_aniso1;
- struct CascadeData {
- vec3 offset; //offset of (0,0,0) in world coordinates
- float to_cell; // 1/bounds * grid_size
- ivec3 probe_world_offset;
- uint pad;
- };
- layout(set = 0, binding = 8, std140) uniform Cascades {
- CascadeData data[MAX_CASCADES];
- }
- cascades;
- #define LIGHT_TYPE_DIRECTIONAL 0
- #define LIGHT_TYPE_OMNI 1
- #define LIGHT_TYPE_SPOT 2
- struct Light {
- vec3 color;
- float energy;
- vec3 direction;
- bool has_shadow;
- vec3 position;
- float attenuation;
- uint type;
- float cos_spot_angle;
- float inv_spot_attenuation;
- float radius;
- vec4 shadow_color;
- };
- layout(set = 0, binding = 9, std140) buffer restrict readonly Lights {
- Light data[];
- }
- lights;
- layout(set = 0, binding = 10) uniform texture2DArray lightprobe_texture;
- layout(set = 0, binding = 11) uniform texture3D occlusion_texture;
- layout(push_constant, binding = 0, std430) uniform Params {
- vec3 grid_size;
- uint max_cascades;
- uint cascade;
- uint light_count;
- uint process_offset;
- uint process_increment;
- int probe_axis_size;
- float bounce_feedback;
- float y_mult;
- bool use_occlusion;
- }
- params;
- vec2 octahedron_wrap(vec2 v) {
- vec2 signVal;
- signVal.x = v.x >= 0.0 ? 1.0 : -1.0;
- signVal.y = v.y >= 0.0 ? 1.0 : -1.0;
- return (1.0 - abs(v.yx)) * signVal;
- }
- vec2 octahedron_encode(vec3 n) {
- // https://twitter.com/Stubbesaurus/status/937994790553227264
- n /= (abs(n.x) + abs(n.y) + abs(n.z));
- n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy);
- n.xy = n.xy * 0.5 + 0.5;
- return n.xy;
- }
- float get_omni_attenuation(float distance, float inv_range, float decay) {
- float nd = distance * inv_range;
- nd *= nd;
- nd *= nd; // nd^4
- nd = max(1.0 - nd, 0.0);
- nd *= nd; // nd^2
- return nd * pow(max(distance, 0.0001), -decay);
- }
- void main() {
- uint voxel_index = uint(gl_GlobalInvocationID.x);
- //used for skipping voxels every N frames
- if (params.process_increment > 1) {
- voxel_index *= params.process_increment;
- voxel_index += params.process_offset;
- }
- if (voxel_index >= dispatch_data.total_count) {
- return;
- }
- uint voxel_position = process_voxels.data[voxel_index].position;
- //keep for storing to texture
- ivec3 positioni = ivec3((uvec3(voxel_position, voxel_position, voxel_position) >> uvec3(0, 7, 14)) & uvec3(0x7F));
- vec3 position = vec3(positioni) + vec3(0.5);
- position /= cascades.data[params.cascade].to_cell;
- position += cascades.data[params.cascade].offset;
- uint voxel_albedo = process_voxels.data[voxel_index].albedo;
- vec3 albedo = vec3(uvec3(voxel_albedo >> 10, voxel_albedo >> 5, voxel_albedo) & uvec3(0x1F)) / float(0x1F);
- vec3 light_accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
- uint valid_aniso = (voxel_albedo >> 15) & 0x3F;
- const vec3 aniso_dir[6] = vec3[](
- vec3(1, 0, 0),
- vec3(0, 1, 0),
- vec3(0, 0, 1),
- vec3(-1, 0, 0),
- vec3(0, -1, 0),
- vec3(0, 0, -1));
- // Add indirect light first, in order to save computation resources
- #ifdef MODE_PROCESS_DYNAMIC
- if (params.bounce_feedback > 0.001) {
- vec3 feedback = (params.bounce_feedback < 1.0) ? (albedo * params.bounce_feedback) : mix(albedo, vec3(1.0), params.bounce_feedback - 1.0);
- vec3 pos = (vec3(positioni) + vec3(0.5)) * float(params.probe_axis_size - 1) / params.grid_size;
- ivec3 probe_base_pos = ivec3(pos);
