123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612 |
- #[compute]
- #version 450
- VERSION_DEFINES
- layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
- #define MAX_CASCADES 8
- layout(set = 0, binding = 1) uniform texture3D sdf_cascades[MAX_CASCADES];
- layout(set = 0, binding = 2) uniform texture3D light_cascades[MAX_CASCADES];
- layout(set = 0, binding = 3) uniform texture3D aniso0_cascades[MAX_CASCADES];
- layout(set = 0, binding = 4) uniform texture3D aniso1_cascades[MAX_CASCADES];
- layout(set = 0, binding = 6) uniform sampler linear_sampler;
- struct CascadeData {
- vec3 offset; //offset of (0,0,0) in world coordinates
- float to_cell; // 1/bounds * grid_size
- ivec3 probe_world_offset;
- uint pad;
- };
- layout(set = 0, binding = 7, std140) uniform Cascades {
- CascadeData data[MAX_CASCADES];
- }
- cascades;
- layout(r32ui, set = 0, binding = 8) uniform restrict uimage2DArray lightprobe_texture_data;
- layout(rgba16i, set = 0, binding = 9) uniform restrict iimage2DArray lightprobe_history_texture;
- layout(rgba32i, set = 0, binding = 10) uniform restrict iimage2D lightprobe_average_texture;
- //used for scrolling
- layout(rgba16i, set = 0, binding = 11) uniform restrict iimage2DArray lightprobe_history_scroll_texture;
- layout(rgba32i, set = 0, binding = 12) uniform restrict iimage2D lightprobe_average_scroll_texture;
- layout(rgba32i, set = 0, binding = 13) uniform restrict iimage2D lightprobe_average_parent_texture;
- layout(rgba16f, set = 0, binding = 14) uniform restrict writeonly image2DArray lightprobe_ambient_texture;
- #ifdef USE_CUBEMAP_ARRAY
- layout(set = 1, binding = 0) uniform textureCubeArray sky_irradiance;
- #else
- layout(set = 1, binding = 0) uniform textureCube sky_irradiance;
- #endif
- layout(set = 1, binding = 1) uniform sampler linear_sampler_mipmaps;
- #define HISTORY_BITS 10
- #define SKY_MODE_DISABLED 0
- #define SKY_MODE_COLOR 1
- #define SKY_MODE_SKY 2
- layout(push_constant, binding = 0, std430) uniform Params {
- vec3 grid_size;
- uint max_cascades;
- uint probe_axis_size;
- uint cascade;
- uint history_index;
- uint history_size;
- uint ray_count;
- float ray_bias;
- ivec2 image_size;
- ivec3 world_offset;
- uint sky_mode;
- ivec3 scroll;
- float sky_energy;
- vec3 sky_color;
- float y_mult;
- bool store_ambient_texture;
- uint pad[3];
- }
- params;
- const float PI = 3.14159265f;
- const float GOLDEN_ANGLE = PI * (3.0 - sqrt(5.0));
- vec3 vogel_hemisphere(uint p_index, uint p_count, float p_offset) {
- float r = sqrt(float(p_index) + 0.5f) / sqrt(float(p_count));
- float theta = float(p_index) * GOLDEN_ANGLE + p_offset;
- float y = cos(r * PI * 0.5);
- float l = sin(r * PI * 0.5);
- return vec3(l * cos(theta), l * sin(theta), y * (float(p_index & 1) * 2.0 - 1.0));
- }
- uvec3 hash3(uvec3 x) {
- x = ((x >> 16) ^ x) * 0x45d9f3b;
- x = ((x >> 16) ^ x) * 0x45d9f3b;
- x = (x >> 16) ^ x;
- return x;
- }
- float hashf3(vec3 co) {
