mesh.cpp 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381
  1. /**************************************************************************/
  2. /* mesh.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "mesh.h"
  31. #include "core/math/convex_hull.h"
  32. #include "core/templates/pair.h"
  33. #include "scene/resources/surface_tool.h"
  34. #ifndef PHYSICS_3D_DISABLED
  35. #include "scene/resources/3d/concave_polygon_shape_3d.h"
  36. #include "scene/resources/3d/convex_polygon_shape_3d.h"
  37. #endif // PHYSICS_3D_DISABLED
  38. void MeshConvexDecompositionSettings::set_max_concavity(real_t p_max_concavity) {
  39. max_concavity = CLAMP(p_max_concavity, 0.001, 1.0);
  40. }
  41. real_t MeshConvexDecompositionSettings::get_max_concavity() const {
  42. return max_concavity;
  43. }
  44. void MeshConvexDecompositionSettings::set_symmetry_planes_clipping_bias(real_t p_symmetry_planes_clipping_bias) {
  45. symmetry_planes_clipping_bias = CLAMP(p_symmetry_planes_clipping_bias, 0.0, 1.0);
  46. }
  47. real_t MeshConvexDecompositionSettings::get_symmetry_planes_clipping_bias() const {
  48. return symmetry_planes_clipping_bias;
  49. }
  50. void MeshConvexDecompositionSettings::set_revolution_axes_clipping_bias(real_t p_revolution_axes_clipping_bias) {
  51. revolution_axes_clipping_bias = CLAMP(p_revolution_axes_clipping_bias, 0.0, 1.0);
  52. }
  53. real_t MeshConvexDecompositionSettings::get_revolution_axes_clipping_bias() const {
  54. return revolution_axes_clipping_bias;
  55. }
  56. void MeshConvexDecompositionSettings::set_min_volume_per_convex_hull(real_t p_min_volume_per_convex_hull) {
  57. min_volume_per_convex_hull = CLAMP(p_min_volume_per_convex_hull, 0.0001, 0.01);
  58. }
  59. real_t MeshConvexDecompositionSettings::get_min_volume_per_convex_hull() const {
  60. return min_volume_per_convex_hull;
  61. }
  62. void MeshConvexDecompositionSettings::set_resolution(uint32_t p_resolution) {
  63. resolution = p_resolution < 10'000 ? 10'000 : (p_resolution > 100'000 ? 100'000 : p_resolution);
  64. }
  65. uint32_t MeshConvexDecompositionSettings::get_resolution() const {
  66. return resolution;
  67. }
  68. void MeshConvexDecompositionSettings::set_max_num_vertices_per_convex_hull(uint32_t p_max_num_vertices_per_convex_hull) {
  69. max_num_vertices_per_convex_hull = p_max_num_vertices_per_convex_hull < 4 ? 4 : (p_max_num_vertices_per_convex_hull > 1024 ? 1024 : p_max_num_vertices_per_convex_hull);
  70. }
  71. uint32_t MeshConvexDecompositionSettings::get_max_num_vertices_per_convex_hull() const {
  72. return max_num_vertices_per_convex_hull;
  73. }
  74. void MeshConvexDecompositionSettings::set_plane_downsampling(uint32_t p_plane_downsampling) {
  75. plane_downsampling = p_plane_downsampling < 1 ? 1 : (p_plane_downsampling > 16 ? 16 : p_plane_downsampling);
  76. }
  77. uint32_t MeshConvexDecompositionSettings::get_plane_downsampling() const {
  78. return plane_downsampling;
  79. }
  80. void MeshConvexDecompositionSettings::set_convex_hull_downsampling(uint32_t p_convex_hull_downsampling) {
  81. convex_hull_downsampling = p_convex_hull_downsampling < 1 ? 1 : (p_convex_hull_downsampling > 16 ? 16 : p_convex_hull_downsampling);
  82. }
  83. uint32_t MeshConvexDecompositionSettings::get_convex_hull_downsampling() const {
  84. return convex_hull_downsampling;
  85. }
  86. void MeshConvexDecompositionSettings::set_normalize_mesh(bool p_normalize_mesh) {
  87. normalize_mesh = p_normalize_mesh;
  88. }
  89. bool MeshConvexDecompositionSettings::get_normalize_mesh() const {
  90. return normalize_mesh;
  91. }
  92. void MeshConvexDecompositionSettings::set_mode(Mode p_mode) {
  93. mode = p_mode;
  94. }
  95. MeshConvexDecompositionSettings::Mode MeshConvexDecompositionSettings::get_mode() const {
  96. return mode;
  97. }
  98. void MeshConvexDecompositionSettings::set_convex_hull_approximation(bool p_convex_hull_approximation) {
  99. convex_hull_approximation = p_convex_hull_approximation;
  100. }
  101. bool MeshConvexDecompositionSettings::get_convex_hull_approximation() const {
  102. return convex_hull_approximation;
  103. }
  104. void MeshConvexDecompositionSettings::set_max_convex_hulls(uint32_t p_max_convex_hulls) {
  105. max_convex_hulls = p_max_convex_hulls < 1 ? 1 : (p_max_convex_hulls > 32 ? 32 : p_max_convex_hulls);
  106. }
  107. uint32_t MeshConvexDecompositionSettings::get_max_convex_hulls() const {
  108. return max_convex_hulls;
  109. }
  110. void MeshConvexDecompositionSettings::set_project_hull_vertices(bool p_project_hull_vertices) {
  111. project_hull_vertices = p_project_hull_vertices;
  112. }
  113. bool MeshConvexDecompositionSettings::get_project_hull_vertices() const {
  114. return project_hull_vertices;
  115. }
  116. void MeshConvexDecompositionSettings::_bind_methods() {
  117. ClassDB::bind_method(D_METHOD("set_max_concavity", "max_concavity"), &MeshConvexDecompositionSettings::set_max_concavity);
  118. ClassDB::bind_method(D_METHOD("get_max_concavity"), &MeshConvexDecompositionSettings::get_max_concavity);
  119. ClassDB::bind_method(D_METHOD("set_symmetry_planes_clipping_bias", "symmetry_planes_clipping_bias"), &MeshConvexDecompositionSettings::set_symmetry_planes_clipping_bias);
  120. ClassDB::bind_method(D_METHOD("get_symmetry_planes_clipping_bias"), &MeshConvexDecompositionSettings::get_symmetry_planes_clipping_bias);
  121. ClassDB::bind_method(D_METHOD("set_revolution_axes_clipping_bias", "revolution_axes_clipping_bias"), &MeshConvexDecompositionSettings::set_revolution_axes_clipping_bias);
  122. ClassDB::bind_method(D_METHOD("get_revolution_axes_clipping_bias"), &MeshConvexDecompositionSettings::get_revolution_axes_clipping_bias);
  123. ClassDB::bind_method(D_METHOD("set_min_volume_per_convex_hull", "min_volume_per_convex_hull"), &MeshConvexDecompositionSettings::set_min_volume_per_convex_hull);
  124. ClassDB::bind_method(D_METHOD("get_min_volume_per_convex_hull"), &MeshConvexDecompositionSettings::get_min_volume_per_convex_hull);
  125. ClassDB::bind_method(D_METHOD("set_resolution", "min_volume_per_convex_hull"), &MeshConvexDecompositionSettings::set_resolution);
  126. ClassDB::bind_method(D_METHOD("get_resolution"), &MeshConvexDecompositionSettings::get_resolution);
  127. ClassDB::bind_method(D_METHOD("set_max_num_vertices_per_convex_hull", "max_num_vertices_per_convex_hull"), &MeshConvexDecompositionSettings::set_max_num_vertices_per_convex_hull);
  128. ClassDB::bind_method(D_METHOD("get_max_num_vertices_per_convex_hull"), &MeshConvexDecompositionSettings::get_max_num_vertices_per_convex_hull);
  129. ClassDB::bind_method(D_METHOD("set_plane_downsampling", "plane_downsampling"), &MeshConvexDecompositionSettings::set_plane_downsampling);
  130. ClassDB::bind_method(D_METHOD("get_plane_downsampling"), &MeshConvexDecompositionSettings::get_plane_downsampling);
  131. ClassDB::bind_method(D_METHOD("set_convex_hull_downsampling", "convex_hull_downsampling"), &MeshConvexDecompositionSettings::set_convex_hull_downsampling);
  132. ClassDB::bind_method(D_METHOD("get_convex_hull_downsampling"), &MeshConvexDecompositionSettings::get_convex_hull_downsampling);
  133. ClassDB::bind_method(D_METHOD("set_normalize_mesh", "normalize_mesh"), &MeshConvexDecompositionSettings::set_normalize_mesh);
  134. ClassDB::bind_method(D_METHOD("get_normalize_mesh"), &MeshConvexDecompositionSettings::get_normalize_mesh);
  135. ClassDB::bind_method(D_METHOD("set_mode", "mode"), &MeshConvexDecompositionSettings::set_mode);
  136. ClassDB::bind_method(D_METHOD("get_mode"), &MeshConvexDecompositionSettings::get_mode);
  137. ClassDB::bind_method(D_METHOD("set_convex_hull_approximation", "convex_hull_approximation"), &MeshConvexDecompositionSettings::set_convex_hull_approximation);
  138. ClassDB::bind_method(D_METHOD("get_convex_hull_approximation"), &MeshConvexDecompositionSettings::get_convex_hull_approximation);
  139. ClassDB::bind_method(D_METHOD("set_max_convex_hulls", "max_convex_hulls"), &MeshConvexDecompositionSettings::set_max_convex_hulls);
  140. ClassDB::bind_method(D_METHOD("get_max_convex_hulls"), &MeshConvexDecompositionSettings::get_max_convex_hulls);
  141. ClassDB::bind_method(D_METHOD("set_project_hull_vertices", "project_hull_vertices"), &MeshConvexDecompositionSettings::set_project_hull_vertices);
  142. ClassDB::bind_method(D_METHOD("get_project_hull_vertices"), &MeshConvexDecompositionSettings::get_project_hull_vertices);
  143. ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "max_concavity", PROPERTY_HINT_RANGE, "0.001,1.0,0.001"), "set_max_concavity", "get_max_concavity");
  144. ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "symmetry_planes_clipping_bias", PROPERTY_HINT_RANGE, "0.0,1.0,0.01"), "set_symmetry_planes_clipping_bias", "get_symmetry_planes_clipping_bias");
  145. ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "revolution_axes_clipping_bias", PROPERTY_HINT_RANGE, "0.0,1.0,0.01"), "set_revolution_axes_clipping_bias", "get_revolution_axes_clipping_bias");
  146. ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "min_volume_per_convex_hull", PROPERTY_HINT_RANGE, "0.0001,0.01,0.0001"), "set_min_volume_per_convex_hull", "get_min_volume_per_convex_hull");
  147. ADD_PROPERTY(PropertyInfo(Variant::INT, "resolution"), "set_resolution", "get_resolution");
  148. ADD_PROPERTY(PropertyInfo(Variant::INT, "max_num_vertices_per_convex_hull"), "set_max_num_vertices_per_convex_hull", "get_max_num_vertices_per_convex_hull");
  149. ADD_PROPERTY(PropertyInfo(Variant::INT, "plane_downsampling", PROPERTY_HINT_RANGE, "1,16,1"), "set_plane_downsampling", "get_plane_downsampling");
  150. ADD_PROPERTY(PropertyInfo(Variant::INT, "convex_hull_downsampling", PROPERTY_HINT_RANGE, "1,16,1"), "set_convex_hull_downsampling", "get_convex_hull_downsampling");
  151. ADD_PROPERTY(PropertyInfo(Variant::BOOL, "normalize_mesh"), "set_normalize_mesh", "get_normalize_mesh");
  152. ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Voxel,Tetrahedron"), "set_mode", "get_mode");
  153. ADD_PROPERTY(PropertyInfo(Variant::BOOL, "convex_hull_approximation"), "set_convex_hull_approximation", "get_convex_hull_approximation");
  154. ADD_PROPERTY(PropertyInfo(Variant::INT, "max_convex_hulls"), "set_max_convex_hulls", "get_max_convex_hulls");
  155. ADD_PROPERTY(PropertyInfo(Variant::BOOL, "project_hull_vertices"), "set_project_hull_vertices", "get_project_hull_vertices");
  156. BIND_ENUM_CONSTANT(CONVEX_DECOMPOSITION_MODE_VOXEL);
  157. BIND_ENUM_CONSTANT(CONVEX_DECOMPOSITION_MODE_TETRAHEDRON);
  158. }
  159. #ifndef PHYSICS_3D_DISABLED
  160. Mesh::ConvexDecompositionFunc Mesh::convex_decomposition_function = nullptr;
  161. #endif // PHYSICS_3D_DISABLED
  162. int Mesh::get_surface_count() const {
  163. int ret = 0;
  164. GDVIRTUAL_CALL(_get_surface_count, ret);
  165. return ret;
  166. }
  167. int Mesh::surface_get_array_len(int p_idx) const {
  168. int ret = 0;
  169. GDVIRTUAL_CALL(_surface_get_array_len, p_idx, ret);
  170. return ret;
  171. }
  172. int Mesh::surface_get_array_index_len(int p_idx) const {
  173. int ret = 0;
  174. GDVIRTUAL_CALL(_surface_get_array_index_len, p_idx, ret);
  175. return ret;
  176. }
  177. Array Mesh::surface_get_arrays(int p_surface) const {
  178. Array ret;
  179. GDVIRTUAL_CALL(_surface_get_arrays, p_surface, ret);
  180. return ret;
  181. }
  182. TypedArray<Array> Mesh::surface_get_blend_shape_arrays(int p_surface) const {
  183. TypedArray<Array> ret;
  184. GDVIRTUAL_CALL(_surface_get_blend_shape_arrays, p_surface, ret);
  185. return ret;
  186. }
  187. Dictionary Mesh::surface_get_lods(int p_surface) const {
  188. Dictionary ret;
  189. GDVIRTUAL_CALL(_surface_get_lods, p_surface, ret);
  190. return ret;
  191. }
  192. BitField<Mesh::ArrayFormat> Mesh::surface_get_format(int p_idx) const {
  193. uint32_t ret = 0;
  194. GDVIRTUAL_CALL(_surface_get_format, p_idx, ret);
  195. return ret;
  196. }
  197. Mesh::PrimitiveType Mesh::surface_get_primitive_type(int p_idx) const {
  198. uint32_t ret = PRIMITIVE_MAX;
  199. GDVIRTUAL_CALL(_surface_get_primitive_type, p_idx, ret);
  200. return (Mesh::PrimitiveType)ret;
  201. }
  202. void Mesh::surface_set_material(int p_idx, const Ref<Material> &p_material) {
  203. GDVIRTUAL_CALL(_surface_set_material, p_idx, p_material);
  204. }
  205. Ref<Material> Mesh::surface_get_material(int p_idx) const {
  206. Ref<Material> ret;
  207. GDVIRTUAL_CALL(_surface_get_material, p_idx, ret);
  208. return ret;
  209. }
  210. int Mesh::get_blend_shape_count() const {
  211. int ret = 0;
  212. GDVIRTUAL_CALL(_get_blend_shape_count, ret);
  213. return ret;
  214. }
  215. StringName Mesh::get_blend_shape_name(int p_index) const {
  216. StringName ret;
  217. GDVIRTUAL_CALL(_get_blend_shape_name, p_index, ret);
  218. return ret;
  219. }
  220. void Mesh::set_blend_shape_name(int p_index, const StringName &p_name) {
  221. GDVIRTUAL_CALL(_set_blend_shape_name, p_index, p_name);
  222. }
  223. AABB Mesh::get_aabb() const {
  224. AABB ret;
  225. GDVIRTUAL_CALL(_get_aabb, ret);
  226. return ret;
  227. }
  228. Ref<TriangleMesh> Mesh::generate_triangle_mesh() const {
  229. if (triangle_mesh.is_valid()) {
  230. return triangle_mesh;
  231. }
  232. int faces_size = 0;
  233. for (int i = 0; i < get_surface_count(); i++) {
  234. switch (surface_get_primitive_type(i)) {
  235. case PRIMITIVE_TRIANGLES: {
  236. int len = (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? surface_get_array_index_len(i) : surface_get_array_len(i);
  237. // Don't error if zero, it's valid (we'll just skip it later).
