123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303 |
- #[vertex]
- #version 450
- #VERSION_DEFINES
- #include "scene_forward_clustered_inc.glsl"
- /* INPUT ATTRIBS */
- layout(location = 0) in vec3 vertex_attrib;
- //only for pure render depth when normal is not used
- #ifdef NORMAL_USED
- layout(location = 1) in vec3 normal_attrib;
- #endif
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- layout(location = 2) in vec4 tangent_attrib;
- #endif
- #if defined(COLOR_USED)
- layout(location = 3) in vec4 color_attrib;
- #endif
- #ifdef UV_USED
- layout(location = 4) in vec2 uv_attrib;
- #endif
- #if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(MODE_RENDER_MATERIAL)
- layout(location = 5) in vec2 uv2_attrib;
- #endif
- #if defined(CUSTOM0_USED)
- layout(location = 6) in vec4 custom0_attrib;
- #endif
- #if defined(CUSTOM1_USED)
- layout(location = 7) in vec4 custom1_attrib;
- #endif
- #if defined(CUSTOM2_USED)
- layout(location = 8) in vec4 custom2_attrib;
- #endif
- #if defined(CUSTOM3_USED)
- layout(location = 9) in vec4 custom3_attrib;
- #endif
- #if defined(BONES_USED) || defined(USE_PARTICLE_TRAILS)
- layout(location = 10) in uvec4 bone_attrib;
- #endif
- #if defined(WEIGHTS_USED) || defined(USE_PARTICLE_TRAILS)
- layout(location = 11) in vec4 weight_attrib;
- #endif
- /* Varyings */
- layout(location = 0) out vec3 vertex_interp;
- #ifdef NORMAL_USED
- layout(location = 1) out vec3 normal_interp;
- #endif
- #if defined(COLOR_USED)
- layout(location = 2) out vec4 color_interp;
- #endif
- #ifdef UV_USED
- layout(location = 3) out vec2 uv_interp;
- #endif
- #if defined(UV2_USED) || defined(USE_LIGHTMAP)
- layout(location = 4) out vec2 uv2_interp;
- #endif
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- layout(location = 5) out vec3 tangent_interp;
- layout(location = 6) out vec3 binormal_interp;
- #endif
- #ifdef MATERIAL_UNIFORMS_USED
- layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
- #MATERIAL_UNIFORMS
- } material;
- #endif
- invariant gl_Position;
- #ifdef MODE_DUAL_PARABOLOID
- layout(location = 8) out float dp_clip;
- #endif
- layout(location = 9) out flat uint instance_index;
- #GLOBALS
- void main() {
- vec4 instance_custom = vec4(0.0);
- #if defined(COLOR_USED)
- color_interp = color_attrib;
- #endif
- instance_index = draw_call.instance_index;
- bool is_multimesh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH);
- if (!is_multimesh) {
- instance_index += gl_InstanceIndex;
- }
- mat4 world_matrix = instances.data[instance_index].transform;
- mat3 world_normal_matrix;
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_NON_UNIFORM_SCALE)) {
- world_normal_matrix = inverse(mat3(world_matrix));
- } else {
- world_normal_matrix = mat3(world_matrix);
- }
- if (is_multimesh) {
- //multimesh, instances are for it
- mat4 matrix;
- #ifdef USE_PARTICLE_TRAILS
- uint trail_size = (instances.data[instance_index].flags >> INSTANCE_FLAGS_PARTICLE_TRAIL_SHIFT) & INSTANCE_FLAGS_PARTICLE_TRAIL_MASK;
- uint stride = 3 + 1 + 1; //particles always uses this format
- uint offset = trail_size * stride * gl_InstanceIndex;
- #ifdef COLOR_USED
- vec4 pcolor;
- #endif
- {
- uint boffset = offset + bone_attrib.x * stride;
- matrix = mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.x;
- #ifdef COLOR_USED
- pcolor = transforms.data[boffset + 3] * weight_attrib.x;
- #endif
- }
- if (weight_attrib.y > 0.001) {
- uint boffset = offset + bone_attrib.y * stride;
- matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.y;
- #ifdef COLOR_USED
- pcolor += transforms.data[boffset + 3] * weight_attrib.y;
- #endif
- }
- if (weight_attrib.z > 0.001) {
- uint boffset = offset + bone_attrib.z * stride;
- matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.z;
- #ifdef COLOR_USED
- pcolor += transforms.data[boffset + 3] * weight_attrib.z;
- #endif
- }
- if (weight_attrib.w > 0.001) {
- uint boffset = offset + bone_attrib.w * stride;
- matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.w;
- #ifdef COLOR_USED
- pcolor += transforms.data[boffset + 3] * weight_attrib.w;
- #endif
- }
- instance_custom = transforms.data[offset + 4];
- #ifdef COLOR_USED
- color_interp *= pcolor;
- #endif
- #else
- uint stride = 0;
- {
- //TODO implement a small lookup table for the stride
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
- stride += 2;
- } else {
- stride += 3;
- }
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
- stride += 1;
- }
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
- stride += 1;
- }
- }
- uint offset = stride * gl_InstanceIndex;
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
- matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
- offset += 2;
- } else {
- matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0));
- offset += 3;
- }
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
- #ifdef COLOR_USED
- color_interp *= transforms.data[offset];
- #endif
- offset += 1;
- }
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
- instance_custom = transforms.data[offset];
- }
- #endif
- //transpose
- matrix = transpose(matrix);
- world_matrix = world_matrix * matrix;
- world_normal_matrix = world_normal_matrix * mat3(matrix);
- }
- vec3 vertex = vertex_attrib;
- #ifdef NORMAL_USED
- vec3 normal = normal_attrib * 2.0 - 1.0;
- #endif
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- vec3 tangent = tangent_attrib.xyz * 2.0 - 1.0;
- float binormalf = tangent_attrib.a * 2.0 - 1.0;
- vec3 binormal = normalize(cross(normal, tangent) * binormalf);
- #endif
- #ifdef UV_USED
- uv_interp = uv_attrib;
- #endif
- #if defined(UV2_USED) || defined(USE_LIGHTMAP)
- uv2_interp = uv2_attrib;
- #endif
- #ifdef OVERRIDE_POSITION
- vec4 position;
- #endif
- mat4 projection_matrix = scene_data.projection_matrix;
- //using world coordinates
- #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- vertex = (world_matrix * vec4(vertex, 1.0)).xyz;
- normal = world_normal_matrix * normal;
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- tangent = world_normal_matrix * tangent;
- binormal = world_normal_matrix * binormal;
- #endif
- #endif
- float roughness = 1.0;
- mat4 modelview = scene_data.inv_camera_matrix * world_matrix;
- mat3 modelview_normal = mat3(scene_data.inv_camera_matrix) * world_normal_matrix;
- {
- #CODE : VERTEX
- }
- // using local coordinates (default)
- #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
- vertex = (modelview * vec4(vertex, 1.0)).xyz;
- #ifdef NORMAL_USED
- normal = modelview_normal * normal;
- #endif
- #endif
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- binormal = modelview_normal * binormal;
- tangent = modelview_normal * tangent;
- #endif
- //using world coordinates
- #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- vertex = (scene_data.inv_camera_matrix * vec4(vertex, 1.0)).xyz;
- normal = mat3(scene_data.inverse_normal_matrix) * normal;
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- binormal = mat3(scene_data.camera_inverse_binormal_matrix) * binormal;
- tangent = mat3(scene_data.camera_inverse_tangent_matrix) * tangent;
- #endif
- #endif
- vertex_interp = vertex;
- #ifdef NORMAL_USED
- normal_interp = normal;
- #endif
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- tangent_interp = tangent;
- binormal_interp = binormal;
- #endif
- #ifdef MODE_RENDER_DEPTH
- #ifdef MODE_DUAL_PARABOLOID
- vertex_interp.z *= scene_data.dual_paraboloid_side;
- dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
- //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
- vec3 vtx = vertex_interp;
- float distance = length(vtx);
- vtx = normalize(vtx);
- vtx.xy /= 1.0 - vtx.z;
- vtx.z = (distance / scene_data.z_far);
- vtx.z = vtx.z * 2.0 - 1.0;
- vertex_interp = vtx;
- #endif
- #endif //MODE_RENDER_DEPTH
- #ifdef OVERRIDE_POSITION
- gl_Position = position;
- #else
- gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
- #endif
- #ifdef MODE_RENDER_DEPTH
- if (scene_data.pancake_shadows) {
- if (gl_Position.z <= 0.00001) {
- gl_Position.z = 0.00001;
- }
- }
- #endif
- #ifdef MODE_RENDER_MATERIAL
- if (scene_data.material_uv2_mode) {
- vec2 uv_offset = unpackHalf2x16(draw_call.uv_offset);
- gl_Position.xy = (uv2_attrib.xy + uv_offset) * 2.0 - 1.0;
- gl_Position.z = 0.00001;
- gl_Position.w = 1.0;
- }
- #endif
- }
- #[fragment]
- #version 450
- #VERSION_DEFINES
- #include "scene_forward_clustered_inc.glsl"
- /* Varyings */
- layout(location = 0) in vec3 vertex_interp;
- #ifdef NORMAL_USED
- layout(location = 1) in vec3 normal_interp;
- #endif
- #if defined(COLOR_USED)
- layout(location = 2) in vec4 color_interp;
- #endif
- #ifdef UV_USED
- layout(location = 3) in vec2 uv_interp;
- #endif
- #if defined(UV2_USED) || defined(USE_LIGHTMAP)
- layout(location = 4) in vec2 uv2_interp;
- #endif
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- layout(location = 5) in vec3 tangent_interp;
- layout(location = 6) in vec3 binormal_interp;
- #endif
- #ifdef MODE_DUAL_PARABOLOID
- layout(location = 8) in float dp_clip;
- #endif
- layout(location = 9) in flat uint instance_index;
- //defines to keep compatibility with vertex
- #define world_matrix instances.data[instance_index].transform
- #define projection_matrix scene_data.projection_matrix
- #if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE)
- //both required for transmittance to be enabled
- #define LIGHT_TRANSMITTANCE_USED
- #endif
- #ifdef MATERIAL_UNIFORMS_USED
- layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
- #MATERIAL_UNIFORMS
- } material;
- #endif
- #GLOBALS
- #ifdef MODE_RENDER_DEPTH
- #ifdef MODE_RENDER_MATERIAL
- layout(location = 0) out vec4 albedo_output_buffer;
- layout(location = 1) out vec4 normal_output_buffer;
- layout(location = 2) out vec4 orm_output_buffer;
- layout(location = 3) out vec4 emission_output_buffer;
- layout(location = 4) out float depth_output_buffer;
- #endif
- #ifdef MODE_RENDER_NORMAL_ROUGHNESS
- layout(location = 0) out vec4 normal_roughness_output_buffer;
- #ifdef MODE_RENDER_GIPROBE