- return fract(sin(dot(co, vec3(12.9898, 78.233, 137.13451))) * 43758.5453);
- }
- vec3 octahedron_encode(vec2 f) {
- // https://twitter.com/Stubbesaurus/status/937994790553227264
- f = f * 2.0 - 1.0;
- vec3 n = vec3(f.x, f.y, 1.0f - abs(f.x) - abs(f.y));
- float t = clamp(-n.z, 0.0, 1.0);
- n.x += n.x >= 0 ? -t : t;
- n.y += n.y >= 0 ? -t : t;
- return normalize(n);
- }
- uint rgbe_encode(vec3 color) {
- const float pow2to9 = 512.0f;
- const float B = 15.0f;
- const float N = 9.0f;
- const float LN2 = 0.6931471805599453094172321215;
- float cRed = clamp(color.r, 0.0, 65408.0);
- float cGreen = clamp(color.g, 0.0, 65408.0);
- float cBlue = clamp(color.b, 0.0, 65408.0);
- float cMax = max(cRed, max(cGreen, cBlue));
- float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B;
- float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f);
- float exps = expp + 1.0f;
- if (0.0 <= sMax && sMax < pow2to9) {
- exps = expp;
- }
- float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f);
- float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f);
- float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f);
- return (uint(sRed) & 0x1FF) | ((uint(sGreen) & 0x1FF) << 9) | ((uint(sBlue) & 0x1FF) << 18) | ((uint(exps) & 0x1F) << 27);
- }
- struct SH {
- #if (SH_SIZE == 16)
- float c[48];
- #else
- float c[28];
- #endif
- };
- shared SH sh_accum[64]; //8x8
- void main() {
- ivec2 pos = ivec2(gl_GlobalInvocationID.xy);
- if (any(greaterThanEqual(pos, params.image_size))) { //too large, do nothing
- return;
- }
- uint probe_index = gl_LocalInvocationID.x + gl_LocalInvocationID.y * 8;
- #ifdef MODE_PROCESS
- float probe_cell_size = float(params.grid_size.x / float(params.probe_axis_size - 1)) / cascades.data[params.cascade].to_cell;
- ivec3 probe_cell;
- probe_cell.x = pos.x % int(params.probe_axis_size);
- probe_cell.y = pos.y;
- probe_cell.z = pos.x / int(params.probe_axis_size);
- vec3 probe_pos = cascades.data[params.cascade].offset + vec3(probe_cell) * probe_cell_size;
- vec3 pos_to_uvw = 1.0 / params.grid_size;
- for (uint i = 0; i < SH_SIZE * 3; i++) {
- sh_accum[probe_index].c[i] = 0.0;
- }
- // quickly ensure each probe has a different "offset" for the vogel function, based on integer world position
- uvec3 h3 = hash3(uvec3(params.world_offset + probe_cell));
- float offset = hashf3(vec3(h3 & uvec3(0xFFFFF)));
- //for a more homogeneous hemisphere, alternate based on history frames
- uint ray_offset = params.history_index;
- uint ray_mult = params.history_size;
- uint ray_total = ray_mult * params.ray_count;
- for (uint i = 0; i < params.ray_count; i++) {
- vec3 ray_dir = vogel_hemisphere(ray_offset + i * ray_mult, ray_total, offset);
- ray_dir.y *= params.y_mult;
- ray_dir = normalize(ray_dir);
- //needs to be visible
- vec3 ray_pos = probe_pos;
- vec3 inv_dir = 1.0 / ray_dir;
- bool hit = false;
- uint hit_cascade;
- float bias = params.ray_bias;
- vec3 abs_ray_dir = abs(ray_dir);