  238. ERR_CONTINUE_MSG((len % 3) != 0, vformat("Ignoring surface %d, incorrect %s count: %d (for PRIMITIVE_TRIANGLES).", i, (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? "index" : "vertex", len));
  239. faces_size += len;
  240. } break;
  241. case PRIMITIVE_TRIANGLE_STRIP: {
  242. int len = (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? surface_get_array_index_len(i) : surface_get_array_len(i);
  243. // Don't error if zero, it's valid (we'll just skip it later).
  244. ERR_CONTINUE_MSG(len != 0 && len < 3, vformat("Ignoring surface %d, incorrect %s count: %d (for PRIMITIVE_TRIANGLE_STRIP).", i, (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? "index" : "vertex", len));
  245. faces_size += (len == 0) ? 0 : (len - 2) * 3;
  246. } break;
  247. default: {
  248. } break;
  249. }
  250. }
  251. if (faces_size == 0) {
  252. return triangle_mesh;
  253. }
  254. Vector<Vector3> faces;
  255. faces.resize(faces_size);
  256. Vector<int32_t> surface_indices;
  257. surface_indices.resize(faces_size / 3);
  258. Vector3 *facesw = faces.ptrw();
  259. int32_t *surface_indicesw = surface_indices.ptrw();
  260. int widx = 0;
  261. for (int i = 0; i < get_surface_count(); i++) {
  262. Mesh::PrimitiveType primitive = surface_get_primitive_type(i);
  263. if (primitive != PRIMITIVE_TRIANGLES && primitive != PRIMITIVE_TRIANGLE_STRIP) {
  264. continue;
  265. }
  266. int len = (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? surface_get_array_index_len(i) : surface_get_array_len(i);
  267. if ((primitive == PRIMITIVE_TRIANGLES && (len == 0 || (len % 3) != 0)) ||
  268. (primitive == PRIMITIVE_TRIANGLE_STRIP && len < 3) ||
  269. (surface_get_format(i) & ARRAY_FLAG_USES_EMPTY_VERTEX_ARRAY)) {
  270. // Error was already shown, just skip (including zero).
  271. continue;
  272. }
  273. Array a = surface_get_arrays(i);
  274. ERR_FAIL_COND_V(a.is_empty(), Ref<TriangleMesh>());
  275. int vc = surface_get_array_len(i);
  276. Vector<Vector3> vertices = a[ARRAY_VERTEX];
  277. ERR_FAIL_COND_V(vertices.is_empty(), Ref<TriangleMesh>());
  278. const Vector3 *vr = vertices.ptr();
  279. int32_t from_index = widx / 3;
  280. if (surface_get_format(i) & ARRAY_FORMAT_INDEX) {
  281. int ic = surface_get_array_index_len(i);
  282. Vector<int> indices = a[ARRAY_INDEX];
  283. const int *ir = indices.ptr();
  284. if (primitive == PRIMITIVE_TRIANGLES) {
  285. for (int j = 0; j < ic; j++) {
  286. int index = ir[j];
  287. ERR_FAIL_COND_V(index >= vc, Ref<TriangleMesh>());
  288. facesw[widx++] = vr[index];
  289. }
  290. } else { // PRIMITIVE_TRIANGLE_STRIP
  291. for (int j = 2; j < ic; j++) {
  292. if (j % 2 == 0) {
  293. facesw[widx++] = vr[ir[j - 2]];
  294. facesw[widx++] = vr[ir[j - 1]];
  295. facesw[widx++] = vr[ir[j]];
  296. } else {
  297. facesw[widx++] = vr[ir[j - 2]];
  298. facesw[widx++] = vr[ir[j]];
  299. facesw[widx++] = vr[ir[j - 1]];
  300. }
  301. }
  302. }
  303. } else {
  304. if (primitive == PRIMITIVE_TRIANGLES) {
  305. for (int j = 0; j < vc; j++) {
  306. facesw[widx++] = vr[j];
  307. }
  308. } else { // PRIMITIVE_TRIANGLE_STRIP
  309. for (int j = 2; j < vc; j++) {
  310. if (j % 2 == 0) {
  311. facesw[widx++] = vr[j - 2];
  312. facesw[widx++] = vr[j - 1];
  313. facesw[widx++] = vr[j];
  314. } else {
  315. facesw[widx++] = vr[j - 2];
  316. facesw[widx++] = vr[j];
  317. facesw[widx++] = vr[j - 1];
  318. }
  319. }
  320. }
  321. }
  322. int32_t to_index = widx / 3;
  323. for (int j = from_index; j < to_index; j++) {
  324. surface_indicesw[j] = i;
  325. }
  326. }
  327. triangle_mesh.instantiate();
  328. triangle_mesh->create(faces);
  329. return triangle_mesh;
  330. }
  331. Ref<TriangleMesh> Mesh::generate_surface_triangle_mesh(int p_surface) const {
  332. ERR_FAIL_INDEX_V(p_surface, get_surface_count(), Ref<TriangleMesh>());
  333. if (surface_triangle_meshes.size() != get_surface_count()) {
  334. surface_triangle_meshes.resize(get_surface_count());
  335. }
  336. if (surface_triangle_meshes[p_surface].is_valid()) {
  337. return surface_triangle_meshes[p_surface];
  338. }
  339. int facecount = 0;
  340. if (surface_get_primitive_type(p_surface) != PRIMITIVE_TRIANGLES) {
  341. return Ref<TriangleMesh>();
  342. }
  343. if (surface_get_format(p_surface) & ARRAY_FORMAT_INDEX) {
  344. facecount += surface_get_array_index_len(p_surface);
  345. } else {
  346. facecount += surface_get_array_len(p_surface);
  347. }
  348. Vector<Vector3> faces;
  349. faces.resize(facecount);
  350. Vector3 *facesw = faces.ptrw();
  351. Array a = surface_get_arrays(p_surface);
  352. ERR_FAIL_COND_V(a.is_empty(), Ref<TriangleMesh>());
  353. int vc = surface_get_array_len(p_surface);
  354. Vector<Vector3> vertices = a[ARRAY_VERTEX];
  355. const Vector3 *vr = vertices.ptr();
  356. int widx = 0;
  357. if (surface_get_format(p_surface) & ARRAY_FORMAT_INDEX) {
  358. int ic = surface_get_array_index_len(p_surface);
  359. Vector<int> indices = a[ARRAY_INDEX];
  360. const int *ir = indices.ptr();
  361. for (int j = 0; j < ic; j++) {
  362. int index = ir[j];
  363. facesw[widx++] = vr[index];
  364. }
  365. } else {
  366. for (int j = 0; j < vc; j++) {
  367. facesw[widx++] = vr[j];
  368. }
  369. }
  370. Ref<TriangleMesh> tr_mesh = Ref<TriangleMesh>(memnew(TriangleMesh));
  371. tr_mesh->create(faces);
  372. surface_triangle_meshes.set(p_surface, tr_mesh);
  373. return tr_mesh;
  374. }
  375. void Mesh::generate_debug_mesh_lines(Vector<Vector3> &r_lines) {
  376. if (debug_lines.size() > 0) {
  377. r_lines = debug_lines;
  378. return;
  379. }
  380. Ref<TriangleMesh> tm = generate_triangle_mesh();
  381. if (tm.is_null()) {
  382. return;
  383. }
  384. Vector<int> triangle_indices;
  385. tm->get_indices(&triangle_indices);
  386. const int triangles_num = tm->get_triangles().size();
  387. Vector<Vector3> vertices = tm->get_vertices();
  388. debug_lines.resize(tm->get_triangles().size() * 6); // 3 lines x 2 points each line
  389. const int *ind_r = triangle_indices.ptr();
  390. const Vector3 *ver_r = vertices.ptr();
  391. for (int j = 0, x = 0, i = 0; i < triangles_num; j += 6, x += 3, ++i) {
  392. // Triangle line 1
  393. debug_lines.write[j + 0] = ver_r[ind_r[x + 0]];
  394. debug_lines.write[j + 1] = ver_r[ind_r[x + 1]];
  395. // Triangle line 2
  396. debug_lines.write[j + 2] = ver_r[ind_r[x + 1]];
  397. debug_lines.write[j + 3] = ver_r[ind_r[x + 2]];
  398. // Triangle line 3
  399. debug_lines.write[j + 4] = ver_r[ind_r[x + 2]];
  400. debug_lines.write[j + 5] = ver_r[ind_r[x + 0]];
  401. }
  402. r_lines = debug_lines;
  403. }
  404. void Mesh::generate_debug_mesh_indices(Vector<Vector3> &r_points) {
  405. Ref<TriangleMesh> tm = generate_triangle_mesh();
  406. if (tm.is_null()) {
  407. return;
  408. }
  409. Vector<Vector3> vertices = tm->get_vertices();
  410. int vertices_size = vertices.size();
  411. r_points.resize(vertices_size);
  412. for (int i = 0; i < vertices_size; ++i) {
  413. r_points.write[i] = vertices[i];
  414. }
  415. }
  416. Vector<Vector3> Mesh::_get_faces() const {
  417. return Variant(get_faces());
  418. }
  419. Vector<Face3> Mesh::get_faces() const {
  420. Ref<TriangleMesh> tm = generate_triangle_mesh();
  421. if (tm.is_valid()) {
  422. return tm->get_faces();
  423. }
  424. return Vector<Face3>();
  425. }
  426. Vector<Face3> Mesh::get_surface_faces(int p_surface) const {
  427. Ref<TriangleMesh> tm = generate_surface_triangle_mesh(p_surface);
  428. if (tm.is_valid()) {
  429. return tm->get_faces();
  430. }
  431. return Vector<Face3>();
  432. }
  433. #ifndef PHYSICS_3D_DISABLED
  434. Ref<ConvexPolygonShape3D> Mesh::create_convex_shape(bool p_clean, bool p_simplify) const {
  435. if (p_simplify) {
  436. Ref<MeshConvexDecompositionSettings> settings = Ref<MeshConvexDecompositionSettings>();
  437. settings.instantiate();
  438. settings->set_max_convex_hulls(1);
  439. settings->set_max_concavity(1.0);
  440. Vector<Ref<Shape3D>> decomposed = convex_decompose(settings);
  441. if (decomposed.size() == 1) {
  442. return decomposed[0];
  443. } else {
  444. ERR_PRINT("Convex shape simplification failed, falling back to simpler process.");
  445. }
  446. }
  447. Vector<Vector3> vertices;
  448. for (int i = 0; i < get_surface_count(); i++) {
  449. Array a = surface_get_arrays(i);
  450. ERR_FAIL_COND_V(a.is_empty(), Ref<ConvexPolygonShape3D>());
  451. Vector<Vector3> v = a[ARRAY_VERTEX];
  452. vertices.append_array(v);
  453. }
  454. Ref<ConvexPolygonShape3D> shape = memnew(ConvexPolygonShape3D);
  455. if (p_clean) {
  456. Geometry3D::MeshData md;
  457. Error err = ConvexHullComputer::convex_hull(vertices, md);
  458. if (err == OK) {
  459. shape->set_points(md.vertices);
  460. return shape;
  461. } else {
  462. ERR_PRINT("Convex shape cleaning failed, falling back to simpler process.");
  463. }
  464. }
  465. shape->set_points(vertices);
  466. return shape;
  467. }
  468. Ref<ConcavePolygonShape3D> Mesh::create_trimesh_shape() const {
  469. Vector<Face3> faces = get_faces();
  470. if (faces.is_empty()) {
  471. return Ref<ConcavePolygonShape3D>();
  472. }
  473. Vector<Vector3> face_points;
  474. face_points.resize(faces.size() * 3);
  475. for (int i = 0; i < face_points.size(); i += 3) {
  476. Face3 f = faces.get(i / 3);
  477. face_points.set(i, f.vertex[0]);
  478. face_points.set(i + 1, f.vertex[1]);
  479. face_points.set(i + 2, f.vertex[2]);
  480. }
  481. Ref<ConcavePolygonShape3D> shape = memnew(ConcavePolygonShape3D);
  482. shape->set_faces(face_points);
  483. return shape;
  484. }
  485. #endif // PHYSICS_3D_DISABLED
  486. Ref<Mesh> Mesh::create_outline(float p_margin) const {
  487. Array arrays;
  488. int index_accum = 0;
  489. for (int i = 0; i < get_surface_count(); i++) {
  490. if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) {
  491. continue;
  492. }
  493. Array a = surface_get_arrays(i);
  494. ERR_FAIL_COND_V(a.is_empty(), Ref<ArrayMesh>());
  495. if (i == 0) {
  496. arrays = a;
  497. Vector<Vector3> v = a[ARRAY_VERTEX];
  498. index_accum += v.size();
  499. } else {
  500. int vcount = 0;
  501. for (int j = 0; j < arrays.size(); j++) {
  502. if (arrays[j].get_type() == Variant::NIL || a[j].get_type() == Variant::NIL) {
  503. //mismatch, do not use
  504. arrays[j] = Variant();
  505. continue;
  506. }
  507. switch (j) {
  508. case ARRAY_VERTEX:
  509. case ARRAY_NORMAL: {
  510. Vector<Vector3> dst = arrays[j];
  511. Vector<Vector3> src = a[j];
  512. if (j == ARRAY_VERTEX) {
  513. vcount = src.size();
  514. }
  515. if (dst.is_empty() || src.is_empty()) {