- layout(location = 1) out uvec2 giprobe_buffer;
- #endif
- #endif //MODE_RENDER_NORMAL
- #else // RENDER DEPTH
- #ifdef MODE_MULTIPLE_RENDER_TARGETS
- layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness
- layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter)
- #else
- layout(location = 0) out vec4 frag_color;
- #endif
- #endif // RENDER DEPTH
- #ifdef ALPHA_HASH_USED
- float hash_2d(vec2 p) {
- return fract(1.0e4 * sin(17.0 * p.x + 0.1 * p.y) *
- (0.1 + abs(sin(13.0 * p.y + p.x))));
- }
- float hash_3d(vec3 p) {
- return hash_2d(vec2(hash_2d(p.xy), p.z));
- }
- float compute_alpha_hash_threshold(vec3 pos, float hash_scale) {
- vec3 dx = dFdx(pos);
- vec3 dy = dFdx(pos);
- float delta_max_sqr = max(length(dx), length(dy));
- float pix_scale = 1.0 / (hash_scale * delta_max_sqr);
- vec2 pix_scales =
- vec2(exp2(floor(log2(pix_scale))), exp2(ceil(log2(pix_scale))));
- vec2 a_thresh = vec2(hash_3d(floor(pix_scales.x * pos.xyz)),
- hash_3d(floor(pix_scales.y * pos.xyz)));
- float lerp_factor = fract(log2(pix_scale));
- float a_interp = (1.0 - lerp_factor) * a_thresh.x + lerp_factor * a_thresh.y;
- float min_lerp = min(lerp_factor, 1.0 - lerp_factor);
- vec3 cases = vec3(a_interp * a_interp / (2.0 * min_lerp * (1.0 - min_lerp)),
- (a_interp - 0.5 * min_lerp) / (1.0 - min_lerp),
- 1.0 - ((1.0 - a_interp) * (1.0 - a_interp) /
- (2.0 * min_lerp * (1.0 - min_lerp))));
- float alpha_hash_threshold =
- (lerp_factor < (1.0 - min_lerp)) ? ((lerp_factor < min_lerp) ? cases.x : cases.y) : cases.z;
- return clamp(alpha_hash_threshold, 0.0, 1.0);
- }
- #endif // ALPHA_HASH_USED
- #ifdef ALPHA_ANTIALIASING_EDGE_USED
- float calc_mip_level(vec2 texture_coord) {
- vec2 dx = dFdx(texture_coord);
- vec2 dy = dFdy(texture_coord);
- float delta_max_sqr = max(dot(dx, dx), dot(dy, dy));
- return max(0.0, 0.5 * log2(delta_max_sqr));
- }
- float compute_alpha_antialiasing_edge(float input_alpha, vec2 texture_coord, float alpha_edge) {
- input_alpha *= 1.0 + max(0, calc_mip_level(texture_coord)) * 0.25; // 0.25 mip scale, magic number
- input_alpha = (input_alpha - alpha_edge) / max(fwidth(input_alpha), 0.0001) + 0.5;
- return clamp(input_alpha, 0.0, 1.0);
- }
- #endif // ALPHA_ANTIALIASING_USED
- // This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
- // We're dividing this factor off because the overall term we'll end up looks like
- // (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
- //
- // F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
- //
- // We're basically regouping this as
- //
- // F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
- //
- // and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
- //
- // The contents of the D and G (G1) functions (GGX) are taken from
- // E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
- // Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
- #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- float G_GGX_2cos(float cos_theta_m, float alpha) {
- // Schlick's approximation
- // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
- // Eq. (19), although see Heitz (2014) the about the problems with his derivation.
- // It nevertheless approximates GGX well with k = alpha/2.
- float k = 0.5 * alpha;
- return 0.5 / (cos_theta_m * (1.0 - k) + k);
- // float cos2 = cos_theta_m * cos_theta_m;
- // float sin2 = (1.0 - cos2);
- // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
- }
- float D_GGX(float cos_theta_m, float alpha) {
- float alpha2 = alpha * alpha;
- float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
- return alpha2 / (M_PI * d * d);
- }
- float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float s_x = alpha_x * cos_phi;
- float s_y = alpha_y * sin_phi;
- return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
- }
- float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float r_x = cos_phi / alpha_x;
- float r_y = sin_phi / alpha_y;
- float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
- return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001);
- }
- float SchlickFresnel(float u) {
- float m = 1.0 - u;
- float m2 = m * m;
- return m2 * m2 * m; // pow(m,5)
- }
- float GTR1(float NdotH, float a) {
- if (a >= 1.0)
- return 1.0 / M_PI;
- float a2 = a * a;
- float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
- return (a2 - 1.0) / (M_PI * log(a2) * t);
- }
- vec3 F0(float metallic, float specular, vec3 albedo) {
- float dielectric = 0.16 * specular * specular;
- // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
- // see https://google.github.io/filament/Filament.md.html
- return mix(vec3(dielectric), albedo, vec3(metallic));
- }
- void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float attenuation, vec3 f0, uint orms, float specular_amount,
- #ifdef LIGHT_BACKLIGHT_USED
- vec3 backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- vec4 transmittance_color,
- float transmittance_depth,
- float transmittance_curve,
- float transmittance_boost,
- float transmittance_z,
- #endif
- #ifdef LIGHT_RIM_USED
- float rim, float rim_tint, vec3 rim_color,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- float clearcoat, float clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- vec3 B, vec3 T, float anisotropy,
- #endif
- #ifdef USE_SOFT_SHADOWS
- float A,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- inout float alpha,
- #endif
- inout vec3 diffuse_light, inout vec3 specular_light) {
- #if defined(LIGHT_CODE_USED)
- // light is written by the light shader
- vec3 normal = N;
- vec3 light = L;
- vec3 view = V;
- #CODE : LIGHT
- #else
- #ifdef USE_SOFT_SHADOWS
- float NdotL = min(A + dot(N, L), 1.0);
- #else
- float NdotL = dot(N, L);
- #endif
- float cNdotL = max(NdotL, 0.0); // clamped NdotL
- float NdotV = dot(N, V);
- float cNdotV = max(NdotV, 0.0);
- #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
- vec3 H = normalize(V + L);
- #endif
- #if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
- #ifdef USE_SOFT_SHADOWS
- float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
- #else
- float cNdotH = clamp(dot(N, H), 0.0, 1.0);
- #endif
- #endif
- #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
- #ifdef USE_SOFT_SHADOWS
- float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
- #else
- float cLdotH = clamp(dot(L, H), 0.0, 1.0);
- #endif
- #endif
- float metallic = unpackUnorm4x8(orms).z;
- if (metallic < 1.0) {
- float roughness = unpackUnorm4x8(orms).y;
- #if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
- #else
- float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
- #endif
- #if defined(DIFFUSE_LAMBERT_WRAP)
- // energy conserving lambert wrap shader
- diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
- #elif defined(DIFFUSE_TOON)
- diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
- #elif defined(DIFFUSE_BURLEY)
- {
- float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
- float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
- float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
- diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
- /*
- float energyBias = mix(roughness, 0.0, 0.5);
- float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
- float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
- float f0 = 1.0;
- float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
- float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
- diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
- */
- }
- #else
- // lambert
- diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
- #endif
- diffuse_light += light_color * diffuse_brdf_NL * attenuation;
- #if defined(LIGHT_BACKLIGHT_USED)
- diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
- #endif
- #if defined(LIGHT_RIM_USED)
- float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
- diffuse_light += rim_light * rim * mix(vec3(1.0), rim_color, rim_tint) * light_color;
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- #ifdef SSS_MODE_SKIN
- {
- float scale = 8.25 / transmittance_depth;
- float d = scale * abs(transmittance_z);
- float dd = -d * d;
- vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
- vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
- vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
- vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
- vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
- vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
- diffuse_light += profile * transmittance_color.a * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI);
- }
- #else
- if (transmittance_depth > 0.0) {
- float fade = clamp(abs(transmittance_z / transmittance_depth), 0.0, 1.0);
- fade = pow(max(0.0, 1.0 - fade), transmittance_curve);
- fade *= clamp(transmittance_boost - NdotL, 0.0, 1.0);
- diffuse_light += transmittance_color.rgb * light_color * (1.0 / M_PI) * transmittance_color.a * fade;
- }
- #endif //SSS_MODE_SKIN
- #endif //LIGHT_TRANSMITTANCE_USED
- }
- float roughness = unpackUnorm4x8(orms).y;
- if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
- // D
- #if defined(SPECULAR_BLINN)
- //normalized blinn
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess) * cNdotL;
- blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- float intensity = blinn;
- specular_light += light_color * intensity * attenuation * specular_amount;
- #elif defined(SPECULAR_PHONG)
- vec3 R = normalize(-reflect(L, N));
- float cRdotV = clamp(A + dot(R, V), 0.0, 1.0);
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float phong = pow(cRdotV, shininess);
- phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
- specular_light += light_color * intensity * attenuation * specular_amount;
- #elif defined(SPECULAR_TOON)
- vec3 R = normalize(-reflect(L, N));
- float RdotV = dot(R, V);
- float mid = 1.0 - roughness;
- mid *= mid;
- float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
- diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection
- #elif defined(SPECULAR_DISABLED)
- // none..