- float weight_accum[6] = float[](0, 0, 0, 0, 0, 0);
- ivec3 tex_pos = ivec3(probe_base_pos.xy, int(params.cascade));
- tex_pos.x += probe_base_pos.z * int(params.probe_axis_size);
- tex_pos.xy = tex_pos.xy * (OCT_SIZE + 2) + ivec2(1);
- vec3 base_tex_posf = vec3(tex_pos);
- vec2 tex_pixel_size = 1.0 / vec2(ivec2((OCT_SIZE + 2) * params.probe_axis_size * params.probe_axis_size, (OCT_SIZE + 2) * params.probe_axis_size));
- vec3 probe_uv_offset = vec3(ivec3(OCT_SIZE + 2, OCT_SIZE + 2, (OCT_SIZE + 2) * params.probe_axis_size)) * tex_pixel_size.xyx;
- for (uint j = 0; j < 8; j++) {
- ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
- ivec3 probe_posi = probe_base_pos;
- probe_posi += offset;
- // Compute weight
- vec3 probe_pos = vec3(probe_posi);
- vec3 probe_to_pos = pos - probe_pos;
- vec3 probe_dir = normalize(-probe_to_pos);
- // Compute lightprobe texture position
- vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
- for (uint k = 0; k < 6; k++) {
- if (bool(valid_aniso & (1 << k))) {
- vec3 n = aniso_dir[k];
- float weight = trilinear.x * trilinear.y * trilinear.z * max(0, dot(n, probe_dir));
- if (weight > 0.0 && params.use_occlusion) {
- ivec3 occ_indexv = abs((cascades.data[params.cascade].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4);
- vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3)));
- vec3 occ_pos = (vec3(positioni) + aniso_dir[k] + vec3(0.5)) / params.grid_size;
- occ_pos.z += float(params.cascade);
- if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures
- occ_pos.x += 1.0;
- }
- occ_pos *= vec3(0.5, 1.0, 1.0 / float(params.max_cascades)); //renormalize
- float occlusion = dot(textureLod(sampler3D(occlusion_texture, linear_sampler), occ_pos, 0.0), occ_mask);
- weight *= occlusion;
- }
- if (weight > 0.0) {
- vec3 tex_posf = base_tex_posf + vec3(octahedron_encode(n) * float(OCT_SIZE), 0.0);
- tex_posf.xy *= tex_pixel_size;
- vec3 pos_uvw = tex_posf;
- pos_uvw.xy += vec2(offset.xy) * probe_uv_offset.xy;
- pos_uvw.x += float(offset.z) * probe_uv_offset.z;
- vec3 indirect_light = textureLod(sampler2DArray(lightprobe_texture, linear_sampler), pos_uvw, 0.0).rgb;
- light_accum[k] += indirect_light * weight;
- weight_accum[k] += weight;
- }
- }
- }
- }
- for (uint k = 0; k < 6; k++) {
- if (weight_accum[k] > 0.0) {
- light_accum[k] /= weight_accum[k];
- light_accum[k] *= feedback;
- }
- }
- }
- #endif
- {
- uint rgbe = process_voxels.data[voxel_index].light;
- //read rgbe8985
- float r = float((rgbe & 0xff) << 1);
- float g = float((rgbe >> 8) & 0x1ff);
- float b = float(((rgbe >> 17) & 0xff) << 1);
- float e = float((rgbe >> 25) & 0x1F);
- float m = pow(2.0, e - 15.0 - 9.0);
- vec3 l = vec3(r, g, b) * m;
- uint aniso = process_voxels.data[voxel_index].light_aniso;
- for (uint i = 0; i < 6; i++) {
- float strength = ((aniso >> (i * 5)) & 0x1F) / float(0x1F);
- light_accum[i] += l * strength;
- }
- }
- // Raytrace light
- vec3 pos_to_uvw = 1.0 / params.grid_size;
- vec3 uvw_ofs = pos_to_uvw * 0.5;
- for (uint i = 0; i < params.light_count; i++) {
- float attenuation = 1.0;
- vec3 direction;
- float light_distance = 1e20;
- switch (lights.data[i].type) {
- case LIGHT_TYPE_DIRECTIONAL: {
- direction = -lights.data[i].direction;
- } break;
- case LIGHT_TYPE_OMNI: {
- vec3 rel_vec = lights.data[i].position - position;