  516. arrays[j] = Variant();
  517. continue;
  518. }
  519. dst.append_array(src);
  520. arrays[j] = dst;
  521. } break;
  522. case ARRAY_TANGENT:
  523. case ARRAY_BONES:
  524. case ARRAY_WEIGHTS: {
  525. Vector<real_t> dst = arrays[j];
  526. Vector<real_t> src = a[j];
  527. if (dst.is_empty() || src.is_empty()) {
  528. arrays[j] = Variant();
  529. continue;
  530. }
  531. dst.append_array(src);
  532. arrays[j] = dst;
  533. } break;
  534. case ARRAY_COLOR: {
  535. Vector<Color> dst = arrays[j];
  536. Vector<Color> src = a[j];
  537. if (dst.is_empty() || src.is_empty()) {
  538. arrays[j] = Variant();
  539. continue;
  540. }
  541. dst.append_array(src);
  542. arrays[j] = dst;
  543. } break;
  544. case ARRAY_TEX_UV:
  545. case ARRAY_TEX_UV2: {
  546. Vector<Vector2> dst = arrays[j];
  547. Vector<Vector2> src = a[j];
  548. if (dst.is_empty() || src.is_empty()) {
  549. arrays[j] = Variant();
  550. continue;
  551. }
  552. dst.append_array(src);
  553. arrays[j] = dst;
  554. } break;
  555. case ARRAY_INDEX: {
  556. Vector<int> dst = arrays[j];
  557. Vector<int> src = a[j];
  558. if (dst.is_empty() || src.is_empty()) {
  559. arrays[j] = Variant();
  560. continue;
  561. }
  562. {
  563. int ss = src.size();
  564. int *w = src.ptrw();
  565. for (int k = 0; k < ss; k++) {
  566. w[k] += index_accum;
  567. }
  568. }
  569. dst.append_array(src);
  570. arrays[j] = dst;
  571. index_accum += vcount;
  572. } break;
  573. }
  574. }
  575. }
  576. }
  577. ERR_FAIL_COND_V(arrays.size() != ARRAY_MAX, Ref<ArrayMesh>());
  578. {
  579. int *ir = nullptr;
  580. Vector<int> indices = arrays[ARRAY_INDEX];
  581. bool has_indices = false;
  582. Vector<Vector3> vertices = arrays[ARRAY_VERTEX];
  583. int vc = vertices.size();
  584. ERR_FAIL_COND_V(!vc, Ref<ArrayMesh>());
  585. Vector3 *r = vertices.ptrw();
  586. if (indices.size()) {
  587. ERR_FAIL_COND_V(indices.size() % 3 != 0, Ref<ArrayMesh>());
  588. vc = indices.size();
  589. ir = indices.ptrw();
  590. has_indices = true;
  591. } else {
  592. // Ensure there are enough vertices to construct at least one triangle.
  593. ERR_FAIL_COND_V(vertices.size() % 3 != 0, Ref<ArrayMesh>());
  594. }
  595. HashMap<Vector3, Vector3> normal_accum;
  596. //fill normals with triangle normals
  597. for (int i = 0; i < vc; i += 3) {
  598. Vector3 t[3];
  599. if (has_indices) {
  600. t[0] = r[ir[i + 0]];
  601. t[1] = r[ir[i + 1]];
  602. t[2] = r[ir[i + 2]];
  603. } else {
  604. t[0] = r[i + 0];
  605. t[1] = r[i + 1];
  606. t[2] = r[i + 2];
  607. }
  608. Vector3 n = Plane(t[0], t[1], t[2]).normal;
  609. for (int j = 0; j < 3; j++) {
  610. HashMap<Vector3, Vector3>::Iterator E = normal_accum.find(t[j]);
  611. if (!E) {
  612. normal_accum[t[j]] = n;
  613. } else {
  614. float d = n.dot(E->value);
  615. if (d < 1.0) {
  616. E->value += n * (1.0 - d);
  617. }
  618. //E->get()+=n;
  619. }
  620. }
  621. }
  622. //normalize
  623. for (KeyValue<Vector3, Vector3> &E : normal_accum) {
  624. E.value.normalize();
  625. }
  626. //displace normals
  627. int vc2 = vertices.size();
  628. for (int i = 0; i < vc2; i++) {
  629. Vector3 t = r[i];
  630. HashMap<Vector3, Vector3>::Iterator E = normal_accum.find(t);
  631. ERR_CONTINUE(!E);
  632. t += E->value * p_margin;
  633. r[i] = t;
  634. }
  635. arrays[ARRAY_VERTEX] = vertices;
  636. if (!has_indices) {
  637. Vector<int> new_indices;
  638. new_indices.resize(vertices.size());
  639. int *iw = new_indices.ptrw();
  640. for (int j = 0; j < vc2; j += 3) {
  641. iw[j] = j;
  642. iw[j + 1] = j + 2;
  643. iw[j + 2] = j + 1;
  644. }
  645. arrays[ARRAY_INDEX] = new_indices;
  646. } else {
  647. for (int j = 0; j < vc; j += 3) {
  648. SWAP(ir[j + 1], ir[j + 2]);
  649. }
  650. arrays[ARRAY_INDEX] = indices;
  651. }
  652. }
  653. Ref<ArrayMesh> newmesh = memnew(ArrayMesh);
  654. newmesh->add_surface_from_arrays(PRIMITIVE_TRIANGLES, arrays);
  655. return newmesh;
  656. }
  657. void Mesh::set_lightmap_size_hint(const Size2i &p_size) {
  658. lightmap_size_hint = p_size;
  659. }
  660. Size2i Mesh::get_lightmap_size_hint() const {
  661. return lightmap_size_hint;
  662. }
  663. Ref<Resource> Mesh::create_placeholder() const {
  664. Ref<PlaceholderMesh> placeholder;
  665. placeholder.instantiate();
  666. placeholder->set_aabb(get_aabb());
  667. return placeholder;
  668. }
  669. void Mesh::_bind_methods() {
  670. ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &Mesh::set_lightmap_size_hint);
  671. ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &Mesh::get_lightmap_size_hint);
  672. ClassDB::bind_method(D_METHOD("get_aabb"), &Mesh::get_aabb);
  673. ClassDB::bind_method(D_METHOD("get_faces"), &Mesh::_get_faces);
  674. ADD_PROPERTY(PropertyInfo(Variant::VECTOR2I, "lightmap_size_hint"), "set_lightmap_size_hint", "get_lightmap_size_hint");
  675. ClassDB::bind_method(D_METHOD("get_surface_count"), &Mesh::get_surface_count);
  676. ClassDB::bind_method(D_METHOD("surface_get_arrays", "surf_idx"), &Mesh::surface_get_arrays);
  677. ClassDB::bind_method(D_METHOD("surface_get_blend_shape_arrays", "surf_idx"), &Mesh::surface_get_blend_shape_arrays);
  678. ClassDB::bind_method(D_METHOD("surface_set_material", "surf_idx", "material"), &Mesh::surface_set_material);
  679. ClassDB::bind_method(D_METHOD("surface_get_material", "surf_idx"), &Mesh::surface_get_material);
  680. ClassDB::bind_method(D_METHOD("create_placeholder"), &Mesh::create_placeholder);
  681. BIND_ENUM_CONSTANT(PRIMITIVE_POINTS);
  682. BIND_ENUM_CONSTANT(PRIMITIVE_LINES);
  683. BIND_ENUM_CONSTANT(PRIMITIVE_LINE_STRIP);
  684. BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLES);
  685. BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLE_STRIP);
  686. BIND_ENUM_CONSTANT(ARRAY_VERTEX);
  687. BIND_ENUM_CONSTANT(ARRAY_NORMAL);
  688. BIND_ENUM_CONSTANT(ARRAY_TANGENT);
  689. BIND_ENUM_CONSTANT(ARRAY_COLOR);
  690. BIND_ENUM_CONSTANT(ARRAY_TEX_UV);
  691. BIND_ENUM_CONSTANT(ARRAY_TEX_UV2);
  692. BIND_ENUM_CONSTANT(ARRAY_CUSTOM0);
  693. BIND_ENUM_CONSTANT(ARRAY_CUSTOM1);
  694. BIND_ENUM_CONSTANT(ARRAY_CUSTOM2);
  695. BIND_ENUM_CONSTANT(ARRAY_CUSTOM3);
  696. BIND_ENUM_CONSTANT(ARRAY_BONES);
  697. BIND_ENUM_CONSTANT(ARRAY_WEIGHTS);
  698. BIND_ENUM_CONSTANT(ARRAY_INDEX);
  699. BIND_ENUM_CONSTANT(ARRAY_MAX);
  700. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA8_UNORM);
  701. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA8_SNORM);
  702. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RG_HALF);
  703. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA_HALF);
  704. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_R_FLOAT);
  705. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RG_FLOAT);
  706. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGB_FLOAT);
  707. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA_FLOAT);
  708. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_MAX);
  709. BIND_BITFIELD_FLAG(ARRAY_FORMAT_VERTEX);
  710. BIND_BITFIELD_FLAG(ARRAY_FORMAT_NORMAL);
  711. BIND_BITFIELD_FLAG(ARRAY_FORMAT_TANGENT);
  712. BIND_BITFIELD_FLAG(ARRAY_FORMAT_COLOR);
  713. BIND_BITFIELD_FLAG(ARRAY_FORMAT_TEX_UV);
  714. BIND_BITFIELD_FLAG(ARRAY_FORMAT_TEX_UV2);
  715. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM0);
  716. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM1);
  717. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM2);
  718. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM3);
  719. BIND_BITFIELD_FLAG(ARRAY_FORMAT_BONES);
  720. BIND_BITFIELD_FLAG(ARRAY_FORMAT_WEIGHTS);
  721. BIND_BITFIELD_FLAG(ARRAY_FORMAT_INDEX);
  722. BIND_BITFIELD_FLAG(ARRAY_FORMAT_BLEND_SHAPE_MASK);
  723. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM_BASE);
  724. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM_BITS);
  725. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM0_SHIFT);
  726. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM1_SHIFT);
  727. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM2_SHIFT);
  728. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM3_SHIFT);
  729. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM_MASK);
  730. BIND_BITFIELD_FLAG(ARRAY_COMPRESS_FLAGS_BASE);
  731. BIND_BITFIELD_FLAG(ARRAY_FLAG_USE_2D_VERTICES);
  732. BIND_BITFIELD_FLAG(ARRAY_FLAG_USE_DYNAMIC_UPDATE);
  733. BIND_BITFIELD_FLAG(ARRAY_FLAG_USE_8_BONE_WEIGHTS);
  734. BIND_BITFIELD_FLAG(ARRAY_FLAG_USES_EMPTY_VERTEX_ARRAY);
  735. BIND_BITFIELD_FLAG(ARRAY_FLAG_COMPRESS_ATTRIBUTES);
  736. BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_NORMALIZED);
  737. BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_RELATIVE);
  738. GDVIRTUAL_BIND(_get_surface_count)
  739. GDVIRTUAL_BIND(_surface_get_array_len, "index")
  740. GDVIRTUAL_BIND(_surface_get_array_index_len, "index")
  741. GDVIRTUAL_BIND(_surface_get_arrays, "index")
  742. GDVIRTUAL_BIND(_surface_get_blend_shape_arrays, "index")
  743. GDVIRTUAL_BIND(_surface_get_lods, "index")
  744. GDVIRTUAL_BIND(_surface_get_format, "index")
  745. GDVIRTUAL_BIND(_surface_get_primitive_type, "index")
  746. GDVIRTUAL_BIND(_surface_set_material, "index", "material")
  747. GDVIRTUAL_BIND(_surface_get_material, "index")
  748. GDVIRTUAL_BIND(_get_blend_shape_count)
  749. GDVIRTUAL_BIND(_get_blend_shape_name, "index")
  750. GDVIRTUAL_BIND(_set_blend_shape_name, "index", "name")
  751. GDVIRTUAL_BIND(_get_aabb)
  752. }
  753. void Mesh::clear_cache() const {
  754. triangle_mesh.unref();
  755. debug_lines.clear();
  756. }
  757. #ifndef PHYSICS_3D_DISABLED
  758. Vector<Ref<Shape3D>> Mesh::convex_decompose(const Ref<MeshConvexDecompositionSettings> &p_settings) const {
  759. ERR_FAIL_NULL_V(convex_decomposition_function, Vector<Ref<Shape3D>>());
  760. Ref<TriangleMesh> tm = generate_triangle_mesh();
  761. ERR_FAIL_COND_V(tm.is_null(), Vector<Ref<Shape3D>>());
  762. const Vector<TriangleMesh::Triangle> &triangles = tm->get_triangles();
  763. int triangle_count = triangles.size();
  764. Vector<uint32_t> indices;
  765. {
  766. indices.resize(triangle_count * 3);
  767. uint32_t *w = indices.ptrw();
  768. for (int i = 0; i < triangle_count; i++) {
  769. for (int j = 0; j < 3; j++) {
  770. w[i * 3 + j] = triangles[i].indices[j];
  771. }
  772. }
  773. }
  774. const Vector<Vector3> &vertices = tm->get_vertices();
  775. int vertex_count = vertices.size();
  776. Vector<Vector<Vector3>> decomposed = convex_decomposition_function((real_t *)vertices.ptr(), vertex_count, indices.ptr(), triangle_count, p_settings, nullptr);
  777. Vector<Ref<Shape3D>> ret;
  778. for (int i = 0; i < decomposed.size(); i++) {