- #elif defined(SPECULAR_SCHLICK_GGX)
- // shlick+ggx as default
- #if defined(LIGHT_ANISOTROPY_USED)
- float alpha_ggx = roughness * roughness;
- float aspect = sqrt(1.0 - anisotropy * 0.9);
- float ax = alpha_ggx / aspect;
- float ay = alpha_ggx * aspect;
- float XdotH = dot(T, H);
- float YdotH = dot(B, H);
- float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
- float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
- #else
- float alpha_ggx = roughness * roughness;
- float D = D_GGX(cNdotH, alpha_ggx);
- float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
- #endif
- // F
- float cLdotH5 = SchlickFresnel(cLdotH);
- vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
- vec3 specular_brdf_NL = cNdotL * D * F * G;
- specular_light += specular_brdf_NL * light_color * attenuation * specular_amount;
- #endif
- #if defined(LIGHT_CLEARCOAT_USED)
- #if !defined(SPECULAR_SCHLICK_GGX)
- float cLdotH5 = SchlickFresnel(cLdotH);
- #endif
- float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
- float Fr = mix(.04, 1.0, cLdotH5);
- float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
- float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
- specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount;
- #endif
- }
- #ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(1.0 - attenuation), 0.0, 1.0));
- #endif
- #endif //defined(LIGHT_CODE_USED)
- }
- #ifndef USE_NO_SHADOWS
- // Interleaved Gradient Noise
- // http://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
- float quick_hash(vec2 pos) {
- const vec3 magic = vec3(0.06711056f, 0.00583715f, 52.9829189f);
- return fract(magic.z * fract(dot(pos, magic.xy)));
- }
- float sample_directional_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
- vec2 pos = coord.xy;
- float depth = coord.z;
- //if only one sample is taken, take it from the center
- if (scene_data.directional_soft_shadow_samples == 1) {
- return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
- }
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- float avg = 0.0;
- for (uint i = 0; i < scene_data.directional_soft_shadow_samples; i++) {
- avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.directional_soft_shadow_kernel[i].xy), depth, 1.0));
- }
- return avg * (1.0 / float(scene_data.directional_soft_shadow_samples));
- }
- float sample_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
- vec2 pos = coord.xy;
- float depth = coord.z;
- //if only one sample is taken, take it from the center
- if (scene_data.soft_shadow_samples == 1) {
- return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
- }
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- float avg = 0.0;
- for (uint i = 0; i < scene_data.soft_shadow_samples; i++) {
- avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.soft_shadow_kernel[i].xy), depth, 1.0));
- }
- return avg * (1.0 / float(scene_data.soft_shadow_samples));
- }
- float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex_scale) {
- //find blocker
- float blocker_count = 0.0;
- float blocker_average = 0.0;
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) {
- vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
- float d = textureLod(sampler2D(shadow, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
- if (d < pssm_coord.z) {
- blocker_average += d;
- blocker_count += 1.0;
- }
- }
- if (blocker_count > 0.0) {
- //blockers found, do soft shadow
- blocker_average /= blocker_count;
- float penumbra = (pssm_coord.z - blocker_average) / blocker_average;
- tex_scale *= penumbra;
- float s = 0.0;
- for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) {
- vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
- s += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(suv, pssm_coord.z, 1.0));
- }
- return s / float(scene_data.directional_penumbra_shadow_samples);
- } else {
- //no blockers found, so no shadow
- return 1.0;
- }
- }
- #endif //USE_NO_SHADOWS
- float get_omni_attenuation(float distance, float inv_range, float decay) {
- float nd = distance * inv_range;
- nd *= nd;
- nd *= nd; // nd^4
- nd = max(1.0 - nd, 0.0);
- nd *= nd; // nd^2
- return nd * pow(max(distance, 0.0001), -decay);
- }
- float light_process_omni_shadow(uint idx, vec3 vertex, vec3 normal) {
- #ifndef USE_NO_SHADOWS
- if (omni_lights.data[idx].shadow_enabled) {
- // there is a shadowmap
- vec3 light_rel_vec = omni_lights.data[idx].position - vertex;
- float light_length = length(light_rel_vec);
- vec4 v = vec4(vertex, 1.0);
- vec4 splane = (omni_lights.data[idx].shadow_matrix * v);
- float shadow_len = length(splane.xyz); //need to remember shadow len from here
- {
- vec3 nofs = normal_interp * omni_lights.data[idx].shadow_normal_bias / omni_lights.data[idx].inv_radius;
- nofs *= (1.0 - max(0.0, dot(normalize(light_rel_vec), normalize(normal_interp))));
- v.xyz += nofs;
- splane = (omni_lights.data[idx].shadow_matrix * v);
- }
- float shadow;
- #ifdef USE_SOFT_SHADOWS
- if (omni_lights.data[idx].soft_shadow_size > 0.0) {
- //soft shadow
- //find blocker
- float blocker_count = 0.0;
- float blocker_average = 0.0;
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- vec3 normal = normalize(splane.xyz);
- vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
- vec3 tangent = normalize(cross(v0, normal));
- vec3 bitangent = normalize(cross(tangent, normal));
- float z_norm = shadow_len * omni_lights.data[idx].inv_radius;
- tangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale;
- bitangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale;
- for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
- vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy;
- vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y;
- pos = normalize(pos);
- vec4 uv_rect = omni_lights.data[idx].atlas_rect;
- if (pos.z >= 0.0) {
- pos.z += 1.0;
- uv_rect.y += uv_rect.w;
- } else {
- pos.z = 1.0 - pos.z;
- }
- pos.xy /= pos.z;
- pos.xy = pos.xy * 0.5 + 0.5;
- pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
- float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), pos.xy, 0.0).r;
- if (d < z_norm) {
- blocker_average += d;
- blocker_count += 1.0;
- }
- }
- if (blocker_count > 0.0) {
- //blockers found, do soft shadow
- blocker_average /= blocker_count;
- float penumbra = (z_norm - blocker_average) / blocker_average;
- tangent *= penumbra;
- bitangent *= penumbra;
- z_norm -= omni_lights.data[idx].inv_radius * omni_lights.data[idx].shadow_bias;
- shadow = 0.0;
- for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
- vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy;
- vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y;
- pos = normalize(pos);
- vec4 uv_rect = omni_lights.data[idx].atlas_rect;
- if (pos.z >= 0.0) {
- pos.z += 1.0;
- uv_rect.y += uv_rect.w;
- } else {
- pos.z = 1.0 - pos.z;
- }
- pos.xy /= pos.z;
- pos.xy = pos.xy * 0.5 + 0.5;
- pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
- shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(pos.xy, z_norm, 1.0));
- }
- shadow /= float(scene_data.penumbra_shadow_samples);
- } else {
- //no blockers found, so no shadow
- shadow = 1.0;
- }
- } else {
- #endif
- splane.xyz = normalize(splane.xyz);
- vec4 clamp_rect = omni_lights.data[idx].atlas_rect;
- if (splane.z >= 0.0) {
- splane.z += 1.0;
- clamp_rect.y += clamp_rect.w;
- } else {
- splane.z = 1.0 - splane.z;
- }
- splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
- splane.z = (shadow_len - omni_lights.data[idx].shadow_bias) * omni_lights.data[idx].inv_radius;
- splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
- splane.w = 1.0; //needed? i think it should be 1 already
- shadow = sample_pcf_shadow(shadow_atlas, omni_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, splane);
- #ifdef USE_SOFT_SHADOWS
- }
- #endif
- return shadow;
- }
- #endif
- return 1.0;
- }
- void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow,
- #ifdef LIGHT_BACKLIGHT_USED
- vec3 backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- vec4 transmittance_color,
- float transmittance_depth,
- float transmittance_curve,
- float transmittance_boost,
- #endif
- #ifdef LIGHT_RIM_USED
- float rim, float rim_tint, vec3 rim_color,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- float clearcoat, float clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- vec3 binormal, vec3 tangent, float anisotropy,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- inout float alpha,
- #endif
- inout vec3 diffuse_light, inout vec3 specular_light) {
- vec3 light_rel_vec = omni_lights.data[idx].position - vertex;
- float light_length = length(light_rel_vec);
- float omni_attenuation = get_omni_attenuation(light_length, omni_lights.data[idx].inv_radius, omni_lights.data[idx].attenuation);
- float light_attenuation = omni_attenuation;
- vec3 color = omni_lights.data[idx].color;
- #ifdef USE_SOFT_SHADOWS
- float size_A = 0.0;
- if (omni_lights.data[idx].size > 0.0) {
- float t = omni_lights.data[idx].size / max(0.001, light_length);
- size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
- }
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- float transmittance_z = transmittance_depth; //no transmittance by default
- transmittance_color.a *= light_attenuation;
- {
- vec4 clamp_rect = omni_lights.data[idx].atlas_rect;
- //redo shadowmapping, but shrink the model a bit to avoid arctifacts
- vec4 splane = (omni_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * omni_lights.data[idx].transmittance_bias, 1.0));
- shadow_len = length(splane.xyz);
- splane = normalize(splane.xyz);
- if (splane.z >= 0.0) {
- splane.z += 1.0;
- } else {
- splane.z = 1.0 - splane.z;
- }
- splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
- splane.z = shadow_len * omni_lights.data[idx].inv_radius;
- splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
- splane.w = 1.0; //needed? i think it should be 1 already
- float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
- transmittance_z = (splane.z - shadow_z) / omni_lights.data[idx].inv_radius;
- }
- #endif
- #if 0
- if (omni_lights.data[idx].projector_rect != vec4(0.0)) {
- vec3 local_v = (omni_lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
- local_v = normalize(local_v);
- vec4 atlas_rect = omni_lights.data[idx].projector_rect;
- if (local_v.z >= 0.0) {
- local_v.z += 1.0;
- atlas_rect.y += atlas_rect.w;
- } else {
- local_v.z = 1.0 - local_v.z;
- }
- local_v.xy /= local_v.z;
- local_v.xy = local_v.xy * 0.5 + 0.5;
- vec2 proj_uv = local_v.xy * atlas_rect.zw;
- vec2 proj_uv_ddx;
- vec2 proj_uv_ddy;
- {
- vec3 local_v_ddx = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz;
- local_v_ddx = normalize(local_v_ddx);
- if (local_v_ddx.z >= 0.0) {
- local_v_ddx.z += 1.0;
- } else {
- local_v_ddx.z = 1.0 - local_v_ddx.z;
- }
- local_v_ddx.xy /= local_v_ddx.z;
- local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5;
- proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv;
- vec3 local_v_ddy = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz;
- local_v_ddy = normalize(local_v_ddy);