- ray_pos += ray_dir * 1.0 / max(abs_ray_dir.x, max(abs_ray_dir.y, abs_ray_dir.z)) * bias / cascades.data[params.cascade].to_cell;
- vec3 uvw;
- for (uint j = params.cascade; j < params.max_cascades; j++) {
- //convert to local bounds
- vec3 pos = ray_pos - cascades.data[j].offset;
- pos *= cascades.data[j].to_cell;
- if (any(lessThan(pos, vec3(0.0))) || any(greaterThanEqual(pos, params.grid_size))) {
- continue; //already past bounds for this cascade, goto next
- }
- //find maximum advance distance (until reaching bounds)
- vec3 t0 = -pos * inv_dir;
- vec3 t1 = (params.grid_size - pos) * inv_dir;
- vec3 tmax = max(t0, t1);
- float max_advance = min(tmax.x, min(tmax.y, tmax.z));
- float advance = 0.0;
- while (advance < max_advance) {
- //read how much to advance from SDF
- uvw = (pos + ray_dir * advance) * pos_to_uvw;
- float distance = texture(sampler3D(sdf_cascades[j], linear_sampler), uvw).r * 255.0 - 1.0;
- if (distance < 0.05) {
- //consider hit
- hit = true;
- break;
- }
- advance += distance;
- }
- if (hit) {
- hit_cascade = j;
- break;
- }
- //change ray origin to collision with bounds
- pos += ray_dir * max_advance;
- pos /= cascades.data[j].to_cell;
- pos += cascades.data[j].offset;
- ray_pos = pos;
- }
- vec4 light;
- if (hit) {
- //avoid reading different texture from different threads
- for (uint j = params.cascade; j < params.max_cascades; j++) {
- if (j == hit_cascade) {
- const float EPSILON = 0.001;
- vec3 hit_normal = normalize(vec3(
- texture(sampler3D(sdf_cascades[hit_cascade], linear_sampler), uvw + vec3(EPSILON, 0.0, 0.0)).r - texture(sampler3D(sdf_cascades[hit_cascade], linear_sampler), uvw - vec3(EPSILON, 0.0, 0.0)).r,
- texture(sampler3D(sdf_cascades[hit_cascade], linear_sampler), uvw + vec3(0.0, EPSILON, 0.0)).r - texture(sampler3D(sdf_cascades[hit_cascade], linear_sampler), uvw - vec3(0.0, EPSILON, 0.0)).r,
- texture(sampler3D(sdf_cascades[hit_cascade], linear_sampler), uvw + vec3(0.0, 0.0, EPSILON)).r - texture(sampler3D(sdf_cascades[hit_cascade], linear_sampler), uvw - vec3(0.0, 0.0, EPSILON)).r));
- vec3 hit_light = texture(sampler3D(light_cascades[hit_cascade], linear_sampler), uvw).rgb;
- vec4 aniso0 = texture(sampler3D(aniso0_cascades[hit_cascade], linear_sampler), uvw);
- vec3 hit_aniso0 = aniso0.rgb;
- vec3 hit_aniso1 = vec3(aniso0.a, texture(sampler3D(aniso1_cascades[hit_cascade], linear_sampler), uvw).rg);
- //one liner magic
- light.rgb = hit_light * (dot(max(vec3(0.0), (hit_normal * hit_aniso0)), vec3(1.0)) + dot(max(vec3(0.0), (-hit_normal * hit_aniso1)), vec3(1.0)));
- light.a = 1.0;
- }
- }
- } else if (params.sky_mode == SKY_MODE_SKY) {
- #ifdef USE_CUBEMAP_ARRAY
- light.rgb = textureLod(samplerCubeArray(sky_irradiance, linear_sampler_mipmaps), vec4(ray_dir, 0.0), 2.0).rgb; //use second mipmap because we dont usually throw a lot of rays, so this compensates
- #else
- light.rgb = textureLod(samplerCube(sky_irradiance, linear_sampler_mipmaps), ray_dir, 2.0).rgb; //use second mipmap because we dont usually throw a lot of rays, so this compensates