  779. Ref<ConvexPolygonShape3D> shape;
  780. shape.instantiate();
  781. shape->set_points(decomposed[i]);
  782. ret.push_back(shape);
  783. }
  784. return ret;
  785. }
  786. #endif // PHYSICS_3D_DISABLED
  787. int Mesh::get_builtin_bind_pose_count() const {
  788. return 0;
  789. }
  790. Transform3D Mesh::get_builtin_bind_pose(int p_index) const {
  791. return Transform3D();
  792. }
  793. Mesh::Mesh() {
  794. }
  795. enum OldArrayType {
  796. OLD_ARRAY_VERTEX,
  797. OLD_ARRAY_NORMAL,
  798. OLD_ARRAY_TANGENT,
  799. OLD_ARRAY_COLOR,
  800. OLD_ARRAY_TEX_UV,
  801. OLD_ARRAY_TEX_UV2,
  802. OLD_ARRAY_BONES,
  803. OLD_ARRAY_WEIGHTS,
  804. OLD_ARRAY_INDEX,
  805. OLD_ARRAY_MAX,
  806. };
  807. enum OldArrayFormat {
  808. /* OLD_ARRAY FORMAT FLAGS */
  809. OLD_ARRAY_FORMAT_VERTEX = 1 << OLD_ARRAY_VERTEX, // mandatory
  810. OLD_ARRAY_FORMAT_NORMAL = 1 << OLD_ARRAY_NORMAL,
  811. OLD_ARRAY_FORMAT_TANGENT = 1 << OLD_ARRAY_TANGENT,
  812. OLD_ARRAY_FORMAT_COLOR = 1 << OLD_ARRAY_COLOR,
  813. OLD_ARRAY_FORMAT_TEX_UV = 1 << OLD_ARRAY_TEX_UV,
  814. OLD_ARRAY_FORMAT_TEX_UV2 = 1 << OLD_ARRAY_TEX_UV2,
  815. OLD_ARRAY_FORMAT_BONES = 1 << OLD_ARRAY_BONES,
  816. OLD_ARRAY_FORMAT_WEIGHTS = 1 << OLD_ARRAY_WEIGHTS,
  817. OLD_ARRAY_FORMAT_INDEX = 1 << OLD_ARRAY_INDEX,
  818. OLD_ARRAY_COMPRESS_BASE = (OLD_ARRAY_INDEX + 1),
  819. OLD_ARRAY_COMPRESS_VERTEX = 1 << (OLD_ARRAY_VERTEX + (int32_t)OLD_ARRAY_COMPRESS_BASE), // mandatory
  820. OLD_ARRAY_COMPRESS_NORMAL = 1 << (OLD_ARRAY_NORMAL + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  821. OLD_ARRAY_COMPRESS_TANGENT = 1 << (OLD_ARRAY_TANGENT + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  822. OLD_ARRAY_COMPRESS_COLOR = 1 << (OLD_ARRAY_COLOR + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  823. OLD_ARRAY_COMPRESS_TEX_UV = 1 << (OLD_ARRAY_TEX_UV + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  824. OLD_ARRAY_COMPRESS_TEX_UV2 = 1 << (OLD_ARRAY_TEX_UV2 + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  825. OLD_ARRAY_COMPRESS_BONES = 1 << (OLD_ARRAY_BONES + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  826. OLD_ARRAY_COMPRESS_WEIGHTS = 1 << (OLD_ARRAY_WEIGHTS + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  827. OLD_ARRAY_COMPRESS_INDEX = 1 << (OLD_ARRAY_INDEX + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  828. OLD_ARRAY_FLAG_USE_2D_VERTICES = OLD_ARRAY_COMPRESS_INDEX << 1,
  829. OLD_ARRAY_FLAG_USE_16_BIT_BONES = OLD_ARRAY_COMPRESS_INDEX << 2,
  830. OLD_ARRAY_FLAG_USE_DYNAMIC_UPDATE = OLD_ARRAY_COMPRESS_INDEX << 3,
  831. OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION = OLD_ARRAY_COMPRESS_INDEX << 4,
  832. };
  833. #ifndef DISABLE_DEPRECATED
  834. static Array _convert_old_array(const Array &p_old) {
  835. Array new_array;
  836. new_array.resize(Mesh::ARRAY_MAX);
  837. new_array[Mesh::ARRAY_VERTEX] = p_old[OLD_ARRAY_VERTEX];
  838. new_array[Mesh::ARRAY_NORMAL] = p_old[OLD_ARRAY_NORMAL];
  839. new_array[Mesh::ARRAY_TANGENT] = p_old[OLD_ARRAY_TANGENT];
  840. new_array[Mesh::ARRAY_COLOR] = p_old[OLD_ARRAY_COLOR];
  841. new_array[Mesh::ARRAY_TEX_UV] = p_old[OLD_ARRAY_TEX_UV];
  842. new_array[Mesh::ARRAY_TEX_UV2] = p_old[OLD_ARRAY_TEX_UV2];
  843. new_array[Mesh::ARRAY_BONES] = p_old[OLD_ARRAY_BONES];
  844. new_array[Mesh::ARRAY_WEIGHTS] = p_old[OLD_ARRAY_WEIGHTS];
  845. new_array[Mesh::ARRAY_INDEX] = p_old[OLD_ARRAY_INDEX];
  846. return new_array;
  847. }
  848. static Mesh::PrimitiveType _old_primitives[7] = {
  849. Mesh::PRIMITIVE_POINTS,
  850. Mesh::PRIMITIVE_LINES,
  851. Mesh::PRIMITIVE_LINE_STRIP,
  852. Mesh::PRIMITIVE_LINES,
  853. Mesh::PRIMITIVE_TRIANGLES,
  854. Mesh::PRIMITIVE_TRIANGLE_STRIP,
  855. Mesh::PRIMITIVE_TRIANGLE_STRIP
  856. };
  857. #endif // DISABLE_DEPRECATED
  858. void _fix_array_compatibility(const Vector<uint8_t> &p_src, uint64_t p_old_format, uint64_t p_new_format, uint32_t p_elements, Vector<uint8_t> &vertex_data, Vector<uint8_t> &attribute_data, Vector<uint8_t> &skin_data) {
  859. uint32_t dst_vertex_stride;
  860. uint32_t dst_normal_tangent_stride;
  861. uint32_t dst_attribute_stride;
  862. uint32_t dst_skin_stride;
  863. uint32_t dst_offsets[Mesh::ARRAY_MAX];
  864. RenderingServer::get_singleton()->mesh_surface_make_offsets_from_format(p_new_format & (~RS::ARRAY_FORMAT_INDEX), p_elements, 0, dst_offsets, dst_vertex_stride, dst_normal_tangent_stride, dst_attribute_stride, dst_skin_stride);
  865. vertex_data.resize((dst_vertex_stride + dst_normal_tangent_stride) * p_elements);
  866. attribute_data.resize(dst_attribute_stride * p_elements);
  867. skin_data.resize(dst_skin_stride * p_elements);
  868. uint8_t *dst_vertex_ptr = vertex_data.ptrw();
  869. uint8_t *dst_attribute_ptr = attribute_data.ptrw();
  870. uint8_t *dst_skin_ptr = skin_data.ptrw();
  871. const uint8_t *src_vertex_ptr = p_src.ptr();
  872. uint32_t src_vertex_stride = p_src.size() / p_elements;
  873. uint32_t src_offset = 0;
  874. for (uint32_t j = 0; j < OLD_ARRAY_INDEX; j++) {
  875. if (!(p_old_format & (1ULL << j))) {
  876. continue;
  877. }
  878. switch (j) {
  879. case OLD_ARRAY_VERTEX: {
  880. if (p_old_format & OLD_ARRAY_FLAG_USE_2D_VERTICES) {
  881. if (p_old_format & OLD_ARRAY_COMPRESS_VERTEX) {
  882. for (uint32_t i = 0; i < p_elements; i++) {
  883. const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride];
  884. float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride];
  885. dst[0] = Math::half_to_float(src[0]);
  886. dst[1] = Math::half_to_float(src[1]);
  887. }
  888. src_offset += sizeof(uint16_t) * 2;
  889. } else {
  890. for (uint32_t i = 0; i < p_elements; i++) {
  891. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride];
  892. float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride];
  893. dst[0] = src[0];
  894. dst[1] = src[1];
  895. }
  896. src_offset += sizeof(float) * 2;
  897. }
  898. } else {
  899. if (p_old_format & OLD_ARRAY_COMPRESS_VERTEX) {
  900. for (uint32_t i = 0; i < p_elements; i++) {
  901. const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride];
  902. float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride];
  903. dst[0] = Math::half_to_float(src[0]);
  904. dst[1] = Math::half_to_float(src[1]);
  905. dst[2] = Math::half_to_float(src[2]);
  906. }
  907. src_offset += sizeof(uint16_t) * 4; //+pad
  908. } else {
  909. for (uint32_t i = 0; i < p_elements; i++) {
  910. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride];
  911. float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride];
  912. dst[0] = src[0];
  913. dst[1] = src[1];
  914. dst[2] = src[2];
  915. }
  916. src_offset += sizeof(float) * 3;
  917. }
  918. }
  919. } break;
  920. case OLD_ARRAY_NORMAL: {
  921. if (p_old_format & OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
  922. if ((p_old_format & OLD_ARRAY_COMPRESS_NORMAL) && (p_old_format & OLD_ARRAY_FORMAT_TANGENT) && (p_old_format & OLD_ARRAY_COMPRESS_TANGENT)) {
  923. for (uint32_t i = 0; i < p_elements; i++) {
  924. const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  925. int16_t *dst = (int16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
  926. dst[0] = (int16_t)CLAMP(src[0] / 127.0f * 32767, -32768, 32767);
  927. dst[1] = (int16_t)CLAMP(src[1] / 127.0f * 32767, -32768, 32767);
  928. }
  929. src_offset += sizeof(int8_t) * 2;
  930. } else {
  931. for (uint32_t i = 0; i < p_elements; i++) {
  932. const int16_t *src = (const int16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  933. int16_t *dst = (int16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
  934. dst[0] = src[0];
  935. dst[1] = src[1];
  936. }
  937. src_offset += sizeof(int16_t) * 2;
  938. }
  939. } else { // No Octahedral compression
  940. if (p_old_format & OLD_ARRAY_COMPRESS_NORMAL) {
  941. for (uint32_t i = 0; i < p_elements; i++) {
  942. const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  943. const Vector3 original_normal(src[0], src[1], src[2]);
  944. Vector2 res = original_normal.octahedron_encode();
  945. uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
  946. dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535);
  947. dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535);
  948. }
  949. src_offset += sizeof(uint8_t) * 4; // 1 byte padding
  950. } else {
  951. for (uint32_t i = 0; i < p_elements; i++) {
  952. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  953. const Vector3 original_normal(src[0], src[1], src[2]);
  954. Vector2 res = original_normal.octahedron_encode();
  955. uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
  956. dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535);
  957. dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535);
  958. }
  959. src_offset += sizeof(float) * 3;
  960. }
  961. }
  962. } break;
  963. case OLD_ARRAY_TANGENT: {
  964. if (p_old_format & OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
  965. if (p_old_format & OLD_ARRAY_COMPRESS_TANGENT) { // int8 SNORM -> uint16 UNORM
  966. for (uint32_t i = 0; i < p_elements; i++) {
  967. const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  968. uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_TANGENT]];
  969. dst[0] = (uint16_t)CLAMP((src[0] / 127.0f * .5f + .5f) * 65535, 0, 65535);
  970. dst[1] = (uint16_t)CLAMP((src[1] / 127.0f * .5f + .5f) * 65535, 0, 65535);
  971. }
  972. src_offset += sizeof(uint8_t) * 2;
  973. } else { // int16 SNORM -> uint16 UNORM
  974. for (uint32_t i = 0; i < p_elements; i++) {
  975. const int16_t *src = (const int16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  976. uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_TANGENT]];
  977. dst[0] = (uint16_t)CLAMP((src[0] / 32767.0f * .5f + .5f) * 65535, 0, 65535);
  978. dst[1] = (uint16_t)CLAMP((src[1] / 32767.0f * .5f + .5f) * 65535, 0, 65535);
  979. }
  980. src_offset += sizeof(uint16_t) * 2;
  981. }
  982. } else { // No Octahedral compression
  983. if (p_old_format & OLD_ARRAY_COMPRESS_TANGENT) {
  984. for (uint32_t i = 0; i < p_elements; i++) {
  985. const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  986. const Vector3 original_tangent(src[0], src[1], src[2]);
  987. Vector2 res = original_tangent.octahedron_tangent_encode(src[3]);
  988. uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
  989. dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535);
  990. dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535);
  991. if (dst[0] == 0 && dst[1] == 65535) {
  992. // (1, 1) and (0, 1) decode to the same value, but (0, 1) messes with our compression detection.