- direction = normalize(rel_vec);
- light_distance = length(rel_vec);
- rel_vec.y /= params.y_mult;
- attenuation = get_omni_attenuation(light_distance, 1.0 / lights.data[i].radius, lights.data[i].attenuation);
- } break;
- case LIGHT_TYPE_SPOT: {
- vec3 rel_vec = lights.data[i].position - position;
- direction = normalize(rel_vec);
- light_distance = length(rel_vec);
- rel_vec.y /= params.y_mult;
- attenuation = get_omni_attenuation(light_distance, 1.0 / lights.data[i].radius, lights.data[i].attenuation);
- float cos_spot_angle = lights.data[i].cos_spot_angle;
- float cos_angle = dot(-direction, lights.data[i].direction);
- if (cos_angle < cos_spot_angle) {
- continue;
- }
- float scos = max(cos_angle, cos_spot_angle);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - cos_spot_angle));
- attenuation *= 1.0 - pow(spot_rim, lights.data[i].inv_spot_attenuation);
- } break;
- }
- if (attenuation < 0.001) {
- continue;
- }
- bool hit = false;
- vec3 ray_pos = position;
- vec3 ray_dir = direction;
- vec3 inv_dir = 1.0 / ray_dir;
- //this is how to properly bias outgoing rays
- float cell_size = 1.0 / cascades.data[params.cascade].to_cell;
- ray_pos += sign(direction) * cell_size * 0.48; // go almost to the box edge but remain inside
- ray_pos += ray_dir * 0.4 * cell_size; //apply a small bias from there
- for (uint j = params.cascade; j < params.max_cascades; j++) {
- //convert to local bounds
- vec3 pos = ray_pos - cascades.data[j].offset;
- pos *= cascades.data[j].to_cell;
- float local_distance = light_distance * cascades.data[j].to_cell;
- if (any(lessThan(pos, vec3(0.0))) || any(greaterThanEqual(pos, params.grid_size))) {
- continue; //already past bounds for this cascade, goto next
- }
- //find maximum advance distance (until reaching bounds)
- vec3 t0 = -pos * inv_dir;
- vec3 t1 = (params.grid_size - pos) * inv_dir;
- vec3 tmax = max(t0, t1);
- float max_advance = min(tmax.x, min(tmax.y, tmax.z));
- max_advance = min(local_distance, max_advance);
- float advance = 0.0;
- float occlusion = 1.0;
- while (advance < max_advance) {
- //read how much to advance from SDF
- vec3 uvw = (pos + ray_dir * advance) * pos_to_uvw;
- float distance = texture(sampler3D(sdf_cascades[j], linear_sampler), uvw).r * 255.0 - 1.0;
- if (distance < 0.001) {
- //consider hit
- hit = true;
- break;
- }
- occlusion = min(occlusion, distance);
- advance += distance;
- }
- if (hit) {
- attenuation *= occlusion;
- break;
- }
- if (advance >= local_distance) {
- break; //past light distance, abandon search
- }
- //change ray origin to collision with bounds
- pos += ray_dir * max_advance;
- pos /= cascades.data[j].to_cell;
- pos += cascades.data[j].offset;
- light_distance -= max_advance / cascades.data[j].to_cell;
- ray_pos = pos;
- }
- if (!hit) {
- vec3 light = albedo * lights.data[i].color.rgb * lights.data[i].energy * attenuation;
- for (int j = 0; j < 6; j++) {
- if (bool(valid_aniso & (1 << j))) {
- light_accum[j] += max(0.0, dot(aniso_dir[j], direction)) * light;
- }
- }
- }
- }
- // Store the light in the light texture
- float lumas[6];
- vec3 light_total = vec3(0);
- for (int i = 0; i < 6; i++) {
- light_total += light_accum[i];
- lumas[i] = max(light_accum[i].r, max(light_accum[i].g, light_accum[i].b));
- }
- float luma_total = max(light_total.r, max(light_total.g, light_total.b));