- if (local_v_ddy.z >= 0.0) {
- local_v_ddy.z += 1.0;
- } else {
- local_v_ddy.z = 1.0 - local_v_ddy.z;
- }
- local_v_ddy.xy /= local_v_ddy.z;
- local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5;
- proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv;
- }
- vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy);
- no_shadow = mix(no_shadow, proj.rgb, proj.a);
- }
- #endif
- light_attenuation *= shadow;
- light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, omni_lights.data[idx].specular_amount,
- #ifdef LIGHT_BACKLIGHT_USED
- backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_curve,
- transmittance_boost,
- transmittance_z,
- #endif
- #ifdef LIGHT_RIM_USED
- rim * omni_attenuation, rim_tint, rim_color,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- binormal, tangent, anisotropy,
- #endif
- #ifdef USE_SOFT_SHADOWS
- size_A,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- alpha,
- #endif
- diffuse_light,
- specular_light);
- }
- float light_process_spot_shadow(uint idx, vec3 vertex, vec3 normal) {
- #ifndef USE_NO_SHADOWS
- if (spot_lights.data[idx].shadow_enabled) {
- vec3 light_rel_vec = spot_lights.data[idx].position - vertex;
- float light_length = length(light_rel_vec);
- vec3 spot_dir = spot_lights.data[idx].direction;
- //there is a shadowmap
- vec4 v = vec4(vertex, 1.0);
- v.xyz -= spot_dir * spot_lights.data[idx].shadow_bias;
- float z_norm = dot(spot_dir, -light_rel_vec) * spot_lights.data[idx].inv_radius;
- float depth_bias_scale = 1.0 / (max(0.0001, z_norm)); //the closer to the light origin, the more you have to offset to reach 1px in the map
- vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(spot_dir, -normalize(normal_interp)))) * spot_lights.data[idx].shadow_normal_bias * depth_bias_scale;
- normal_bias -= spot_dir * dot(spot_dir, normal_bias); //only XY, no Z
- v.xyz += normal_bias;
- //adjust with bias
- z_norm = dot(spot_dir, v.xyz - spot_lights.data[idx].position) * spot_lights.data[idx].inv_radius;
- float shadow;
- vec4 splane = (spot_lights.data[idx].shadow_matrix * v);
- splane /= splane.w;
- #ifdef USE_SOFT_SHADOWS
- if (spot_lights.data[idx].soft_shadow_size > 0.0) {
- //soft shadow
- //find blocker
- vec2 shadow_uv = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy;
- float blocker_count = 0.0;
- float blocker_average = 0.0;
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- float uv_size = spot_lights.data[idx].soft_shadow_size * z_norm * spot_lights.data[idx].soft_shadow_scale;
- vec2 clamp_max = spot_lights.data[idx].atlas_rect.xy + spot_lights.data[idx].atlas_rect.zw;
- for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
- vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size;
- suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max);
- float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
- if (d < z_norm) {
- blocker_average += d;
- blocker_count += 1.0;
- }
- }
- if (blocker_count > 0.0) {
- //blockers found, do soft shadow
- blocker_average /= blocker_count;
- float penumbra = (z_norm - blocker_average) / blocker_average;
- uv_size *= penumbra;
- shadow = 0.0;
- for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
- vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size;
- suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max);
- shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, z_norm, 1.0));
- }
- shadow /= float(scene_data.penumbra_shadow_samples);
- } else {
- //no blockers found, so no shadow
- shadow = 1.0;
- }
- } else {
- #endif
- //hard shadow
- vec4 shadow_uv = vec4(splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy, splane.z, 1.0);
- shadow = sample_pcf_shadow(shadow_atlas, spot_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, shadow_uv);
- #ifdef USE_SOFT_SHADOWS
- }
- #endif
- return shadow;
- }
- #endif //USE_NO_SHADOWS
- return 1.0;
- }
- void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow,
- #ifdef LIGHT_BACKLIGHT_USED
- vec3 backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- vec4 transmittance_color,
- float transmittance_depth,
- float transmittance_curve,
- float transmittance_boost,
- #endif
- #ifdef LIGHT_RIM_USED
- float rim, float rim_tint, vec3 rim_color,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- float clearcoat, float clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- vec3 binormal, vec3 tangent, float anisotropy,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- inout float alpha,
- #endif
- inout vec3 diffuse_light,
- inout vec3 specular_light) {
- vec3 light_rel_vec = spot_lights.data[idx].position - vertex;
- float light_length = length(light_rel_vec);
- float spot_attenuation = get_omni_attenuation(light_length, spot_lights.data[idx].inv_radius, spot_lights.data[idx].attenuation);
- vec3 spot_dir = spot_lights.data[idx].direction;
- float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights.data[idx].cone_angle);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights.data[idx].cone_angle));
- spot_attenuation *= 1.0 - pow(spot_rim, spot_lights.data[idx].cone_attenuation);
- float light_attenuation = spot_attenuation;
- vec3 color = spot_lights.data[idx].color;
- float specular_amount = spot_lights.data[idx].specular_amount;
- #ifdef USE_SOFT_SHADOWS
- float size_A = 0.0;
- if (spot_lights.data[idx].size > 0.0) {
- float t = spot_lights.data[idx].size / max(0.001, light_length);
- size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
- }
- #endif
- /*
- if (spot_lights.data[idx].atlas_rect!=vec4(0.0)) {
- //use projector texture
- }
- */
- #ifdef LIGHT_TRANSMITTANCE_USED
- float transmittance_z = transmittance_depth;
- transmittance_color.a *= light_attenuation;
- {
- splane = (spot_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * spot_lights.data[idx].transmittance_bias, 1.0));
- splane /= splane.w;
- splane.xy = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy;
- float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
- //reconstruct depth
- shadow_z /= spot_lights.data[idx].inv_radius;
- //distance to light plane
- float z = dot(spot_dir, -light_rel_vec);
- transmittance_z = z - shadow_z;
- }
- #endif //LIGHT_TRANSMITTANCE_USED
- light_attenuation *= shadow;
- light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, spot_lights.data[idx].specular_amount,
- #ifdef LIGHT_BACKLIGHT_USED
- backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_curve,
- transmittance_boost,
- transmittance_z,
- #endif
- #ifdef LIGHT_RIM_USED
- rim * spot_attenuation, rim_tint, rim_color,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- binormal, tangent, anisotropy,
- #endif
- #ifdef USE_SOFT_SHADOW
- size_A,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- alpha,
- #endif
- diffuse_light, specular_light);
- }
- void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughness, vec3 ambient_light, vec3 specular_light, inout vec4 ambient_accum, inout vec4 reflection_accum) {
- vec3 box_extents = reflections.data[ref_index].box_extents;
- vec3 local_pos = (reflections.data[ref_index].local_matrix * vec4(vertex, 1.0)).xyz;
- if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
- return;
- }
- vec3 ref_vec = normalize(reflect(vertex, normal));
- vec3 inner_pos = abs(local_pos / box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
- //make blend more rounded
- blend = mix(length(inner_pos), blend, blend);
- blend *= blend;
- blend = max(0.0, 1.0 - blend);
- if (reflections.data[ref_index].intensity > 0.0) { // compute reflection
- vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz;
- if (reflections.data[ref_index].box_project) { //box project
- vec3 nrdir = normalize(local_ref_vec);
- vec3 rbmax = (box_extents - local_pos) / nrdir;
- vec3 rbmin = (-box_extents - local_pos) / nrdir;
- vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));
- float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
- vec3 posonbox = local_pos + nrdir * fa;
- local_ref_vec = posonbox - reflections.data[ref_index].box_offset;
- }
- vec4 reflection;
- reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_ref_vec, reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb;
- if (reflections.data[ref_index].exterior) {
- reflection.rgb = mix(specular_light, reflection.rgb, blend);
- }
- reflection.rgb *= reflections.data[ref_index].intensity; //intensity
- reflection.a = blend;
- reflection.rgb *= reflection.a;
- reflection_accum += reflection;
- }
- switch (reflections.data[ref_index].ambient_mode) {
- case REFLECTION_AMBIENT_DISABLED: {
- //do nothing
- } break;
- case REFLECTION_AMBIENT_ENVIRONMENT: {
- //do nothing
- vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz;
- vec4 ambient_out;
- ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb;
- ambient_out.a = blend;
- if (reflections.data[ref_index].exterior) {
- ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
- }
- ambient_out.rgb *= ambient_out.a;
- ambient_accum += ambient_out;
- } break;
- case REFLECTION_AMBIENT_COLOR: {
- vec4 ambient_out;
- ambient_out.a = blend;
- ambient_out.rgb = reflections.data[ref_index].ambient;
- if (reflections.data[ref_index].exterior) {
- ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
- }
- ambient_out.rgb *= ambient_out.a;
- ambient_accum += ambient_out;
- } break;
- }
- }
- #ifdef USE_FORWARD_GI
- //standard voxel cone trace
- vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
- float dist = p_bias;
- vec4 color = vec4(0.0);
- while (dist < max_distance && color.a < 0.95) {
- float diameter = max(1.0, 2.0 * tan_half_angle * dist);
- vec3 uvw_pos = (pos + dist * direction) * cell_size;
- float half_diameter = diameter * 0.5;
- //check if outside, then break
- if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) {
- break;
- }
- vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2(diameter));
- float a = (1.0 - color.a);
- color += a * scolor;
- dist += half_diameter;
- }
- return color;
- }
- vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
- float dist = p_bias;
- vec4 color = vec4(0.0);
- float radius = max(0.5, tan_half_angle * dist);
- float lod_level = log2(radius * 2.0);
- while (dist < max_distance && color.a < 0.95) {
- vec3 uvw_pos = (pos + dist * direction) * cell_size;
- //check if outside, then break
- if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) {
- break;
- }
- vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level);
- lod_level += 1.0;
- float a = (1.0 - color.a);
- scolor *= a;
- color += scolor;
- dist += radius;
- radius = max(0.5, tan_half_angle * dist);
- }
- return color;
- }
- void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3 normal_xform, float roughness, vec3 ambient, vec3 environment, inout vec4 out_spec, inout vec4 out_diff) {
- position = (gi_probes.data[index].xform * vec4(position, 1.0)).xyz;
- ref_vec = normalize((gi_probes.data[index].xform * vec4(ref_vec, 0.0)).xyz);
- normal = normalize((gi_probes.data[index].xform * vec4(normal, 0.0)).xyz);
- position += normal * gi_probes.data[index].normal_bias;
- //this causes corrupted pixels, i have no idea why..