  993. // So we sanitize here.
  994. dst[0] = 65535;
  995. }
  996. }
  997. src_offset += sizeof(uint8_t) * 4;
  998. } else {
  999. for (uint32_t i = 0; i < p_elements; i++) {
  1000. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1001. const Vector3 original_tangent(src[0], src[1], src[2]);
  1002. Vector2 res = original_tangent.octahedron_tangent_encode(src[3]);
  1003. uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
  1004. dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535);
  1005. dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535);
  1006. if (dst[0] == 0 && dst[1] == 65535) {
  1007. // (1, 1) and (0, 1) decode to the same value, but (0, 1) messes with our compression detection.
  1008. // So we sanitize here.
  1009. dst[0] = 65535;
  1010. }
  1011. }
  1012. src_offset += sizeof(float) * 4;
  1013. }
  1014. }
  1015. } break;
  1016. case OLD_ARRAY_COLOR: {
  1017. if (p_old_format & OLD_ARRAY_COMPRESS_COLOR) {
  1018. for (uint32_t i = 0; i < p_elements; i++) {
  1019. const uint32_t *src = (const uint32_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1020. uint32_t *dst = (uint32_t *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_COLOR]];
  1021. *dst = *src;
  1022. }
  1023. src_offset += sizeof(uint32_t);
  1024. } else {
  1025. for (uint32_t i = 0; i < p_elements; i++) {
  1026. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1027. uint8_t *dst = (uint8_t *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_COLOR]];
  1028. dst[0] = uint8_t(CLAMP(src[0] * 255.0, 0.0, 255.0));
  1029. dst[1] = uint8_t(CLAMP(src[1] * 255.0, 0.0, 255.0));
  1030. dst[2] = uint8_t(CLAMP(src[2] * 255.0, 0.0, 255.0));
  1031. dst[3] = uint8_t(CLAMP(src[3] * 255.0, 0.0, 255.0));
  1032. }
  1033. src_offset += sizeof(float) * 4;
  1034. }
  1035. } break;
  1036. case OLD_ARRAY_TEX_UV: {
  1037. if (p_old_format & OLD_ARRAY_COMPRESS_TEX_UV) {
  1038. for (uint32_t i = 0; i < p_elements; i++) {
  1039. const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1040. float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV]];
  1041. dst[0] = Math::half_to_float(src[0]);
  1042. dst[1] = Math::half_to_float(src[1]);
  1043. }
  1044. src_offset += sizeof(uint16_t) * 2;
  1045. } else {
  1046. for (uint32_t i = 0; i < p_elements; i++) {
  1047. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1048. float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV]];
  1049. dst[0] = src[0];
  1050. dst[1] = src[1];
  1051. }
  1052. src_offset += sizeof(float) * 2;
  1053. }
  1054. } break;
  1055. case OLD_ARRAY_TEX_UV2: {
  1056. if (p_old_format & OLD_ARRAY_COMPRESS_TEX_UV2) {
  1057. for (uint32_t i = 0; i < p_elements; i++) {
  1058. const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1059. float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV2]];
  1060. dst[0] = Math::half_to_float(src[0]);
  1061. dst[1] = Math::half_to_float(src[1]);
  1062. }
  1063. src_offset += sizeof(uint16_t) * 2;
  1064. } else {
  1065. for (uint32_t i = 0; i < p_elements; i++) {
  1066. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1067. float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV2]];
  1068. dst[0] = src[0];
  1069. dst[1] = src[1];
  1070. }
  1071. src_offset += sizeof(float) * 2;
  1072. }
  1073. } break;
  1074. case OLD_ARRAY_BONES: {
  1075. if (p_old_format & OLD_ARRAY_FLAG_USE_16_BIT_BONES) {
  1076. for (uint32_t i = 0; i < p_elements; i++) {
  1077. const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1078. uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_BONES]];
  1079. dst[0] = src[0];
  1080. dst[1] = src[1];
  1081. dst[2] = src[2];
  1082. dst[3] = src[3];
  1083. }
  1084. src_offset += sizeof(uint16_t) * 4;
  1085. } else {
  1086. for (uint32_t i = 0; i < p_elements; i++) {
  1087. const uint8_t *src = (const uint8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1088. uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_BONES]];
  1089. dst[0] = src[0];
  1090. dst[1] = src[1];
  1091. dst[2] = src[2];
  1092. dst[3] = src[3];
  1093. }
  1094. src_offset += sizeof(uint8_t) * 4;
  1095. }
  1096. } break;
  1097. case OLD_ARRAY_WEIGHTS: {
  1098. if (p_old_format & OLD_ARRAY_COMPRESS_WEIGHTS) {
  1099. for (uint32_t i = 0; i < p_elements; i++) {
  1100. const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1101. uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_WEIGHTS]];
  1102. dst[0] = src[0];
  1103. dst[1] = src[1];
  1104. dst[2] = src[2];
  1105. dst[3] = src[3];
  1106. }
  1107. src_offset += sizeof(uint16_t) * 4;
  1108. } else {
  1109. for (uint32_t i = 0; i < p_elements; i++) {
  1110. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1111. uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_WEIGHTS]];
  1112. dst[0] = uint16_t(CLAMP(src[0] * 65535.0, 0, 65535.0));
  1113. dst[1] = uint16_t(CLAMP(src[1] * 65535.0, 0, 65535.0));
  1114. dst[2] = uint16_t(CLAMP(src[2] * 65535.0, 0, 65535.0));
  1115. dst[3] = uint16_t(CLAMP(src[3] * 65535.0, 0, 65535.0));
  1116. }
  1117. src_offset += sizeof(float) * 4;
  1118. }
  1119. } break;
  1120. default: {
  1121. }
  1122. }
  1123. }
  1124. }
  1125. bool ArrayMesh::_set(const StringName &p_name, const Variant &p_value) {
  1126. String sname = p_name;
  1127. if (sname.begins_with("surface_")) {
  1128. int sl = sname.find_char('/');
  1129. if (sl == -1) {
  1130. return false;
  1131. }
  1132. int idx = sname.substr(8, sl - 8).to_int();
  1133. String what = sname.get_slicec('/', 1);
  1134. if (what == "material") {
  1135. surface_set_material(idx, p_value);
  1136. } else if (what == "name") {
  1137. surface_set_name(idx, p_value);
  1138. }
  1139. return true;
  1140. }
  1141. #ifndef DISABLE_DEPRECATED
  1142. // Kept for compatibility from 3.x to 4.0.
  1143. if (!sname.begins_with("surfaces")) {
  1144. return false;
  1145. }
  1146. WARN_DEPRECATED_MSG(vformat(
  1147. "Mesh uses old surface format, which is deprecated (and loads slower). Consider re-importing or re-saving the scene. Path: \"%s\"",
  1148. get_path()));
  1149. int idx = sname.get_slicec('/', 1).to_int();
  1150. String what = sname.get_slicec('/', 2);
  1151. if (idx == surfaces.size()) {
  1152. //create
  1153. Dictionary d = p_value;
  1154. ERR_FAIL_COND_V(!d.has("primitive"), false);
  1155. if (d.has("arrays")) {
  1156. //oldest format (2.x)
  1157. ERR_FAIL_COND_V(!d.has("morph_arrays"), false);
  1158. Array morph_arrays = d["morph_arrays"];
  1159. for (int i = 0; i < morph_arrays.size(); i++) {
  1160. morph_arrays[i] = _convert_old_array(morph_arrays[i]);
  1161. }
  1162. add_surface_from_arrays(_old_primitives[int(d["primitive"])], _convert_old_array(d["arrays"]), morph_arrays);
  1163. } else if (d.has("array_data")) {
  1164. //print_line("array data (old style");
  1165. //older format (3.x)
  1166. Vector<uint8_t> array_data = d["array_data"];
  1167. Vector<uint8_t> array_index_data;
  1168. if (d.has("array_index_data")) {
  1169. array_index_data = d["array_index_data"];
  1170. }
  1171. ERR_FAIL_COND_V(!d.has("format"), false);
  1172. uint64_t old_format = d["format"];
  1173. uint32_t primitive = d["primitive"];
  1174. primitive = _old_primitives[primitive]; //compatibility
  1175. ERR_FAIL_COND_V(!d.has("vertex_count"), false);
  1176. int vertex_count = d["vertex_count"];
  1177. uint64_t new_format = ARRAY_FORMAT_VERTEX | ARRAY_FLAG_FORMAT_CURRENT_VERSION;
  1178. if (old_format & OLD_ARRAY_FORMAT_NORMAL) {
  1179. new_format |= ARRAY_FORMAT_NORMAL;
  1180. }
  1181. if (old_format & OLD_ARRAY_FORMAT_TANGENT) {
  1182. new_format |= ARRAY_FORMAT_TANGENT;
  1183. }
  1184. if (old_format & OLD_ARRAY_FORMAT_COLOR) {
  1185. new_format |= ARRAY_FORMAT_COLOR;
  1186. }
  1187. if (old_format & OLD_ARRAY_FORMAT_TEX_UV) {
  1188. new_format |= ARRAY_FORMAT_TEX_UV;
  1189. }
  1190. if (old_format & OLD_ARRAY_FORMAT_TEX_UV2) {
  1191. new_format |= ARRAY_FORMAT_TEX_UV2;
  1192. }
  1193. if (old_format & OLD_ARRAY_FORMAT_BONES) {
  1194. new_format |= ARRAY_FORMAT_BONES;
  1195. }
  1196. if (old_format & OLD_ARRAY_FORMAT_WEIGHTS) {
  1197. new_format |= ARRAY_FORMAT_WEIGHTS;
  1198. }
  1199. if (old_format & OLD_ARRAY_FORMAT_INDEX) {
  1200. new_format |= ARRAY_FORMAT_INDEX;
  1201. }
  1202. if (old_format & OLD_ARRAY_FLAG_USE_2D_VERTICES) {
  1203. new_format |= OLD_ARRAY_FLAG_USE_2D_VERTICES;
  1204. }
  1205. Vector<uint8_t> vertex_array;
  1206. Vector<uint8_t> attribute_array;
  1207. Vector<uint8_t> skin_array;
  1208. _fix_array_compatibility(array_data, old_format, new_format, vertex_count, vertex_array, attribute_array, skin_array);
  1209. int index_count = 0;
  1210. if (d.has("index_count")) {
  1211. index_count = d["index_count"];
  1212. }
  1213. Vector<uint8_t> blend_shapes_new;
  1214. if (d.has("blend_shape_data")) {
  1215. Array blend_shape_data = d["blend_shape_data"];
  1216. for (int i = 0; i < blend_shape_data.size(); i++) {
  1217. Vector<uint8_t> blend_vertex_array;
  1218. Vector<uint8_t> blend_attribute_array;
  1219. Vector<uint8_t> blend_skin_array;
  1220. Vector<uint8_t> shape = blend_shape_data[i];
  1221. _fix_array_compatibility(shape, old_format, new_format, vertex_count, blend_vertex_array, blend_attribute_array, blend_skin_array);
  1222. blend_shapes_new.append_array(blend_vertex_array);
  1223. }
  1224. }
  1225. //clear unused flags
  1226. print_verbose("Mesh format pre-conversion: " + itos(old_format));
  1227. print_verbose("Mesh format post-conversion: " + itos(new_format));
  1228. ERR_FAIL_COND_V(!d.has("aabb"), false);
  1229. AABB aabb_new = d["aabb"];
  1230. Vector<AABB> bone_aabb;
  1231. if (d.has("skeleton_aabb")) {
  1232. Array baabb = d["skeleton_aabb"];
  1233. bone_aabb.resize(baabb.size());
  1234. for (int i = 0; i < baabb.size(); i++) {
  1235. bone_aabb.write[i] = baabb[i];
  1236. }
  1237. }
  1238. add_surface(new_format, PrimitiveType(primitive), vertex_array, attribute_array, skin_array, vertex_count, array_index_data, index_count, aabb_new, blend_shapes_new, bone_aabb);
  1239. } else {
  1240. ERR_FAIL_V(false);
  1241. }
  1242. if (d.has("material")) {
  1243. surface_set_material(idx, d["material"]);
  1244. }
  1245. if (d.has("name")) {
  1246. surface_set_name(idx, d["name"]);
  1247. }
  1248. return true;
  1249. }
  1250. #endif // DISABLE_DEPRECATED
  1251. return false;
  1252. }
  1253. void ArrayMesh::_set_blend_shape_names(const PackedStringArray &p_names) {
  1254. ERR_FAIL_COND(surfaces.size() > 0);
  1255. blend_shapes.resize(p_names.size());
  1256. for (int i = 0; i < p_names.size(); i++) {
  1257. blend_shapes.write[i] = p_names[i];
  1258. }
  1259. if (mesh.is_valid()) {
  1260. RS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size());
  1261. }
  1262. }
  1263. PackedStringArray ArrayMesh::_get_blend_shape_names() const {
  1264. PackedStringArray sarr;
  1265. sarr.resize(blend_shapes.size());