- #endif
- light.rgb *= params.sky_energy;
- light.a = 0.0;
- } else if (params.sky_mode == SKY_MODE_COLOR) {
- light.rgb = params.sky_color;
- light.rgb *= params.sky_energy;
- light.a = 0.0;
- } else {
- light = vec4(0, 0, 0, 0);
- }
- vec3 ray_dir2 = ray_dir * ray_dir;
- #define SH_ACCUM(m_idx, m_value) \
- { \
- vec3 l = light.rgb * (m_value); \
- sh_accum[probe_index].c[m_idx * 3 + 0] += l.r; \
- sh_accum[probe_index].c[m_idx * 3 + 1] += l.g; \
- sh_accum[probe_index].c[m_idx * 3 + 2] += l.b; \
- }
- SH_ACCUM(0, 0.282095); //l0
- SH_ACCUM(1, 0.488603 * ray_dir.y); //l1n1
- SH_ACCUM(2, 0.488603 * ray_dir.z); //l1n0
- SH_ACCUM(3, 0.488603 * ray_dir.x); //l1p1
- SH_ACCUM(4, 1.092548 * ray_dir.x * ray_dir.y); //l2n2
- SH_ACCUM(5, 1.092548 * ray_dir.y * ray_dir.z); //l2n1
- SH_ACCUM(6, 0.315392 * (3.0 * ray_dir2.z - 1.0)); //l20
- SH_ACCUM(7, 1.092548 * ray_dir.x * ray_dir.z); //l2p1
- SH_ACCUM(8, 0.546274 * (ray_dir2.x - ray_dir2.y)); //l2p2
- #if (SH_SIZE == 16)
- SH_ACCUM(9, 0.590043 * ray_dir.y * (3.0f * ray_dir2.x - ray_dir2.y));
- SH_ACCUM(10, 2.890611 * ray_dir.y * ray_dir.x * ray_dir.z);
- SH_ACCUM(11, 0.646360 * ray_dir.y * (-1.0f + 5.0f * ray_dir2.z));
- SH_ACCUM(12, 0.373176 * (5.0f * ray_dir2.z * ray_dir.z - 3.0f * ray_dir.z));
- SH_ACCUM(13, 0.457045 * ray_dir.x * (-1.0f + 5.0f * ray_dir2.z));
- SH_ACCUM(14, 1.445305 * (ray_dir2.x - ray_dir2.y) * ray_dir.z);
- SH_ACCUM(15, 0.590043 * ray_dir.x * (ray_dir2.x - 3.0f * ray_dir2.y));
- #endif
- }
- for (uint i = 0; i < SH_SIZE; i++) {
- // store in history texture
- ivec3 prev_pos = ivec3(pos.x, pos.y * SH_SIZE + i, int(params.history_index));
- ivec2 average_pos = prev_pos.xy;
- vec4 value = vec4(sh_accum[probe_index].c[i * 3 + 0], sh_accum[probe_index].c[i * 3 + 1], sh_accum[probe_index].c[i * 3 + 2], 1.0) * 4.0 / float(params.ray_count);
- ivec4 ivalue = clamp(ivec4(value * float(1 << HISTORY_BITS)), -32768, 32767); //clamp to 16 bits, so higher values don't break average
- ivec4 prev_value = imageLoad(lightprobe_history_texture, prev_pos);
- ivec4 average = imageLoad(lightprobe_average_texture, average_pos);
- average -= prev_value;
- average += ivalue;
- imageStore(lightprobe_history_texture, prev_pos, ivalue);
- imageStore(lightprobe_average_texture, average_pos, average);
- if (params.store_ambient_texture && i == 0) {
- ivec3 ambient_pos = ivec3(pos, int(params.cascade));
- vec4 ambient_light = (vec4(average) / float(params.history_size)) / float(1 << HISTORY_BITS);
- ambient_light *= 0.88622; // SHL0
- imageStore(lightprobe_ambient_texture, ambient_pos, ambient_light);
- }
- }
- #endif // MODE PROCESS
- #ifdef MODE_STORE
- // converting to octahedral in this step is required because
- // octahedral is much faster to read from the screen than spherical harmonics,
- // despite the very slight quality loss
- ivec2 sh_pos = (pos / OCT_SIZE) * ivec2(1, SH_SIZE);