- if (any(bvec2(any(lessThan(position, vec3(0.0))), any(greaterThan(position, gi_probes.data[index].bounds))))) {
- return;
- }
- vec3 blendv = abs(position / gi_probes.data[index].bounds * 2.0 - 1.0);
- float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0);
- //float blend=1.0;
- float max_distance = length(gi_probes.data[index].bounds);
- vec3 cell_size = 1.0 / gi_probes.data[index].bounds;
- //radiance
- #define MAX_CONE_DIRS 4
- vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
- vec3(0.707107, 0.0, 0.707107),
- vec3(0.0, 0.707107, 0.707107),
- vec3(-0.707107, 0.0, 0.707107),
- vec3(0.0, -0.707107, 0.707107));
- float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
- float cone_angle_tan = 0.98269;
- vec3 light = vec3(0.0);
- for (int i = 0; i < MAX_CONE_DIRS; i++) {
- vec3 dir = normalize((gi_probes.data[index].xform * vec4(normal_xform * cone_dirs[i], 0.0)).xyz);
- vec4 cone_light = voxel_cone_trace_45_degrees(gi_probe_textures[index], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
- if (gi_probes.data[index].blend_ambient) {
- cone_light.rgb = mix(ambient, cone_light.rgb, min(1.0, cone_light.a / 0.95));
- }
- light += cone_weights[i] * cone_light.rgb;
- }
- light *= gi_probes.data[index].dynamic_range;
- out_diff += vec4(light * blend, blend);
- //irradiance
- vec4 irr_light = voxel_cone_trace(gi_probe_textures[index], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, gi_probes.data[index].bias);
- if (gi_probes.data[index].blend_ambient) {
- irr_light.rgb = mix(environment, irr_light.rgb, min(1.0, irr_light.a / 0.95));
- }
- irr_light.rgb *= gi_probes.data[index].dynamic_range;
- //irr_light=vec3(0.0);
- out_spec += vec4(irr_light.rgb * blend, blend);
- }
- vec2 octahedron_wrap(vec2 v) {
- vec2 signVal;
- signVal.x = v.x >= 0.0 ? 1.0 : -1.0;
- signVal.y = v.y >= 0.0 ? 1.0 : -1.0;
- return (1.0 - abs(v.yx)) * signVal;
- }
- vec2 octahedron_encode(vec3 n) {
- // https://twitter.com/Stubbesaurus/status/937994790553227264
- n /= (abs(n.x) + abs(n.y) + abs(n.z));
- n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy);
- n.xy = n.xy * 0.5 + 0.5;
- return n.xy;
- }
- void sdfgi_process(uint cascade, vec3 cascade_pos, vec3 cam_pos, vec3 cam_normal, vec3 cam_specular_normal, bool use_specular, float roughness, out vec3 diffuse_light, out vec3 specular_light, out float blend) {
- cascade_pos += cam_normal * sdfgi.normal_bias;
- vec3 base_pos = floor(cascade_pos);
- //cascade_pos += mix(vec3(0.0),vec3(0.01),lessThan(abs(cascade_pos-base_pos),vec3(0.01))) * cam_normal;
- ivec3 probe_base_pos = ivec3(base_pos);
- vec4 diffuse_accum = vec4(0.0);
- vec3 specular_accum;
- ivec3 tex_pos = ivec3(probe_base_pos.xy, int(cascade));
- tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size;
- tex_pos.xy = tex_pos.xy * (SDFGI_OCT_SIZE + 2) + ivec2(1);
- vec3 diffuse_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size;
- vec3 specular_posf;
- if (use_specular) {
- specular_accum = vec3(0.0);
- specular_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_specular_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size;
- }
- vec4 light_accum = vec4(0.0);
- float weight_accum = 0.0;
- for (uint j = 0; j < 8; j++) {
- ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
- ivec3 probe_posi = probe_base_pos;
- probe_posi += offset;
- // Compute weight
- vec3 probe_pos = vec3(probe_posi);
- vec3 probe_to_pos = cascade_pos - probe_pos;
- vec3 probe_dir = normalize(-probe_to_pos);
- vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
- float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(cam_normal, probe_dir));
- // Compute lightprobe occlusion
- if (sdfgi.use_occlusion) {
- ivec3 occ_indexv = abs((sdfgi.cascades[cascade].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4);
- vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3)));
- vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw;
- occ_pos.z += float(cascade);
- if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures
- occ_pos.x += 1.0;
- }
- occ_pos *= sdfgi.occlusion_renormalize;
- float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_cascades, material_samplers[SAMPLER_LINEAR_CLAMP]), occ_pos, 0.0), occ_mask);
- weight *= max(occlusion, 0.01);
- }
- // Compute lightprobe texture position
- vec3 diffuse;
- vec3 pos_uvw = diffuse_posf;
- pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy;
- pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z;
- diffuse = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb;
- diffuse_accum += vec4(diffuse * weight, weight);
- if (use_specular) {
- vec3 specular = vec3(0.0);
- vec3 pos_uvw = specular_posf;
- pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy;
- pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z;
- if (roughness < 0.99) {
- specular = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw + vec3(0, 0, float(sdfgi.max_cascades)), 0.0).rgb;
- }
- if (roughness > 0.5) {
- specular = mix(specular, textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb, (roughness - 0.5) * 2.0);
- }
- specular_accum += specular * weight;
- }
- }
- if (diffuse_accum.a > 0.0) {
- diffuse_accum.rgb /= diffuse_accum.a;
- }
- diffuse_light = diffuse_accum.rgb;
- if (use_specular) {
- if (diffuse_accum.a > 0.0) {
- specular_accum /= diffuse_accum.a;
- }
- specular_light = specular_accum;
- }
- {
- //process blend
- float blend_from = (float(sdfgi.probe_axis_size - 1) / 2.0) - 2.5;
- float blend_to = blend_from + 2.0;
- vec3 inner_pos = cam_pos * sdfgi.cascades[cascade].to_probe;
- float len = length(inner_pos);
- inner_pos = abs(normalize(inner_pos));
- len *= max(inner_pos.x, max(inner_pos.y, inner_pos.z));
- if (len >= blend_from) {
- blend = smoothstep(blend_from, blend_to, len);
- } else {
- blend = 0.0;
- }
- }
- }
- #endif //USE_FORWARD_GI
- #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- #ifndef MODE_RENDER_DEPTH
- vec4 volumetric_fog_process(vec2 screen_uv, float z) {
- vec3 fog_pos = vec3(screen_uv, z * scene_data.volumetric_fog_inv_length);
- if (fog_pos.z < 0.0) {
- return vec4(0.0);
- } else if (fog_pos.z < 1.0) {
- fog_pos.z = pow(fog_pos.z, scene_data.volumetric_fog_detail_spread);
- }
- return texture(sampler3D(volumetric_fog_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), fog_pos);
- }
- vec4 fog_process(vec3 vertex) {
- vec3 fog_color = scene_data.fog_light_color;
- if (scene_data.fog_aerial_perspective > 0.0) {
- vec3 sky_fog_color = vec3(0.0);
- vec3 cube_view = scene_data.radiance_inverse_xform * vertex;
- // mip_level always reads from the second mipmap and higher so the fog is always slightly blurred
- float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near));
- #ifdef USE_RADIANCE_CUBEMAP_ARRAY
- float lod, blend;
- blend = modf(mip_level * MAX_ROUGHNESS_LOD, lod);
- sky_fog_color = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod)).rgb;
- sky_fog_color = mix(sky_fog_color, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod + 1)).rgb, blend);
- #else
- sky_fog_color = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_view, mip_level * MAX_ROUGHNESS_LOD).rgb;
- #endif //USE_RADIANCE_CUBEMAP_ARRAY
- fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective);
- }
- if (scene_data.fog_sun_scatter > 0.001) {
- vec4 sun_scatter = vec4(0.0);
- float sun_total = 0.0;
- vec3 view = normalize(vertex);
- for (uint i = 0; i < scene_data.directional_light_count; i++) {
- vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy;
- float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0);
- fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
- }
- }
- float fog_amount = 1.0 - exp(min(0.0, vertex.z * scene_data.fog_density));
- if (abs(scene_data.fog_height_density) > 0.001) {
- float y = (scene_data.camera_matrix * vec4(vertex, 1.0)).y;
- float y_dist = scene_data.fog_height - y;
- float vfog_amount = clamp(exp(y_dist * scene_data.fog_height_density), 0.0, 1.0);
- fog_amount = max(vfog_amount, fog_amount);
- }
- return vec4(fog_color, fog_amount);
- }
- void cluster_get_item_range(uint p_offset, out uint item_min, out uint item_max, out uint item_from, out uint item_to) {
- uint item_min_max = cluster_buffer.data[p_offset];
- item_min = item_min_max & 0xFFFF;
- item_max = item_min_max >> 16;
- ;
- item_from = item_min >> 5;
- item_to = (item_max == 0) ? 0 : ((item_max - 1) >> 5) + 1; //side effect of how it is stored, as item_max 0 means no elements
- }
- uint cluster_get_range_clip_mask(uint i, uint z_min, uint z_max) {
- int local_min = clamp(int(z_min) - int(i) * 32, 0, 31);
- int mask_width = min(int(z_max) - int(z_min), 32 - local_min);
- return bitfieldInsert(uint(0), uint(0xFFFFFFFF), local_min, mask_width);
- }
- float blur_shadow(float shadow) {
- return shadow;
- #if 0
- //disabling for now, will investigate later
- float interp_shadow = shadow;
- if (gl_HelperInvocation) {
- interp_shadow = -4.0; // technically anything below -4 will do but just to make sure
- }
- uvec2 fc2 = uvec2(gl_FragCoord.xy);
- interp_shadow -= dFdx(interp_shadow) * (float(fc2.x & 1) - 0.5);
- interp_shadow -= dFdy(interp_shadow) * (float(fc2.y & 1) - 0.5);
- if (interp_shadow >= 0.0) {
- shadow = interp_shadow;
- }
- return shadow;
- #endif
- }
- #endif //!MODE_RENDER DEPTH
- void main() {
- #ifdef MODE_DUAL_PARABOLOID
- if (dp_clip > 0.0)
- discard;
- #endif
- //lay out everything, whathever is unused is optimized away anyway
- vec3 vertex = vertex_interp;
- vec3 view = -normalize(vertex_interp);
- vec3 albedo = vec3(1.0);
- vec3 backlight = vec3(0.0);
- vec4 transmittance_color = vec4(0.0);
- float transmittance_depth = 0.0;
- float transmittance_curve = 1.0;
- float transmittance_boost = 0.0;
- float metallic = 0.0;
- float specular = 0.5;
- vec3 emission = vec3(0.0);
- float roughness = 1.0;
- float rim = 0.0;
- float rim_tint = 0.0;
- float clearcoat = 0.0;
- float clearcoat_gloss = 0.0;
- float anisotropy = 0.0;
- vec2 anisotropy_flow = vec2(1.0, 0.0);
- vec4 fog = vec4(0.0);
- #if defined(CUSTOM_RADIANCE_USED)
- vec4 custom_radiance = vec4(0.0);
- #endif
- #if defined(CUSTOM_IRRADIANCE_USED)
- vec4 custom_irradiance = vec4(0.0);
- #endif
- float ao = 1.0;
- float ao_light_affect = 0.0;
- float alpha = 1.0;
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- vec3 binormal = normalize(binormal_interp);
- vec3 tangent = normalize(tangent_interp);
- #else
- vec3 binormal = vec3(0.0);
- vec3 tangent = vec3(0.0);
- #endif
- #ifdef NORMAL_USED
- vec3 normal = normalize(normal_interp);
- #if defined(DO_SIDE_CHECK)
- if (!gl_FrontFacing) {
- normal = -normal;
- }
- #endif
- #endif //NORMAL_USED
- #ifdef UV_USED
- vec2 uv = uv_interp;
- #endif
- #if defined(UV2_USED) || defined(USE_LIGHTMAP)
- vec2 uv2 = uv2_interp;