  1266. for (int i = 0; i < blend_shapes.size(); i++) {
  1267. sarr.write[i] = blend_shapes[i];
  1268. }
  1269. return sarr;
  1270. }
  1271. Array ArrayMesh::_get_surfaces() const {
  1272. if (mesh.is_null()) {
  1273. return Array();
  1274. }
  1275. Array ret;
  1276. for (int i = 0; i < surfaces.size(); i++) {
  1277. RenderingServer::SurfaceData surface = RS::get_singleton()->mesh_get_surface(mesh, i);
  1278. Dictionary data;
  1279. data["format"] = surface.format;
  1280. data["primitive"] = surface.primitive;
  1281. data["vertex_data"] = surface.vertex_data;
  1282. data["vertex_count"] = surface.vertex_count;
  1283. if (surface.skin_data.size()) {
  1284. data["skin_data"] = surface.skin_data;
  1285. }
  1286. if (surface.attribute_data.size()) {
  1287. data["attribute_data"] = surface.attribute_data;
  1288. }
  1289. data["aabb"] = surface.aabb;
  1290. data["uv_scale"] = surface.uv_scale;
  1291. if (surface.index_count) {
  1292. data["index_data"] = surface.index_data;
  1293. data["index_count"] = surface.index_count;
  1294. };
  1295. Array lods;
  1296. for (int j = 0; j < surface.lods.size(); j++) {
  1297. lods.push_back(surface.lods[j].edge_length);
  1298. lods.push_back(surface.lods[j].index_data);
  1299. }
  1300. if (lods.size()) {
  1301. data["lods"] = lods;
  1302. }
  1303. Array bone_aabbs;
  1304. for (int j = 0; j < surface.bone_aabbs.size(); j++) {
  1305. bone_aabbs.push_back(surface.bone_aabbs[j]);
  1306. }
  1307. if (bone_aabbs.size()) {
  1308. data["bone_aabbs"] = bone_aabbs;
  1309. }
  1310. if (surface.blend_shape_data.size()) {
  1311. data["blend_shapes"] = surface.blend_shape_data;
  1312. }
  1313. if (surfaces[i].material.is_valid()) {
  1314. data["material"] = surfaces[i].material;
  1315. }
  1316. if (!surfaces[i].name.is_empty()) {
  1317. data["name"] = surfaces[i].name;
  1318. }
  1319. if (surfaces[i].is_2d) {
  1320. data["2d"] = true;
  1321. }
  1322. ret.push_back(data);
  1323. }
  1324. return ret;
  1325. }
  1326. void ArrayMesh::_create_if_empty() const {
  1327. if (!mesh.is_valid()) {
  1328. mesh = RS::get_singleton()->mesh_create();
  1329. RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)blend_shape_mode);
  1330. RS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size());
  1331. RS::get_singleton()->mesh_set_path(mesh, get_path());
  1332. }
  1333. }
  1334. void ArrayMesh::_set_surfaces(const Array &p_surfaces) {
  1335. Vector<RS::SurfaceData> surface_data;
  1336. Vector<Ref<Material>> surface_materials;
  1337. Vector<String> surface_names;
  1338. Vector<bool> surface_2d;
  1339. for (int i = 0; i < p_surfaces.size(); i++) {
  1340. RS::SurfaceData surface;
  1341. Dictionary d = p_surfaces[i];
  1342. ERR_FAIL_COND(!d.has("format"));
  1343. ERR_FAIL_COND(!d.has("primitive"));
  1344. ERR_FAIL_COND(!d.has("vertex_data"));
  1345. ERR_FAIL_COND(!d.has("vertex_count"));
  1346. ERR_FAIL_COND(!d.has("aabb"));
  1347. surface.format = d["format"];
  1348. surface.primitive = RS::PrimitiveType(int(d["primitive"]));
  1349. surface.vertex_data = d["vertex_data"];
  1350. surface.vertex_count = d["vertex_count"];
  1351. if (d.has("attribute_data")) {
  1352. surface.attribute_data = d["attribute_data"];
  1353. }
  1354. if (d.has("skin_data")) {
  1355. surface.skin_data = d["skin_data"];
  1356. }
  1357. surface.aabb = d["aabb"];
  1358. if (d.has("uv_scale")) {
  1359. surface.uv_scale = d["uv_scale"];
  1360. }
  1361. if (d.has("index_data")) {
  1362. ERR_FAIL_COND(!d.has("index_count"));
  1363. surface.index_data = d["index_data"];
  1364. surface.index_count = d["index_count"];
  1365. }
  1366. if (d.has("lods")) {
  1367. Array lods = d["lods"];
  1368. ERR_FAIL_COND(lods.size() & 1); //must be even
  1369. for (int j = 0; j < lods.size(); j += 2) {
  1370. RS::SurfaceData::LOD lod;
  1371. lod.edge_length = lods[j + 0];
  1372. lod.index_data = lods[j + 1];
  1373. surface.lods.push_back(lod);
  1374. }
  1375. }
  1376. if (d.has("bone_aabbs")) {
  1377. Array bone_aabbs = d["bone_aabbs"];
  1378. for (int j = 0; j < bone_aabbs.size(); j++) {
  1379. surface.bone_aabbs.push_back(bone_aabbs[j]);
  1380. }
  1381. }
  1382. if (d.has("blend_shapes")) {
  1383. surface.blend_shape_data = d["blend_shapes"];
  1384. }
  1385. Ref<Material> material;
  1386. if (d.has("material")) {
  1387. material = d["material"];
  1388. if (material.is_valid()) {
  1389. surface.material = material->get_rid();
  1390. }
  1391. }
  1392. String surf_name;
  1393. if (d.has("name")) {
  1394. surf_name = d["name"];
  1395. }
  1396. bool _2d = false;
  1397. if (d.has("2d")) {
  1398. _2d = d["2d"];
  1399. }
  1400. #ifndef DISABLE_DEPRECATED
  1401. uint64_t surface_version = surface.format & (ARRAY_FLAG_FORMAT_VERSION_MASK << ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  1402. if (surface_version != ARRAY_FLAG_FORMAT_CURRENT_VERSION) {
  1403. RS::get_singleton()->fix_surface_compatibility(surface, get_path());
  1404. surface_version = surface.format & (RS::ARRAY_FLAG_FORMAT_VERSION_MASK << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  1405. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION,
  1406. vformat("Surface version provided (%d) does not match current version (%d).",
  1407. (surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK,
  1408. (RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK));
  1409. }
  1410. #endif
  1411. surface_data.push_back(surface);
  1412. surface_materials.push_back(material);
  1413. surface_names.push_back(surf_name);
  1414. surface_2d.push_back(_2d);
  1415. }
  1416. if (mesh.is_valid()) {
  1417. //if mesh exists, it needs to be updated
  1418. RS::get_singleton()->mesh_clear(mesh);
  1419. for (int i = 0; i < surface_data.size(); i++) {
  1420. RS::get_singleton()->mesh_add_surface(mesh, surface_data[i]);
  1421. }
  1422. } else {
  1423. // if mesh does not exist (first time this is loaded, most likely),
  1424. // we can create it with a single call, which is a lot more efficient and thread friendly
  1425. mesh = RS::get_singleton()->mesh_create_from_surfaces(surface_data, blend_shapes.size());
  1426. RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)blend_shape_mode);
  1427. RS::get_singleton()->mesh_set_path(mesh, get_path());
  1428. }
  1429. surfaces.clear();
  1430. clear_cache();
  1431. aabb = AABB();
  1432. for (int i = 0; i < surface_data.size(); i++) {
  1433. Surface s;
  1434. s.aabb = surface_data[i].aabb;
  1435. if (i == 0) {
  1436. aabb = s.aabb;
  1437. } else {
  1438. aabb.merge_with(s.aabb);
  1439. }
  1440. s.material = surface_materials[i];
  1441. s.is_2d = surface_2d[i];
  1442. s.name = surface_names[i];
  1443. s.format = surface_data[i].format;
  1444. s.primitive = PrimitiveType(surface_data[i].primitive);
  1445. s.array_length = surface_data[i].vertex_count;
  1446. s.index_array_length = surface_data[i].index_count;
  1447. surfaces.push_back(s);
  1448. }
  1449. }
  1450. bool ArrayMesh::_get(const StringName &p_name, Variant &r_ret) const {
  1451. if (_is_generated()) {
  1452. return false;
  1453. }
  1454. String sname = p_name;
  1455. if (sname.begins_with("surface_")) {
  1456. int sl = sname.find_char('/');
  1457. if (sl == -1) {
  1458. return false;
  1459. }
  1460. int idx = sname.substr(8, sl - 8).to_int();
  1461. String what = sname.get_slicec('/', 1);
  1462. if (what == "material") {
  1463. r_ret = surface_get_material(idx);
  1464. } else if (what == "name") {
  1465. r_ret = surface_get_name(idx);
  1466. }
  1467. return true;
  1468. }
  1469. return false;
  1470. }
  1471. void ArrayMesh::reset_state() {
  1472. clear_surfaces();
  1473. clear_blend_shapes();
  1474. aabb = AABB();
  1475. blend_shape_mode = BLEND_SHAPE_MODE_RELATIVE;
  1476. custom_aabb = AABB();
  1477. }
  1478. void ArrayMesh::_get_property_list(List<PropertyInfo> *p_list) const {
  1479. if (_is_generated()) {
  1480. return;
  1481. }
  1482. for (int i = 0; i < surfaces.size(); i++) {
  1483. p_list->push_back(PropertyInfo(Variant::STRING, "surface_" + itos(i) + "/name", PROPERTY_HINT_NO_NODEPATH, "", PROPERTY_USAGE_EDITOR));
  1484. if (surfaces[i].is_2d) {
  1485. p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "CanvasItemMaterial,ShaderMaterial", PROPERTY_USAGE_EDITOR));
  1486. } else {
  1487. p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "BaseMaterial3D,ShaderMaterial", PROPERTY_USAGE_EDITOR));
  1488. }
  1489. }
  1490. }
  1491. void ArrayMesh::_recompute_aabb() {
  1492. // regenerate AABB
  1493. aabb = AABB();
  1494. for (int i = 0; i < surfaces.size(); i++) {
  1495. if (i == 0) {
  1496. aabb = surfaces[i].aabb;
  1497. } else {
  1498. aabb.merge_with(surfaces[i].aabb);
  1499. }
  1500. }
  1501. }
  1502. // TODO: Need to add binding to add_surface using future MeshSurfaceData object.
  1503. void ArrayMesh::add_surface(BitField<ArrayFormat> p_format, PrimitiveType p_primitive, const Vector<uint8_t> &p_array, const Vector<uint8_t> &p_attribute_array, const Vector<uint8_t> &p_skin_array, int p_vertex_count, const Vector<uint8_t> &p_index_array, int p_index_count, const AABB &p_aabb, const Vector<uint8_t> &p_blend_shape_data, const Vector<AABB> &p_bone_aabbs, const Vector<RS::SurfaceData::LOD> &p_lods, const Vector4 p_uv_scale) {
  1504. ERR_FAIL_COND(surfaces.size() == RS::MAX_MESH_SURFACES);
  1505. _create_if_empty();
  1506. Surface s;
  1507. s.aabb = p_aabb;
  1508. s.is_2d = p_format & ARRAY_FLAG_USE_2D_VERTICES;
  1509. s.primitive = p_primitive;
  1510. s.array_length = p_vertex_count;
  1511. s.index_array_length = p_index_count;
  1512. s.format = p_format;
  1513. surfaces.push_back(s);
  1514. _recompute_aabb();
  1515. RS::SurfaceData sd;
  1516. sd.format = p_format;
  1517. sd.primitive = RS::PrimitiveType(p_primitive);
  1518. sd.aabb = p_aabb;
  1519. sd.vertex_count = p_vertex_count;
  1520. sd.vertex_data = p_array;
  1521. sd.attribute_data = p_attribute_array;
  1522. sd.skin_data = p_skin_array;
  1523. sd.index_count = p_index_count;
  1524. sd.index_data = p_index_array;
  1525. sd.blend_shape_data = p_blend_shape_data;
  1526. sd.bone_aabbs = p_bone_aabbs;
  1527. sd.lods = p_lods;
  1528. sd.uv_scale = p_uv_scale;
  1529. RenderingServer::get_singleton()->mesh_add_surface(mesh, sd);
  1530. clear_cache();
  1531. notify_property_list_changed();
  1532. emit_changed();
  1533. }
  1534. void ArrayMesh::add_surface_from_arrays(PrimitiveType p_primitive, const Array &p_arrays, const TypedArray<Array> &p_blend_shapes, const Dictionary &p_lods, BitField<ArrayFormat> p_flags) {
  1535. ERR_FAIL_COND(p_blend_shapes.size() != blend_shapes.size());
  1536. ERR_FAIL_COND(p_arrays.size() != ARRAY_MAX);
  1537. RS::SurfaceData surface;
  1538. Error err = RS::get_singleton()->mesh_create_surface_data_from_arrays(&surface, (RenderingServer::PrimitiveType)p_primitive, p_arrays, p_blend_shapes, p_lods, p_flags);
  1539. ERR_FAIL_COND(err != OK);
  1540. /* Debug code.