- uint light_total_rgbe;
- {
- //compress to RGBE9995 to save space
- const float pow2to9 = 512.0f;
- const float B = 15.0f;
- const float N = 9.0f;
- const float LN2 = 0.6931471805599453094172321215;
- float cRed = clamp(light_total.r, 0.0, 65408.0);
- float cGreen = clamp(light_total.g, 0.0, 65408.0);
- float cBlue = clamp(light_total.b, 0.0, 65408.0);
- float cMax = max(cRed, max(cGreen, cBlue));
- float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B;
- float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f);
- float exps = expp + 1.0f;
- if (0.0 <= sMax && sMax < pow2to9) {
- exps = expp;
- }
- float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f);
- float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f);
- float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f);
- #ifdef MODE_PROCESS_STATIC
- //since its self-save, use RGBE8985
- light_total_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25);
- #else
- light_total_rgbe = (uint(sRed) & 0x1FF) | ((uint(sGreen) & 0x1FF) << 9) | ((uint(sBlue) & 0x1FF) << 18) | ((uint(exps) & 0x1F) << 27);
- #endif
- }
- #ifdef MODE_PROCESS_DYNAMIC
- vec4 aniso0;
- aniso0.r = lumas[0] / luma_total;
- aniso0.g = lumas[1] / luma_total;
- aniso0.b = lumas[2] / luma_total;
- aniso0.a = lumas[3] / luma_total;
- vec2 aniso1;
- aniso1.r = lumas[4] / luma_total;
- aniso1.g = lumas[5] / luma_total;
- //save to 3D textures
- imageStore(dst_aniso0, positioni, aniso0);
- imageStore(dst_aniso1, positioni, vec4(aniso1, 0.0, 0.0));
- imageStore(dst_light, positioni, uvec4(light_total_rgbe));
- //also fill neighbours, so light interpolation during the indirect pass works
- //recover the neighbour list from the leftover bits
- uint neighbours = (voxel_albedo >> 21) | ((voxel_position >> 21) << 11) | ((process_voxels.data[voxel_index].light >> 30) << 22) | ((process_voxels.data[voxel_index].light_aniso >> 30) << 24);
- const uint max_neighbours = 26;
- const ivec3 neighbour_positions[max_neighbours] = ivec3[](
- ivec3(-1, -1, -1),
- ivec3(-1, -1, 0),
- ivec3(-1, -1, 1),
- ivec3(-1, 0, -1),
- ivec3(-1, 0, 0),
- ivec3(-1, 0, 1),
- ivec3(-1, 1, -1),
- ivec3(-1, 1, 0),
- ivec3(-1, 1, 1),
- ivec3(0, -1, -1),
- ivec3(0, -1, 0),
- ivec3(0, -1, 1),
- ivec3(0, 0, -1),
- ivec3(0, 0, 1),
- ivec3(0, 1, -1),
- ivec3(0, 1, 0),
- ivec3(0, 1, 1),
- ivec3(1, -1, -1),
- ivec3(1, -1, 0),
- ivec3(1, -1, 1),
- ivec3(1, 0, -1),
- ivec3(1, 0, 0),
- ivec3(1, 0, 1),
- ivec3(1, 1, -1),
- ivec3(1, 1, 0),
- ivec3(1, 1, 1));
- for (uint i = 0; i < max_neighbours; i++) {
- if (bool(neighbours & (1 << i))) {
- ivec3 neighbour_pos = positioni + neighbour_positions[i];
- imageStore(dst_light, neighbour_pos, uvec4(light_total_rgbe));
- imageStore(dst_aniso0, neighbour_pos, aniso0);
- imageStore(dst_aniso1, neighbour_pos, vec4(aniso1, 0.0, 0.0));
- }
- }
- #endif
- #ifdef MODE_PROCESS_STATIC
- //save back the anisotropic
- uint light = process_voxels.data[voxel_index].light & (3 << 30);
- light |= light_total_rgbe;
- process_voxels.data[voxel_index].light = light; //replace
- uint light_aniso = process_voxels.data[voxel_index].light_aniso & (3 << 30);
- for (int i = 0; i < 6; i++) {
- light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5);
- }
- process_voxels.data[voxel_index].light_aniso = light_aniso;
- #endif
- }
|