- #endif
- #if defined(COLOR_USED)
- vec4 color = color_interp;
- #endif
- #if defined(NORMAL_MAP_USED)
- vec3 normal_map = vec3(0.5);
- #endif
- float normal_map_depth = 1.0;
- vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center
- float sss_strength = 0.0;
- #ifdef ALPHA_SCISSOR_USED
- float alpha_scissor_threshold = 1.0;
- #endif // ALPHA_SCISSOR_USED
- #ifdef ALPHA_HASH_USED
- float alpha_hash_scale = 1.0;
- #endif // ALPHA_HASH_USED
- #ifdef ALPHA_ANTIALIASING_EDGE_USED
- float alpha_antialiasing_edge = 0.0;
- vec2 alpha_texture_coordinate = vec2(0.0, 0.0);
- #endif // ALPHA_ANTIALIASING_EDGE_USED
- {
- #CODE : FRAGMENT
- }
- #ifdef LIGHT_TRANSMITTANCE_USED
- #ifdef SSS_MODE_SKIN
- transmittance_color.a = sss_strength;
- #else
- transmittance_color.a *= sss_strength;
- #endif
- #endif
- #ifndef USE_SHADOW_TO_OPACITY
- #ifdef ALPHA_SCISSOR_USED
- if (alpha < alpha_scissor_threshold) {
- discard;
- }
- #endif // ALPHA_SCISSOR_USED
- // alpha hash can be used in unison with alpha antialiasing
- #ifdef ALPHA_HASH_USED
- if (alpha < compute_alpha_hash_threshold(vertex, alpha_hash_scale)) {
- discard;
- }
- #endif // ALPHA_HASH_USED
- // If we are not edge antialiasing, we need to remove the output alpha channel from scissor and hash
- #if (defined(ALPHA_SCISSOR_USED) || defined(ALPHA_HASH_USED)) && !defined(ALPHA_ANTIALIASING_EDGE_USED)
- alpha = 1.0;
- #endif
- #ifdef ALPHA_ANTIALIASING_EDGE_USED
- // If alpha scissor is used, we must further the edge threshold, otherwise we wont get any edge feather
- #ifdef ALPHA_SCISSOR_USED
- alpha_antialiasing_edge = clamp(alpha_scissor_threshold + alpha_antialiasing_edge, 0.0, 1.0);
- #endif
- alpha = compute_alpha_antialiasing_edge(alpha, alpha_texture_coordinate, alpha_antialiasing_edge);
- #endif // ALPHA_ANTIALIASING_EDGE_USED
- #ifdef USE_OPAQUE_PREPASS
- if (alpha < opaque_prepass_threshold) {
- discard;
- }
- #endif // USE_OPAQUE_PREPASS
- #endif // !USE_SHADOW_TO_OPACITY
- #ifdef NORMAL_MAP_USED
- normal_map.xy = normal_map.xy * 2.0 - 1.0;
- normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
- normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth));
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- if (anisotropy > 0.01) {
- //rotation matrix
- mat3 rot = mat3(tangent, binormal, normal);
- //make local to space
- tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
- binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
- }
- #endif
- #ifdef ENABLE_CLIP_ALPHA
- if (albedo.a < 0.99) {
- //used for doublepass and shadowmapping
- discard;
- }
- #endif
- /////////////////////// FOG //////////////////////
- #ifndef MODE_RENDER_DEPTH
- #ifndef CUSTOM_FOG_USED
- // fog must be processed as early as possible and then packed.
- // to maximize VGPR usage
- // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
- if (scene_data.fog_enabled) {
- fog = fog_process(vertex);
- }
- if (scene_data.volumetric_fog_enabled) {
- vec4 volumetric_fog = volumetric_fog_process(screen_uv, -vertex.z);
- if (scene_data.fog_enabled) {
- //must use the full blending equation here to blend fogs
- vec4 res;
- float sa = 1.0 - volumetric_fog.a;
- res.a = fog.a * sa + volumetric_fog.a;
- if (res.a == 0.0) {
- res.rgb = vec3(0.0);
- } else {
- res.rgb = (fog.rgb * fog.a * sa + volumetric_fog.rgb * volumetric_fog.a) / res.a;
- }
- fog = res;
- } else {
- fog = volumetric_fog;
- }
- }
- #endif //!CUSTOM_FOG_USED
- uint fog_rg = packHalf2x16(fog.rg);
- uint fog_ba = packHalf2x16(fog.ba);
- #endif //!MODE_RENDER_DEPTH
- /////////////////////// DECALS ////////////////////////////////
- #ifndef MODE_RENDER_DEPTH
- uvec2 cluster_pos = uvec2(gl_FragCoord.xy) >> scene_data.cluster_shift;
- uint cluster_offset = (scene_data.cluster_width * cluster_pos.y + cluster_pos.x) * (scene_data.max_cluster_element_count_div_32 + 32);
- uint cluster_z = uint(clamp((-vertex.z / scene_data.z_far) * 32.0, 0.0, 31.0));
- //used for interpolating anything cluster related
- vec3 vertex_ddx = dFdx(vertex);
- vec3 vertex_ddy = dFdy(vertex);
- { // process decals
- uint cluster_decal_offset = cluster_offset + scene_data.cluster_type_size * 2;
- uint item_min;
- uint item_max;
- uint item_from;
- uint item_to;
- cluster_get_item_range(cluster_decal_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- #ifdef USE_SUBGROUPS
- item_from = subgroupBroadcastFirst(subgroupMin(item_from));
- item_to = subgroupBroadcastFirst(subgroupMax(item_to));
- #endif
- for (uint i = item_from; i < item_to; i++) {
- uint mask = cluster_buffer.data[cluster_decal_offset + i];
- mask &= cluster_get_range_clip_mask(i, item_min, item_max);
- #ifdef USE_SUBGROUPS
- uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
- #else
- uint merged_mask = mask;
- #endif
- while (merged_mask != 0) {
- uint bit = findMSB(merged_mask);
- merged_mask &= ~(1 << bit);
- #ifdef USE_SUBGROUPS
- if (((1 << bit) & mask) == 0) { //do not process if not originally here
- continue;
- }
- #endif
- uint decal_index = 32 * i + bit;
- if (!bool(decals.data[decal_index].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
- vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz;
- if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) {
- continue; //out of decal
- }
- //we need ddx/ddy for mipmaps, so simulate them
- vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz;
- vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz;
- float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade);
- if (decals.data[decal_index].normal_fade > 0.0) {
- fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5);
- }
- if (decals.data[decal_index].albedo_rect != vec4(0.0)) {
- //has albedo
- vec4 decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw);
- decal_albedo *= decals.data[decal_index].modulate;
- decal_albedo.a *= fade;
- albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix);
- if (decals.data[decal_index].normal_rect != vec4(0.0)) {
- vec3 decal_normal = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz;
- decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software
- decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy)));
- //convert to view space, use xzy because y is up
- decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz;
- normal = normalize(mix(normal, decal_normal, decal_albedo.a));
- }
- if (decals.data[decal_index].orm_rect != vec4(0.0)) {
- vec3 decal_orm = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz;
- ao = mix(ao, decal_orm.r, decal_albedo.a);
- roughness = mix(roughness, decal_orm.g, decal_albedo.a);
- metallic = mix(metallic, decal_orm.b, decal_albedo.a);
- }
- }
- if (decals.data[decal_index].emission_rect != vec4(0.0)) {
- //emission is additive, so its independent from albedo
- emission += textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade;
- }
- }
- }
- }
- //pack albedo until needed again, saves 2 VGPRs in the meantime
- #endif //not render depth
- /////////////////////// LIGHTING //////////////////////////////
- #ifdef NORMAL_USED
- if (scene_data.roughness_limiter_enabled) {
- //http://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf
- float roughness2 = roughness * roughness;
- vec3 dndu = dFdx(normal), dndv = dFdx(normal);
- float variance = scene_data.roughness_limiter_amount * (dot(dndu, dndu) + dot(dndv, dndv));
- float kernelRoughness2 = min(2.0 * variance, scene_data.roughness_limiter_limit); //limit effect
- float filteredRoughness2 = min(1.0, roughness2 + kernelRoughness2);
- roughness = sqrt(filteredRoughness2);
- }
- #endif
- //apply energy conservation
- vec3 specular_light = vec3(0.0, 0.0, 0.0);
- vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
- vec3 ambient_light = vec3(0.0, 0.0, 0.0);
- #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- if (scene_data.use_reflection_cubemap) {
- vec3 ref_vec = reflect(-view, normal);
- ref_vec = scene_data.radiance_inverse_xform * ref_vec;
- #ifdef USE_RADIANCE_CUBEMAP_ARRAY
- float lod, blend;
- blend = modf(roughness * MAX_ROUGHNESS_LOD, lod);
- specular_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb;
- specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend);
- #else
- specular_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb;
- #endif //USE_RADIANCE_CUBEMAP_ARRAY
- specular_light *= scene_data.ambient_light_color_energy.a;
- }
- #if defined(CUSTOM_RADIANCE_USED)
- specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a);
- #endif
- #ifndef USE_LIGHTMAP
- //lightmap overrides everything
- if (scene_data.use_ambient_light) {
- ambient_light = scene_data.ambient_light_color_energy.rgb;
- if (scene_data.use_ambient_cubemap) {
- vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
- #ifdef USE_RADIANCE_CUBEMAP_ARRAY
- vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb;
- #else
- vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb;
- #endif //USE_RADIANCE_CUBEMAP_ARRAY
- ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
- }
- }
- #endif // USE_LIGHTMAP
- #if defined(CUSTOM_IRRADIANCE_USED)
- ambient_light = mix(specular_light, custom_irradiance.rgb, custom_irradiance.a);
- #endif
- #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- //radiance
- /// GI ///
- #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- #ifdef USE_LIGHTMAP
- //lightmap
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture
- uint index = instances.data[instance_index].gi_offset;
- vec3 wnormal = mat3(scene_data.camera_matrix) * normal;
- const float c1 = 0.429043;
- const float c2 = 0.511664;
- const float c3 = 0.743125;
- const float c4 = 0.886227;
- const float c5 = 0.247708;
- ambient_light += (c1 * lightmap_captures.data[index].sh[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) +
- c3 * lightmap_captures.data[index].sh[6].rgb * wnormal.z * wnormal.z +
- c4 * lightmap_captures.data[index].sh[0].rgb -
- c5 * lightmap_captures.data[index].sh[6].rgb +
- 2.0 * c1 * lightmap_captures.data[index].sh[4].rgb * wnormal.x * wnormal.y +
- 2.0 * c1 * lightmap_captures.data[index].sh[7].rgb * wnormal.x * wnormal.z +
- 2.0 * c1 * lightmap_captures.data[index].sh[5].rgb * wnormal.y * wnormal.z +
- 2.0 * c2 * lightmap_captures.data[index].sh[3].rgb * wnormal.x +
- 2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y +
- 2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z);
- } else if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap
- bool uses_sh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP);
- uint ofs = instances.data[instance_index].gi_offset & 0xFFFF;
- vec3 uvw;
- uvw.xy = uv2 * instances.data[instance_index].lightmap_uv_scale.zw + instances.data[instance_index].lightmap_uv_scale.xy;
- uvw.z = float((instances.data[instance_index].gi_offset >> 16) & 0xFFFF);