- ivec2 oct_pos = (pos / OCT_SIZE) * (OCT_SIZE + 2) + ivec2(1);
- ivec2 local_pos = pos % OCT_SIZE;
- //compute the octahedral normal for this texel
- vec3 normal = octahedron_encode(vec2(local_pos) / float(OCT_SIZE));
- // read the spherical harmonic
- vec3 normal2 = normal * normal;
- float c[SH_SIZE] = float[](
- 0.282095, //l0
- 0.488603 * normal.y, //l1n1
- 0.488603 * normal.z, //l1n0
- 0.488603 * normal.x, //l1p1
- 1.092548 * normal.x * normal.y, //l2n2
- 1.092548 * normal.y * normal.z, //l2n1
- 0.315392 * (3.0 * normal2.z - 1.0), //l20
- 1.092548 * normal.x * normal.z, //l2p1
- 0.546274 * (normal2.x - normal2.y) //l2p2
- #if (SH_SIZE == 16)
- ,
- 0.590043 * normal.y * (3.0f * normal2.x - normal2.y),
- 2.890611 * normal.y * normal.x * normal.z,
- 0.646360 * normal.y * (-1.0f + 5.0f * normal2.z),
- 0.373176 * (5.0f * normal2.z * normal.z - 3.0f * normal.z),
- 0.457045 * normal.x * (-1.0f + 5.0f * normal2.z),
- 1.445305 * (normal2.x - normal2.y) * normal.z,
- 0.590043 * normal.x * (normal2.x - 3.0f * normal2.y)
- #endif
- );
- const float l_mult[SH_SIZE] = float[](
- 1.0,
- 2.0 / 3.0,
- 2.0 / 3.0,
- 2.0 / 3.0,
- 1.0 / 4.0,
- 1.0 / 4.0,
- 1.0 / 4.0,
- 1.0 / 4.0,
- 1.0 / 4.0
- #if (SH_SIZE == 16)
- , // l4 does not contribute to irradiance
- 0.0,
- 0.0,
- 0.0,
- 0.0,
- 0.0,
- 0.0,
- 0.0
- #endif
- );
- vec3 irradiance = vec3(0.0);
- vec3 radiance = vec3(0.0);
- for (uint i = 0; i < SH_SIZE; i++) {
- // store in history texture
- ivec2 average_pos = sh_pos + ivec2(0, i);
- ivec4 average = imageLoad(lightprobe_average_texture, average_pos);
- vec4 sh = (vec4(average) / float(params.history_size)) / float(1 << HISTORY_BITS);
- vec3 m = sh.rgb * c[i] * 4.0;
- irradiance += m * l_mult[i];
- radiance += m;
- }
- //encode RGBE9995 for the final texture
- uint irradiance_rgbe = rgbe_encode(irradiance);
- uint radiance_rgbe = rgbe_encode(radiance);
- //store in octahedral map
- ivec3 texture_pos = ivec3(oct_pos, int(params.cascade));
- ivec3 copy_to[4] = ivec3[](ivec3(-2, -2, -2), ivec3(-2, -2, -2), ivec3(-2, -2, -2), ivec3(-2, -2, -2));
- copy_to[0] = texture_pos + ivec3(local_pos, 0);
- if (local_pos == ivec2(0, 0)) {
- copy_to[1] = texture_pos + ivec3(OCT_SIZE - 1, -1, 0);
- copy_to[2] = texture_pos + ivec3(-1, OCT_SIZE - 1, 0);
- copy_to[3] = texture_pos + ivec3(OCT_SIZE, OCT_SIZE, 0);
- } else if (local_pos == ivec2(OCT_SIZE - 1, 0)) {
- copy_to[1] = texture_pos + ivec3(0, -1, 0);
- copy_to[2] = texture_pos + ivec3(OCT_SIZE, OCT_SIZE - 1, 0);
- copy_to[3] = texture_pos + ivec3(-1, OCT_SIZE, 0);
- } else if (local_pos == ivec2(0, OCT_SIZE - 1)) {
- copy_to[1] = texture_pos + ivec3(-1, 0, 0);
- copy_to[2] = texture_pos + ivec3(OCT_SIZE - 1, OCT_SIZE, 0);
- copy_to[3] = texture_pos + ivec3(OCT_SIZE, -1, 0);
- } else if (local_pos == ivec2(OCT_SIZE - 1, OCT_SIZE - 1)) {
- copy_to[1] = texture_pos + ivec3(0, OCT_SIZE, 0);
- copy_to[2] = texture_pos + ivec3(OCT_SIZE, 0, 0);
- copy_to[3] = texture_pos + ivec3(-1, -1, 0);