  1541. print_line("format: " + itos(surface.format));
  1542. print_line("aabb: " + surface.aabb);
  1543. print_line("array size: " + itos(surface.vertex_data.size()));
  1544. print_line("vertex count: " + itos(surface.vertex_count));
  1545. print_line("index size: " + itos(surface.index_data.size()));
  1546. print_line("index count: " + itos(surface.index_count));
  1547. print_line("primitive: " + itos(surface.primitive));
  1548. */
  1549. add_surface(surface.format, PrimitiveType(surface.primitive), surface.vertex_data, surface.attribute_data, surface.skin_data, surface.vertex_count, surface.index_data, surface.index_count, surface.aabb, surface.blend_shape_data, surface.bone_aabbs, surface.lods, surface.uv_scale);
  1550. }
  1551. Array ArrayMesh::surface_get_arrays(int p_surface) const {
  1552. ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
  1553. return RenderingServer::get_singleton()->mesh_surface_get_arrays(mesh, p_surface);
  1554. }
  1555. TypedArray<Array> ArrayMesh::surface_get_blend_shape_arrays(int p_surface) const {
  1556. ERR_FAIL_INDEX_V(p_surface, surfaces.size(), TypedArray<Array>());
  1557. return RenderingServer::get_singleton()->mesh_surface_get_blend_shape_arrays(mesh, p_surface);
  1558. }
  1559. Dictionary ArrayMesh::surface_get_lods(int p_surface) const {
  1560. ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Dictionary());
  1561. return RenderingServer::get_singleton()->mesh_surface_get_lods(mesh, p_surface);
  1562. }
  1563. int ArrayMesh::get_surface_count() const {
  1564. return surfaces.size();
  1565. }
  1566. void ArrayMesh::add_blend_shape(const StringName &p_name) {
  1567. ERR_FAIL_COND_MSG(surfaces.size(), "Can't add a shape key count if surfaces are already created.");
  1568. StringName shape_name = p_name;
  1569. if (blend_shapes.has(shape_name)) {
  1570. int count = 2;
  1571. do {
  1572. shape_name = String(p_name) + " " + itos(count);
  1573. count++;
  1574. } while (blend_shapes.has(shape_name));
  1575. }
  1576. blend_shapes.push_back(shape_name);
  1577. if (mesh.is_valid()) {
  1578. RS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size());
  1579. }
  1580. }
  1581. int ArrayMesh::get_blend_shape_count() const {
  1582. return blend_shapes.size();
  1583. }
  1584. StringName ArrayMesh::get_blend_shape_name(int p_index) const {
  1585. ERR_FAIL_INDEX_V(p_index, blend_shapes.size(), StringName());
  1586. return blend_shapes[p_index];
  1587. }
  1588. void ArrayMesh::set_blend_shape_name(int p_index, const StringName &p_name) {
  1589. ERR_FAIL_INDEX(p_index, blend_shapes.size());
  1590. StringName shape_name = p_name;
  1591. int found = blend_shapes.find(shape_name);
  1592. if (found != -1 && found != p_index) {
  1593. int count = 2;
  1594. do {
  1595. shape_name = String(p_name) + " " + itos(count);
  1596. count++;
  1597. } while (blend_shapes.has(shape_name));
  1598. }
  1599. blend_shapes.write[p_index] = shape_name;
  1600. }
  1601. void ArrayMesh::clear_blend_shapes() {
  1602. ERR_FAIL_COND_MSG(surfaces.size(), "Can't set shape key count if surfaces are already created.");
  1603. blend_shapes.clear();
  1604. if (mesh.is_valid()) {
  1605. RS::get_singleton()->mesh_set_blend_shape_count(mesh, 0);
  1606. }
  1607. }
  1608. void ArrayMesh::set_blend_shape_mode(BlendShapeMode p_mode) {
  1609. blend_shape_mode = p_mode;
  1610. if (mesh.is_valid()) {
  1611. RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)p_mode);
  1612. }
  1613. }
  1614. ArrayMesh::BlendShapeMode ArrayMesh::get_blend_shape_mode() const {
  1615. return blend_shape_mode;
  1616. }
  1617. int ArrayMesh::surface_get_array_len(int p_idx) const {
  1618. ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1);
  1619. return surfaces[p_idx].array_length;
  1620. }
  1621. int ArrayMesh::surface_get_array_index_len(int p_idx) const {
  1622. ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1);
  1623. return surfaces[p_idx].index_array_length;
  1624. }
  1625. BitField<Mesh::ArrayFormat> ArrayMesh::surface_get_format(int p_idx) const {
  1626. ERR_FAIL_INDEX_V(p_idx, surfaces.size(), 0);
  1627. return surfaces[p_idx].format;
  1628. }
  1629. ArrayMesh::PrimitiveType ArrayMesh::surface_get_primitive_type(int p_idx) const {
  1630. ERR_FAIL_INDEX_V(p_idx, surfaces.size(), PRIMITIVE_LINES);
  1631. return surfaces[p_idx].primitive;
  1632. }
  1633. void ArrayMesh::surface_set_material(int p_idx, const Ref<Material> &p_material) {
  1634. ERR_FAIL_INDEX(p_idx, surfaces.size());
  1635. if (surfaces[p_idx].material == p_material) {
  1636. return;
  1637. }
  1638. surfaces.write[p_idx].material = p_material;
  1639. RenderingServer::get_singleton()->mesh_surface_set_material(mesh, p_idx, p_material.is_null() ? RID() : p_material->get_rid());
  1640. emit_changed();
  1641. }
  1642. int ArrayMesh::surface_find_by_name(const String &p_name) const {
  1643. for (int i = 0; i < surfaces.size(); i++) {
  1644. if (surfaces[i].name == p_name) {
  1645. return i;
  1646. }
  1647. }
  1648. return -1;
  1649. }
  1650. void ArrayMesh::surface_set_name(int p_idx, const String &p_name) {
  1651. ERR_FAIL_INDEX(p_idx, surfaces.size());
  1652. surfaces.write[p_idx].name = p_name;
  1653. emit_changed();
  1654. }
  1655. String ArrayMesh::surface_get_name(int p_idx) const {
  1656. ERR_FAIL_INDEX_V(p_idx, surfaces.size(), String());
  1657. return surfaces[p_idx].name;
  1658. }
  1659. void ArrayMesh::surface_update_vertex_region(int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  1660. ERR_FAIL_INDEX(p_surface, surfaces.size());
  1661. RS::get_singleton()->mesh_surface_update_vertex_region(mesh, p_surface, p_offset, p_data);
  1662. emit_changed();
  1663. }
  1664. void ArrayMesh::surface_update_attribute_region(int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  1665. ERR_FAIL_INDEX(p_surface, surfaces.size());
  1666. RS::get_singleton()->mesh_surface_update_attribute_region(mesh, p_surface, p_offset, p_data);
  1667. emit_changed();
  1668. }
  1669. void ArrayMesh::surface_update_skin_region(int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  1670. ERR_FAIL_INDEX(p_surface, surfaces.size());
  1671. RS::get_singleton()->mesh_surface_update_skin_region(mesh, p_surface, p_offset, p_data);
  1672. emit_changed();
  1673. }
  1674. void ArrayMesh::surface_set_custom_aabb(int p_idx, const AABB &p_aabb) {
  1675. ERR_FAIL_INDEX(p_idx, surfaces.size());
  1676. surfaces.write[p_idx].aabb = p_aabb;
  1677. // set custom aabb too?
  1678. emit_changed();
  1679. }
  1680. Ref<Material> ArrayMesh::surface_get_material(int p_idx) const {
  1681. ERR_FAIL_INDEX_V(p_idx, surfaces.size(), Ref<Material>());
  1682. return surfaces[p_idx].material;
  1683. }
  1684. RID ArrayMesh::get_rid() const {
  1685. _create_if_empty();
  1686. return mesh;
  1687. }
  1688. AABB ArrayMesh::get_aabb() const {
  1689. return aabb;
  1690. }
  1691. void ArrayMesh::clear_surfaces() {
  1692. if (!mesh.is_valid()) {
  1693. return;
  1694. }
  1695. RS::get_singleton()->mesh_clear(mesh);
  1696. surfaces.clear();
  1697. aabb = AABB();
  1698. }
  1699. void ArrayMesh::surface_remove(int p_surface) {
  1700. ERR_FAIL_INDEX(p_surface, surfaces.size());
  1701. RS::get_singleton()->mesh_surface_remove(mesh, p_surface);
  1702. surfaces.remove_at(p_surface);
  1703. clear_cache();
  1704. _recompute_aabb();
  1705. notify_property_list_changed();
  1706. emit_changed();
  1707. }
  1708. void ArrayMesh::set_custom_aabb(const AABB &p_custom) {
  1709. _create_if_empty();
  1710. custom_aabb = p_custom;
  1711. RS::get_singleton()->mesh_set_custom_aabb(mesh, custom_aabb);
  1712. emit_changed();
  1713. }
  1714. AABB ArrayMesh::get_custom_aabb() const {
  1715. return custom_aabb;
  1716. }
  1717. void ArrayMesh::regen_normal_maps() {
  1718. if (surfaces.is_empty()) {
  1719. return;
  1720. }
  1721. Vector<Ref<SurfaceTool>> surfs;
  1722. Vector<uint64_t> formats;
  1723. for (int i = 0; i < get_surface_count(); i++) {
  1724. Ref<SurfaceTool> st = memnew(SurfaceTool);
  1725. st->create_from(Ref<ArrayMesh>(this), i);
  1726. surfs.push_back(st);
  1727. formats.push_back(surface_get_format(i));
  1728. }
  1729. clear_surfaces();
  1730. for (int i = 0; i < surfs.size(); i++) {
  1731. surfs.write[i]->generate_tangents();
  1732. surfs.write[i]->commit(Ref<ArrayMesh>(this), formats[i]);
  1733. }
  1734. }
  1735. //dirty hack
  1736. bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, const uint8_t *p_cache_data, bool *r_use_cache, uint8_t **r_mesh_cache, int *r_mesh_cache_size, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y) = nullptr;
  1737. struct ArrayMeshLightmapSurface {
  1738. Ref<Material> material;
  1739. LocalVector<SurfaceTool::Vertex> vertices;
  1740. Mesh::PrimitiveType primitive = Mesh::PrimitiveType::PRIMITIVE_MAX;
  1741. uint64_t format = 0;
  1742. };
  1743. Error ArrayMesh::lightmap_unwrap(const Transform3D &p_base_transform, float p_texel_size) {
  1744. Vector<uint8_t> null_cache;
  1745. return lightmap_unwrap_cached(p_base_transform, p_texel_size, null_cache, null_cache, false);
  1746. }
  1747. Error ArrayMesh::lightmap_unwrap_cached(const Transform3D &p_base_transform, float p_texel_size, const Vector<uint8_t> &p_src_cache, Vector<uint8_t> &r_dst_cache, bool p_generate_cache) {
  1748. ERR_FAIL_NULL_V(array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED);
  1749. ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes.");
  1750. ERR_FAIL_COND_V_MSG(p_texel_size <= 0.0f, ERR_PARAMETER_RANGE_ERROR, "Texel size must be greater than 0.");
  1751. LocalVector<float> vertices;
  1752. LocalVector<float> normals;
  1753. LocalVector<int> indices;
  1754. LocalVector<float> uv;
  1755. LocalVector<Pair<int, int>> uv_indices;
  1756. Vector<ArrayMeshLightmapSurface> lightmap_surfaces;
  1757. // Keep only the scale
  1758. Basis basis = p_base_transform.get_basis();
  1759. Vector3 scale = Vector3(basis.get_column(0).length(), basis.get_column(1).length(), basis.get_column(2).length());
  1760. Transform3D transform;
  1761. transform.scale(scale);
  1762. Basis normal_basis = transform.basis.inverse().transposed();
  1763. for (int i = 0; i < get_surface_count(); i++) {
  1764. ArrayMeshLightmapSurface s;
  1765. s.primitive = surface_get_primitive_type(i);
  1766. ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap.");
  1767. s.format = surface_get_format(i);
  1768. ERR_FAIL_COND_V_MSG(!(s.format & ARRAY_FORMAT_NORMAL), ERR_UNAVAILABLE, "Normals are required for lightmap unwrap.");
  1769. Array arrays = surface_get_arrays(i);
  1770. s.material = surface_get_material(i);
  1771. SurfaceTool::create_vertex_array_from_arrays(arrays, s.vertices, &s.format);
  1772. PackedVector3Array rvertices = arrays[Mesh::ARRAY_VERTEX];
  1773. int vc = rvertices.size();
  1774. PackedVector3Array rnormals = arrays[Mesh::ARRAY_NORMAL];
  1775. int vertex_ofs = vertices.size() / 3;
  1776. vertices.resize((vertex_ofs + vc) * 3);
  1777. normals.resize((vertex_ofs + vc) * 3);
  1778. uv_indices.resize(vertex_ofs + vc);
  1779. for (int j = 0; j < vc; j++) {
  1780. Vector3 v = transform.xform(rvertices[j]);
  1781. Vector3 n = normal_basis.xform(rnormals[j]).normalized();
  1782. vertices[(j + vertex_ofs) * 3 + 0] = v.x;
  1783. vertices[(j + vertex_ofs) * 3 + 1] = v.y;
  1784. vertices[(j + vertex_ofs) * 3 + 2] = v.z;
  1785. normals[(j + vertex_ofs) * 3 + 0] = n.x;
  1786. normals[(j + vertex_ofs) * 3 + 1] = n.y;
  1787. normals[(j + vertex_ofs) * 3 + 2] = n.z;
  1788. uv_indices[j + vertex_ofs] = Pair<int, int>(i, j);
  1789. }
  1790. PackedInt32Array rindices = arrays[Mesh::ARRAY_INDEX];
  1791. int ic = rindices.size();
  1792. float eps = 1.19209290e-7F; // Taken from xatlas.h
  1793. if (ic == 0) {
  1794. for (int j = 0; j < vc / 3; j++) {
  1795. Vector3 p0 = transform.xform(rvertices[j * 3 + 0]);
  1796. Vector3 p1 = transform.xform(rvertices[j * 3 + 1]);
  1797. Vector3 p2 = transform.xform(rvertices[j * 3 + 2]);
  1798. if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
  1799. continue;
  1800. }
  1801. indices.push_back(vertex_ofs + j * 3 + 0);
  1802. indices.push_back(vertex_ofs + j * 3 + 1);
  1803. indices.push_back(vertex_ofs + j * 3 + 2);
  1804. }
  1805. } else {
  1806. for (int j = 0; j < ic / 3; j++) {
  1807. Vector3 p0 = transform.xform(rvertices[rindices[j * 3 + 0]]);
  1808. Vector3 p1 = transform.xform(rvertices[rindices[j * 3 + 1]]);
  1809. Vector3 p2 = transform.xform(rvertices[rindices[j * 3 + 2]]);
  1810. if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
  1811. continue;
  1812. }
  1813. indices.push_back(vertex_ofs + rindices[j * 3 + 0]);
  1814. indices.push_back(vertex_ofs + rindices[j * 3 + 1]);
  1815. indices.push_back(vertex_ofs + rindices[j * 3 + 2]);
  1816. }
  1817. }
  1818. lightmap_surfaces.push_back(s);
  1819. }
  1820. //unwrap
  1821. bool use_cache = p_generate_cache; // Used to request cache generation and to know if cache was used
  1822. uint8_t *gen_cache;
  1823. int gen_cache_size;
  1824. float *gen_uvs;
  1825. int *gen_vertices;
  1826. int *gen_indices;
  1827. int gen_vertex_count;
  1828. int gen_index_count;
  1829. int size_x;
  1830. int size_y;
  1831. bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), indices.size(), p_src_cache.ptr(), &use_cache, &gen_cache, &gen_cache_size, &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y);
  1832. if (!ok) {
  1833. return ERR_CANT_CREATE;
  1834. }
  1835. clear_surfaces();
  1836. //create surfacetools for each surface..