- if (uses_sh) {
- uvw.z *= 4.0; //SH textures use 4 times more data
- vec3 lm_light_l0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb;
- vec3 lm_light_l1n1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb;
- vec3 lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb;
- vec3 lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb;
- uint idx = instances.data[instance_index].gi_offset >> 20;
- vec3 n = normalize(lightmaps.data[idx].normal_xform * normal);
- ambient_light += lm_light_l0 * 0.282095f;
- ambient_light += lm_light_l1n1 * 0.32573 * n.y;
- ambient_light += lm_light_l1_0 * 0.32573 * n.z;
- ambient_light += lm_light_l1p1 * 0.32573 * n.x;
- if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick
- vec3 r = reflect(normalize(-vertex), normal);
- specular_light += lm_light_l1n1 * 0.32573 * r.y;
- specular_light += lm_light_l1_0 * 0.32573 * r.z;
- specular_light += lm_light_l1p1 * 0.32573 * r.x;
- }
- } else {
- ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw, 0.0).rgb;
- }
- }
- #elif defined(USE_FORWARD_GI)
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SDFGI)) { //has lightmap capture
- //make vertex orientation the world one, but still align to camera
- vec3 cam_pos = mat3(scene_data.camera_matrix) * vertex;
- vec3 cam_normal = mat3(scene_data.camera_matrix) * normal;
- vec3 cam_reflection = mat3(scene_data.camera_matrix) * reflect(-view, normal);
- //apply y-mult
- cam_pos.y *= sdfgi.y_mult;
- cam_normal.y *= sdfgi.y_mult;
- cam_normal = normalize(cam_normal);
- cam_reflection.y *= sdfgi.y_mult;
- cam_normal = normalize(cam_normal);
- cam_reflection = normalize(cam_reflection);
- vec4 light_accum = vec4(0.0);
- float weight_accum = 0.0;
- vec4 light_blend_accum = vec4(0.0);
- float weight_blend_accum = 0.0;
- float blend = -1.0;
- // helper constants, compute once
- uint cascade = 0xFFFFFFFF;
- vec3 cascade_pos;
- vec3 cascade_normal;
- for (uint i = 0; i < sdfgi.max_cascades; i++) {
- cascade_pos = (cam_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe;
- if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) {
- continue; //skip cascade
- }
- cascade = i;
- break;
- }
- if (cascade < SDFGI_MAX_CASCADES) {
- bool use_specular = true;
- float blend;
- vec3 diffuse, specular;
- sdfgi_process(cascade, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse, specular, blend);
- if (blend > 0.0) {
- //blend
- if (cascade == sdfgi.max_cascades - 1) {
- diffuse = mix(diffuse, ambient_light, blend);
- if (use_specular) {
- specular = mix(specular, specular_light, blend);
- }
- } else {
- vec3 diffuse2, specular2;
- float blend2;
- cascade_pos = (cam_pos - sdfgi.cascades[cascade + 1].position) * sdfgi.cascades[cascade + 1].to_probe;
- sdfgi_process(cascade + 1, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse2, specular2, blend2);
- diffuse = mix(diffuse, diffuse2, blend);
- if (use_specular) {
- specular = mix(specular, specular2, blend);
- }
- }
- }
- ambient_light = diffuse;
- if (use_specular) {
- specular_light = specular;
- }
- }
- }
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
- uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
- vec3 ref_vec = normalize(reflect(normalize(vertex), normal));
- //find arbitrary tangent and bitangent, then build a matrix
- vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
- vec3 tangent = normalize(cross(v0, normal));
- vec3 bitangent = normalize(cross(tangent, normal));
- mat3 normal_mat = mat3(tangent, bitangent, normal);
- vec4 amb_accum = vec4(0.0);
- vec4 spec_accum = vec4(0.0);
- gi_probe_compute(index1, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
- uint index2 = instances.data[instance_index].gi_offset >> 16;
- if (index2 != 0xFFFF) {
- gi_probe_compute(index2, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
- }
- if (amb_accum.a > 0.0) {
- amb_accum.rgb /= amb_accum.a;
- }
- if (spec_accum.a > 0.0) {
- spec_accum.rgb /= spec_accum.a;
- }
- specular_light = spec_accum.rgb;
- ambient_light = amb_accum.rgb;
- }
- #else
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GI_BUFFERS)) { //use GI buffers
- vec2 coord;
- if (scene_data.gi_upscale_for_msaa) {
- vec2 base_coord = screen_uv;
- vec2 closest_coord = base_coord;
- float closest_ang = dot(normal, textureLod(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), base_coord, 0.0).xyz * 2.0 - 1.0);
- for (int i = 0; i < 4; i++) {
- const vec2 neighbours[4] = vec2[](vec2(-1, 0), vec2(1, 0), vec2(0, -1), vec2(0, 1));
- vec2 neighbour_coord = base_coord + neighbours[i] * scene_data.screen_pixel_size;
- float neighbour_ang = dot(normal, textureLod(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), neighbour_coord, 0.0).xyz * 2.0 - 1.0);
- if (neighbour_ang > closest_ang) {
- closest_ang = neighbour_ang;
- closest_coord = neighbour_coord;
- }
- }
- coord = closest_coord;
- } else {
- coord = screen_uv;
- }
- vec4 buffer_ambient = textureLod(sampler2D(ambient_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0.0);
- vec4 buffer_reflection = textureLod(sampler2D(reflection_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0.0);
- ambient_light = mix(ambient_light, buffer_ambient.rgb, buffer_ambient.a);
- specular_light = mix(specular_light, buffer_reflection.rgb, buffer_reflection.a);
- }
- #endif
- if (scene_data.ssao_enabled) {
- float ssao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
- ao = min(ao, ssao);
- ao_light_affect = mix(ao_light_affect, max(ao_light_affect, scene_data.ssao_light_affect), scene_data.ssao_ao_affect);
- }
- { // process reflections
- vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
- vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
- uint cluster_reflection_offset = cluster_offset + scene_data.cluster_type_size * 3;
- uint item_min;
- uint item_max;
- uint item_from;
- uint item_to;
- cluster_get_item_range(cluster_reflection_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- #ifdef USE_SUBGROUPS
- item_from = subgroupBroadcastFirst(subgroupMin(item_from));
- item_to = subgroupBroadcastFirst(subgroupMax(item_to));
- #endif
- for (uint i = item_from; i < item_to; i++) {
- uint mask = cluster_buffer.data[cluster_reflection_offset + i];
- mask &= cluster_get_range_clip_mask(i, item_min, item_max);
- #ifdef USE_SUBGROUPS
- uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
- #else
- uint merged_mask = mask;
- #endif
- while (merged_mask != 0) {
- uint bit = findMSB(merged_mask);
- merged_mask &= ~(1 << bit);
- #ifdef USE_SUBGROUPS
- if (((1 << bit) & mask) == 0) { //do not process if not originally here
- continue;
- }
- #endif
- uint reflection_index = 32 * i + bit;
- if (!bool(reflections.data[reflection_index].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
- reflection_process(reflection_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
- }
- }
- if (reflection_accum.a > 0.0) {
- specular_light = reflection_accum.rgb / reflection_accum.a;
- }
- #if !defined(USE_LIGHTMAP)
- if (ambient_accum.a > 0.0) {
- ambient_light = ambient_accum.rgb / ambient_accum.a;
- }
- #endif
- }
- //finalize ambient light here
- ambient_light *= albedo.rgb;
- ambient_light *= ao;
- // convert ao to direct light ao
- ao = mix(1.0, ao, ao_light_affect);
- //this saves some VGPRs
- vec3 f0 = F0(metallic, specular, albedo);
- {
- #if defined(DIFFUSE_TOON)
- //simplify for toon, as
- specular_light *= specular * metallic * albedo * 2.0;
- #else
- // scales the specular reflections, needs to be be computed before lighting happens,
- // but after environment, GI, and reflection probes are added
- // Environment brdf approximation (Lazarov 2013)
- // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
- const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
- const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
- vec4 r = roughness * c0 + c1;
- float ndotv = clamp(dot(normal, view), 0.0, 1.0);
- float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
- vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
- specular_light *= env.x * f0 + env.y;
- #endif
- }
- #endif //GI !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- #if !defined(MODE_RENDER_DEPTH)
- //this saves some VGPRs
- uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular));
- #endif
- // LIGHTING
- #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- { //directional light
- // Do shadow and lighting in two passes to reduce register pressure
- uint shadow0 = 0;
- uint shadow1 = 0;
- for (uint i = 0; i < 8; i++) {
- if (i >= scene_data.directional_light_count) {
- break;
- }
- if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
- float shadow = 1.0;
- #ifdef USE_SOFT_SHADOWS
- //version with soft shadows, more expensive
- if (directional_lights.data[i].shadow_enabled) {
- float depth_z = -vertex.z;
- vec4 pssm_coord;
- vec3 shadow_color = vec3(0.0);
- vec3 light_dir = directional_lights.data[i].direction;
- #define BIAS_FUNC(m_var, m_idx) \
- m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
- vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))) * directional_lights.data[i].shadow_normal_bias[m_idx]; \
- normal_bias -= light_dir * dot(light_dir, normal_bias); \
- m_var.xyz += normal_bias;
- if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 0)
- pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
- pssm_coord /= pssm_coord.w;
- if (directional_lights.data[i].softshadow_angle > 0) {
- float range_pos = dot(directional_lights.data[i].direction, v.xyz);
- float range_begin = directional_lights.data[i].shadow_range_begin.x;
- float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
- vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius;
- shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
- } else {
- shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- }
- shadow_color = directional_lights.data[i].shadow_color1.rgb;
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 1)
- pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
- pssm_coord /= pssm_coord.w;
- if (directional_lights.data[i].softshadow_angle > 0) {
- float range_pos = dot(directional_lights.data[i].direction, v.xyz);
- float range_begin = directional_lights.data[i].shadow_range_begin.y;
- float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
- vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
- shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
- } else {
- shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- }
- shadow_color = directional_lights.data[i].shadow_color2.rgb;
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 2)
- pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
- pssm_coord /= pssm_coord.w;
- if (directional_lights.data[i].softshadow_angle > 0) {