- } else if (local_pos.y == 0) {
- copy_to[1] = texture_pos + ivec3(OCT_SIZE - local_pos.x - 1, local_pos.y - 1, 0);
- } else if (local_pos.x == 0) {
- copy_to[1] = texture_pos + ivec3(local_pos.x - 1, OCT_SIZE - local_pos.y - 1, 0);
- } else if (local_pos.y == OCT_SIZE - 1) {
- copy_to[1] = texture_pos + ivec3(OCT_SIZE - local_pos.x - 1, local_pos.y + 1, 0);
- } else if (local_pos.x == OCT_SIZE - 1) {
- copy_to[1] = texture_pos + ivec3(local_pos.x + 1, OCT_SIZE - local_pos.y - 1, 0);
- }
- for (int i = 0; i < 4; i++) {
- if (copy_to[i] == ivec3(-2, -2, -2)) {
- continue;
- }
- imageStore(lightprobe_texture_data, copy_to[i], uvec4(irradiance_rgbe));
- imageStore(lightprobe_texture_data, copy_to[i] + ivec3(0, 0, int(params.max_cascades)), uvec4(radiance_rgbe));
- }
- #endif
- #ifdef MODE_SCROLL
- ivec3 probe_cell;
- probe_cell.x = pos.x % int(params.probe_axis_size);
- probe_cell.y = pos.y;
- probe_cell.z = pos.x / int(params.probe_axis_size);
- ivec3 read_probe = probe_cell - params.scroll;
- if (all(greaterThanEqual(read_probe, ivec3(0))) && all(lessThan(read_probe, ivec3(params.probe_axis_size)))) {
- // can scroll
- ivec2 tex_pos;
- tex_pos = read_probe.xy;
- tex_pos.x += read_probe.z * int(params.probe_axis_size);
- //scroll
- for (uint j = 0; j < params.history_size; j++) {
- for (int i = 0; i < SH_SIZE; i++) {
- // copy from history texture
- ivec3 src_pos = ivec3(tex_pos.x, tex_pos.y * SH_SIZE + i, int(j));
- ivec3 dst_pos = ivec3(pos.x, pos.y * SH_SIZE + i, int(j));
- ivec4 value = imageLoad(lightprobe_history_texture, src_pos);
- imageStore(lightprobe_history_scroll_texture, dst_pos, value);
- }
- }
- for (int i = 0; i < SH_SIZE; i++) {
- // copy from average texture
- ivec2 src_pos = ivec2(tex_pos.x, tex_pos.y * SH_SIZE + i);
- ivec2 dst_pos = ivec2(pos.x, pos.y * SH_SIZE + i);
- ivec4 value = imageLoad(lightprobe_average_texture, src_pos);
- imageStore(lightprobe_average_scroll_texture, dst_pos, value);
- }
- } else if (params.cascade < params.max_cascades - 1) {
- //can't scroll, must look for position in parent cascade
- //to global coords
- float cell_to_probe = float(params.grid_size.x / float(params.probe_axis_size - 1));
- float probe_cell_size = cell_to_probe / cascades.data[params.cascade].to_cell;
- vec3 probe_pos = cascades.data[params.cascade].offset + vec3(probe_cell) * probe_cell_size;
- //to parent local coords
- float probe_cell_size_next = cell_to_probe / cascades.data[params.cascade + 1].to_cell;
- probe_pos -= cascades.data[params.cascade + 1].offset;
- probe_pos /= probe_cell_size_next;
- ivec3 probe_posi = ivec3(probe_pos);
- //add up all light, no need to use occlusion here, since occlusion will do its work afterwards
- vec4 average_light[SH_SIZE] = vec4[](vec4(0), vec4(0), vec4(0), vec4(0), vec4(0), vec4(0), vec4(0), vec4(0), vec4(0)
- #if (SH_SIZE == 16)
- ,
- vec4(0), vec4(0), vec4(0), vec4(0), vec4(0), vec4(0), vec4(0)
- #endif
- );
- float total_weight = 0.0;