  1837. LocalVector<Ref<SurfaceTool>> surfaces_tools;
  1838. for (int i = 0; i < lightmap_surfaces.size(); i++) {
  1839. Ref<SurfaceTool> st;
  1840. st.instantiate();
  1841. st->begin(Mesh::PRIMITIVE_TRIANGLES);
  1842. st->set_material(lightmap_surfaces[i].material);
  1843. surfaces_tools.push_back(st); //stay there
  1844. }
  1845. print_verbose("Mesh: Gen indices: " + itos(gen_index_count));
  1846. //go through all indices
  1847. for (int i = 0; i < gen_index_count; i += 3) {
  1848. ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG);
  1849. ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG);
  1850. ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG);
  1851. ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG);
  1852. int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first;
  1853. for (int j = 0; j < 3; j++) {
  1854. SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second];
  1855. if (lightmap_surfaces[surface].format & ARRAY_FORMAT_COLOR) {
  1856. surfaces_tools[surface]->set_color(v.color);
  1857. }
  1858. if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TEX_UV) {
  1859. surfaces_tools[surface]->set_uv(v.uv);
  1860. }
  1861. if (lightmap_surfaces[surface].format & ARRAY_FORMAT_NORMAL) {
  1862. surfaces_tools[surface]->set_normal(v.normal);
  1863. }
  1864. if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TANGENT) {
  1865. Plane t;
  1866. t.normal = v.tangent;
  1867. t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1;
  1868. surfaces_tools[surface]->set_tangent(t);
  1869. }
  1870. if (lightmap_surfaces[surface].format & ARRAY_FORMAT_BONES) {
  1871. surfaces_tools[surface]->set_bones(v.bones);
  1872. }
  1873. if (lightmap_surfaces[surface].format & ARRAY_FORMAT_WEIGHTS) {
  1874. surfaces_tools[surface]->set_weights(v.weights);
  1875. }
  1876. Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]);
  1877. surfaces_tools[surface]->set_uv2(uv2);
  1878. surfaces_tools[surface]->add_vertex(v.vertex);
  1879. }
  1880. }
  1881. //generate surfaces
  1882. for (unsigned int i = 0; i < surfaces_tools.size(); i++) {
  1883. surfaces_tools[i]->index();
  1884. surfaces_tools[i]->commit(Ref<ArrayMesh>((ArrayMesh *)this), lightmap_surfaces[i].format);
  1885. }
  1886. set_lightmap_size_hint(Size2(size_x, size_y));
  1887. if (gen_cache_size > 0) {
  1888. r_dst_cache.resize(gen_cache_size);
  1889. memcpy(r_dst_cache.ptrw(), gen_cache, gen_cache_size);
  1890. memfree(gen_cache);
  1891. }
  1892. if (!use_cache) {
  1893. // Cache was not used, free the buffers
  1894. memfree(gen_vertices);
  1895. memfree(gen_indices);
  1896. memfree(gen_uvs);
  1897. }
  1898. return OK;
  1899. }
  1900. void ArrayMesh::set_shadow_mesh(const Ref<ArrayMesh> &p_mesh) {
  1901. ERR_FAIL_COND_MSG(p_mesh == this, "Cannot set a mesh as its own shadow mesh.");
  1902. shadow_mesh = p_mesh;
  1903. if (shadow_mesh.is_valid()) {
  1904. RS::get_singleton()->mesh_set_shadow_mesh(mesh, shadow_mesh->get_rid());
  1905. } else {
  1906. RS::get_singleton()->mesh_set_shadow_mesh(mesh, RID());
  1907. }
  1908. }
  1909. Ref<ArrayMesh> ArrayMesh::get_shadow_mesh() const {
  1910. return shadow_mesh;
  1911. }
  1912. void ArrayMesh::_bind_methods() {
  1913. ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ArrayMesh::add_blend_shape);
  1914. ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ArrayMesh::get_blend_shape_count);
  1915. ClassDB::bind_method(D_METHOD("get_blend_shape_name", "index"), &ArrayMesh::get_blend_shape_name);
  1916. ClassDB::bind_method(D_METHOD("set_blend_shape_name", "index", "name"), &ArrayMesh::set_blend_shape_name);
  1917. ClassDB::bind_method(D_METHOD("clear_blend_shapes"), &ArrayMesh::clear_blend_shapes);
  1918. ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ArrayMesh::set_blend_shape_mode);
  1919. ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ArrayMesh::get_blend_shape_mode);
  1920. ClassDB::bind_method(D_METHOD("add_surface_from_arrays", "primitive", "arrays", "blend_shapes", "lods", "flags"), &ArrayMesh::add_surface_from_arrays, DEFVAL(Array()), DEFVAL(Dictionary()), DEFVAL(0));
  1921. ClassDB::bind_method(D_METHOD("clear_surfaces"), &ArrayMesh::clear_surfaces);
  1922. ClassDB::bind_method(D_METHOD("surface_remove", "surf_idx"), &ArrayMesh::surface_remove);
  1923. ClassDB::bind_method(D_METHOD("surface_update_vertex_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_vertex_region);
  1924. ClassDB::bind_method(D_METHOD("surface_update_attribute_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_attribute_region);
  1925. ClassDB::bind_method(D_METHOD("surface_update_skin_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_skin_region);
  1926. ClassDB::bind_method(D_METHOD("surface_get_array_len", "surf_idx"), &ArrayMesh::surface_get_array_len);
  1927. ClassDB::bind_method(D_METHOD("surface_get_array_index_len", "surf_idx"), &ArrayMesh::surface_get_array_index_len);
  1928. ClassDB::bind_method(D_METHOD("surface_get_format", "surf_idx"), &ArrayMesh::surface_get_format);
  1929. ClassDB::bind_method(D_METHOD("surface_get_primitive_type", "surf_idx"), &ArrayMesh::surface_get_primitive_type);
  1930. ClassDB::bind_method(D_METHOD("surface_find_by_name", "name"), &ArrayMesh::surface_find_by_name);
  1931. ClassDB::bind_method(D_METHOD("surface_set_name", "surf_idx", "name"), &ArrayMesh::surface_set_name);
  1932. ClassDB::bind_method(D_METHOD("surface_get_name", "surf_idx"), &ArrayMesh::surface_get_name);
  1933. #ifndef PHYSICS_3D_DISABLED
  1934. ClassDB::bind_method(D_METHOD("create_trimesh_shape"), &ArrayMesh::create_trimesh_shape);
  1935. ClassDB::bind_method(D_METHOD("create_convex_shape", "clean", "simplify"), &ArrayMesh::create_convex_shape, DEFVAL(true), DEFVAL(false));
  1936. #endif // PHYSICS_3D_DISABLED
  1937. ClassDB::bind_method(D_METHOD("create_outline", "margin"), &ArrayMesh::create_outline);
  1938. ClassDB::bind_method(D_METHOD("regen_normal_maps"), &ArrayMesh::regen_normal_maps);
  1939. ClassDB::set_method_flags(get_class_static(), StringName("regen_normal_maps"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
  1940. ClassDB::bind_method(D_METHOD("lightmap_unwrap", "transform", "texel_size"), &ArrayMesh::lightmap_unwrap);
  1941. ClassDB::set_method_flags(get_class_static(), StringName("lightmap_unwrap"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
  1942. ClassDB::bind_method(D_METHOD("generate_triangle_mesh"), &ArrayMesh::generate_triangle_mesh);
  1943. ClassDB::bind_method(D_METHOD("set_custom_aabb", "aabb"), &ArrayMesh::set_custom_aabb);
  1944. ClassDB::bind_method(D_METHOD("get_custom_aabb"), &ArrayMesh::get_custom_aabb);
  1945. ClassDB::bind_method(D_METHOD("set_shadow_mesh", "mesh"), &ArrayMesh::set_shadow_mesh);
  1946. ClassDB::bind_method(D_METHOD("get_shadow_mesh"), &ArrayMesh::get_shadow_mesh);
  1947. ClassDB::bind_method(D_METHOD("_set_blend_shape_names", "blend_shape_names"), &ArrayMesh::_set_blend_shape_names);
  1948. ClassDB::bind_method(D_METHOD("_get_blend_shape_names"), &ArrayMesh::_get_blend_shape_names);
  1949. ClassDB::bind_method(D_METHOD("_set_surfaces", "surfaces"), &ArrayMesh::_set_surfaces);
  1950. ClassDB::bind_method(D_METHOD("_get_surfaces"), &ArrayMesh::_get_surfaces);
  1951. ADD_PROPERTY(PropertyInfo(Variant::PACKED_STRING_ARRAY, "_blend_shape_names", PROPERTY_HINT_NO_NODEPATH, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_blend_shape_names", "_get_blend_shape_names");
  1952. ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "_surfaces", PROPERTY_HINT_NO_NODEPATH, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_surfaces", "_get_surfaces");
  1953. ADD_PROPERTY(PropertyInfo(Variant::INT, "blend_shape_mode", PROPERTY_HINT_ENUM, "Normalized,Relative"), "set_blend_shape_mode", "get_blend_shape_mode");
  1954. ADD_PROPERTY(PropertyInfo(Variant::AABB, "custom_aabb", PROPERTY_HINT_NO_NODEPATH, "suffix:m"), "set_custom_aabb", "get_custom_aabb");
  1955. ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "shadow_mesh", PROPERTY_HINT_RESOURCE_TYPE, "ArrayMesh"), "set_shadow_mesh", "get_shadow_mesh");
  1956. }
  1957. void ArrayMesh::reload_from_file() {
  1958. RenderingServer::get_singleton()->mesh_clear(mesh);
  1959. surfaces.clear();
  1960. clear_blend_shapes();
  1961. clear_cache();
  1962. Resource::reload_from_file();
  1963. notify_property_list_changed();
  1964. }
  1965. ArrayMesh::ArrayMesh() {
  1966. //mesh is now created on demand
  1967. //mesh = RenderingServer::get_singleton()->mesh_create();
  1968. }
  1969. ArrayMesh::~ArrayMesh() {
  1970. if (mesh.is_valid()) {
  1971. ERR_FAIL_NULL(RenderingServer::get_singleton());
  1972. RenderingServer::get_singleton()->free(mesh);
  1973. }
  1974. }
  1975. ///////////////
  1976. void PlaceholderMesh::_bind_methods() {
  1977. ClassDB::bind_method(D_METHOD("set_aabb", "aabb"), &PlaceholderMesh::set_aabb);
  1978. ADD_PROPERTY(PropertyInfo(Variant::AABB, "aabb", PROPERTY_HINT_NONE, "suffix:m"), "set_aabb", "get_aabb");
  1979. }
  1980. PlaceholderMesh::PlaceholderMesh() {
  1981. rid = RS::get_singleton()->mesh_create();
  1982. }
  1983. PlaceholderMesh::~PlaceholderMesh() {
  1984. ERR_FAIL_NULL(RenderingServer::get_singleton());
  1985. RS::get_singleton()->free(rid);
  1986. }