- for (int i = 0; i < 8; i++) {
- ivec3 offset = probe_posi + ((ivec3(i) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1));
- vec3 trilinear = vec3(1.0) - abs(probe_pos - vec3(offset));
- float weight = trilinear.x * trilinear.y * trilinear.z;
- ivec2 tex_pos;
- tex_pos = offset.xy;
- tex_pos.x += offset.z * int(params.probe_axis_size);
- for (int j = 0; j < SH_SIZE; j++) {
- // copy from history texture
- ivec2 src_pos = ivec2(tex_pos.x, tex_pos.y * SH_SIZE + j);
- ivec4 average = imageLoad(lightprobe_average_parent_texture, src_pos);
- vec4 value = (vec4(average) / float(params.history_size)) / float(1 << HISTORY_BITS);
- average_light[j] += value * weight;
- }
- total_weight += weight;
- }
- if (total_weight > 0.0) {
- total_weight = 1.0 / total_weight;
- }
- //store the averaged values everywhere
- for (int i = 0; i < SH_SIZE; i++) {
- ivec4 ivalue = clamp(ivec4(average_light[i] * total_weight * float(1 << HISTORY_BITS)), ivec4(-32768), ivec4(32767)); //clamp to 16 bits, so higher values don't break average
- // copy from history texture
- ivec3 dst_pos = ivec3(pos.x, pos.y * SH_SIZE + i, 0);
- for (uint j = 0; j < params.history_size; j++) {
- dst_pos.z = int(j);
- imageStore(lightprobe_history_scroll_texture, dst_pos, ivalue);
- }
- ivalue *= int(params.history_size); //average needs to have all history added up
- imageStore(lightprobe_average_scroll_texture, dst_pos.xy, ivalue);
- }
- } else {
- //scroll at the edge of the highest cascade, just copy what is there,
- //since its the closest we have anyway
- for (uint j = 0; j < params.history_size; j++) {
- ivec2 tex_pos;
- tex_pos = probe_cell.xy;
- tex_pos.x += probe_cell.z * int(params.probe_axis_size);
- for (int i = 0; i < SH_SIZE; i++) {
- // copy from history texture
- ivec3 src_pos = ivec3(tex_pos.x, tex_pos.y * SH_SIZE + i, int(j));
- ivec3 dst_pos = ivec3(pos.x, pos.y * SH_SIZE + i, int(j));
- ivec4 value = imageLoad(lightprobe_history_texture, dst_pos);
- imageStore(lightprobe_history_scroll_texture, dst_pos, value);
- }
- }
- for (int i = 0; i < SH_SIZE; i++) {
- // copy from average texture
- ivec2 spos = ivec2(pos.x, pos.y * SH_SIZE + i);
- ivec4 average = imageLoad(lightprobe_average_texture, spos);
- imageStore(lightprobe_average_scroll_texture, spos, average);
- }
- }
- #endif
- #ifdef MODE_SCROLL_STORE
- //do not update probe texture, as these will be updated later
- for (uint j = 0; j < params.history_size; j++) {
- for (int i = 0; i < SH_SIZE; i++) {
- // copy from history texture
- ivec3 spos = ivec3(pos.x, pos.y * SH_SIZE + i, int(j));
- ivec4 value = imageLoad(lightprobe_history_scroll_texture, spos);
- imageStore(lightprobe_history_texture, spos, value);
- }
- }
- for (int i = 0; i < SH_SIZE; i++) {
- // copy from average texture
- ivec2 spos = ivec2(pos.x, pos.y * SH_SIZE + i);
- ivec4 average = imageLoad(lightprobe_average_scroll_texture, spos);
- imageStore(lightprobe_average_texture, spos, average);
- }
- #endif
- }
|