- float range_pos = dot(directional_lights.data[i].direction, v.xyz);
- float range_begin = directional_lights.data[i].shadow_range_begin.z;
- float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
- vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
- shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
- } else {
- shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- }
- shadow_color = directional_lights.data[i].shadow_color3.rgb;
- } else {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 3)
- pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
- pssm_coord /= pssm_coord.w;
- if (directional_lights.data[i].softshadow_angle > 0) {
- float range_pos = dot(directional_lights.data[i].direction, v.xyz);
- float range_begin = directional_lights.data[i].shadow_range_begin.w;
- float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
- vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
- shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
- } else {
- shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- }
- shadow_color = directional_lights.data[i].shadow_color4.rgb;
- }
- if (directional_lights.data[i].blend_splits) {
- vec3 shadow_color_blend = vec3(0.0);
- float pssm_blend;
- float shadow2;
- if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 1)
- pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
- pssm_coord /= pssm_coord.w;
- if (directional_lights.data[i].softshadow_angle > 0) {
- float range_pos = dot(directional_lights.data[i].direction, v.xyz);
- float range_begin = directional_lights.data[i].shadow_range_begin.y;
- float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
- vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
- shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
- } else {
- shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- }
- pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
- shadow_color_blend = directional_lights.data[i].shadow_color2.rgb;
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 2)
- pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
- pssm_coord /= pssm_coord.w;
- if (directional_lights.data[i].softshadow_angle > 0) {
- float range_pos = dot(directional_lights.data[i].direction, v.xyz);
- float range_begin = directional_lights.data[i].shadow_range_begin.z;
- float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
- vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
- shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
- } else {
- shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- }
- pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
- shadow_color_blend = directional_lights.data[i].shadow_color3.rgb;
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 3)
- pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
- pssm_coord /= pssm_coord.w;
- if (directional_lights.data[i].softshadow_angle > 0) {
- float range_pos = dot(directional_lights.data[i].direction, v.xyz);
- float range_begin = directional_lights.data[i].shadow_range_begin.w;
- float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
- vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
- shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
- } else {
- shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- }
- pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
- shadow_color_blend = directional_lights.data[i].shadow_color4.rgb;
- } else {
- pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
- }
- pssm_blend = sqrt(pssm_blend);
- shadow = mix(shadow, shadow2, pssm_blend);
- shadow_color = mix(shadow_color, shadow_color_blend, pssm_blend);
- }
- shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
- #undef BIAS_FUNC
- }
- #else
- // Soft shadow disabled version
- if (directional_lights.data[i].shadow_enabled) {
- float depth_z = -vertex.z;
- vec4 pssm_coord;
- vec3 light_dir = directional_lights.data[i].direction;
- vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp))));
- #define BIAS_FUNC(m_var, m_idx) \
- m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
- vec3 normal_bias = base_normal_bias * directional_lights.data[i].shadow_normal_bias[m_idx]; \
- normal_bias -= light_dir * dot(light_dir, normal_bias); \
- m_var.xyz += normal_bias;
- if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 0)
- pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
- #ifdef LIGHT_TRANSMITTANCE_USED
- {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x;
- transmittance_z = z - shadow_z;
- }
- #endif
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 1)
- pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
- #ifdef LIGHT_TRANSMITTANCE_USED
- {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y;
- transmittance_z = z - shadow_z;
- }
- #endif
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 2)
- pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
- #ifdef LIGHT_TRANSMITTANCE_USED
- {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z;
- transmittance_z = z - shadow_z;
- }
- #endif
- } else {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 3)
- pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
- #ifdef LIGHT_TRANSMITTANCE_USED
- {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w;
- transmittance_z = z - shadow_z;
- }
- #endif
- }
- pssm_coord /= pssm_coord.w;
- shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- if (directional_lights.data[i].blend_splits) {
- float pssm_blend;
- if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 1)
- pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
- pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 2)
- pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
- pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 3)
- pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
- pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
- } else {
- pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
- }
- pssm_coord /= pssm_coord.w;
- float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- shadow = mix(shadow, shadow2, pssm_blend);
- }
- shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
- #undef BIAS_FUNC
- }
- #endif
- if (i < 4) {
- shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8);
- } else {
- shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8);
- }
- }
- for (uint i = 0; i < 8; i++) {
- if (i >= scene_data.directional_light_count) {
- break;
- }
- if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
- #ifdef LIGHT_TRANSMITTANCE_USED
- float transmittance_z = transmittance_depth;
- if (directional_lights.data[i].shadow_enabled) {
- float depth_z = -vertex.z;
- if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x;
- transmittance_z = z - shadow_z;
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y;
- transmittance_z = z - shadow_z;
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z;
- transmittance_z = z - shadow_z;
- } else {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w;
- transmittance_z = z - shadow_z;
- }
- #endif
- float shadow = 1.0;
- if (i < 4) {
- shadow = float(shadow0 >> (i * 8) & 0xFF) / 255.0;
- } else {
- shadow = float(shadow1 >> ((i - 4) * 8) & 0xFF) / 255.0;
- }
- blur_shadow(shadow);
- light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].color * directional_lights.data[i].energy, shadow, f0, orms, 1.0,
- #ifdef LIGHT_BACKLIGHT_USED
- backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_curve,
- transmittance_boost,
- transmittance_z,
- #endif
- #ifdef LIGHT_RIM_USED
- rim, rim_tint, albedo,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- binormal, tangent, anisotropy,
- #endif
- #ifdef USE_SOFT_SHADOW
- directional_lights.data[i].size,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- alpha,
- #endif
- diffuse_light,
- specular_light);
- }
- }
- { //omni lights
- uint cluster_omni_offset = cluster_offset;
- uint item_min;
- uint item_max;
- uint item_from;
- uint item_to;
- cluster_get_item_range(cluster_omni_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- #ifdef USE_SUBGROUPS
- item_from = subgroupBroadcastFirst(subgroupMin(item_from));
- item_to = subgroupBroadcastFirst(subgroupMax(item_to));
- #endif
- for (uint i = item_from; i < item_to; i++) {
- uint mask = cluster_buffer.data[cluster_omni_offset + i];
- mask &= cluster_get_range_clip_mask(i, item_min, item_max);
- #ifdef USE_SUBGROUPS
- uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
- #else
- uint merged_mask = mask;
- #endif
- while (merged_mask != 0) {
- uint bit = findMSB(merged_mask);
- merged_mask &= ~(1 << bit);
- #ifdef USE_SUBGROUPS
- if (((1 << bit) & mask) == 0) { //do not process if not originally here
- continue;
- }
- #endif
- uint light_index = 32 * i + bit;
- if (!bool(omni_lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
- float shadow = light_process_omni_shadow(light_index, vertex, view);
- shadow = blur_shadow(shadow);
- light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow,
- #ifdef LIGHT_BACKLIGHT_USED
- backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_curve,
- transmittance_boost,
- #endif
- #ifdef LIGHT_RIM_USED
- rim,
- rim_tint,
- albedo,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- tangent, binormal, anisotropy,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- alpha,
- #endif
- diffuse_light, specular_light);
- }
- }
- }
- { //spot lights
- uint cluster_spot_offset = cluster_offset + scene_data.cluster_type_size;
- uint item_min;
- uint item_max;
- uint item_from;
- uint item_to;
- cluster_get_item_range(cluster_spot_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- #ifdef USE_SUBGROUPS
- item_from = subgroupBroadcastFirst(subgroupMin(item_from));
- item_to = subgroupBroadcastFirst(subgroupMax(item_to));
- #endif
- for (uint i = item_from; i < item_to; i++) {
- uint mask = cluster_buffer.data[cluster_spot_offset + i];
- mask &= cluster_get_range_clip_mask(i, item_min, item_max);
- #ifdef USE_SUBGROUPS
- uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
- #else
- uint merged_mask = mask;
- #endif
- while (merged_mask != 0) {
- uint bit = findMSB(merged_mask);
- merged_mask &= ~(1 << bit);
- #ifdef USE_SUBGROUPS
- if (((1 << bit) & mask) == 0) { //do not process if not originally here
- continue;
- }
- #endif
- uint light_index = 32 * i + bit;
- if (!bool(spot_lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
- float shadow = light_process_spot_shadow(light_index, vertex, view);
- shadow = blur_shadow(shadow);
- light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow,
- #ifdef LIGHT_BACKLIGHT_USED
- backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_curve,
- transmittance_boost,
- #endif
- #ifdef LIGHT_RIM_USED
- rim,
- rim_tint,
- albedo,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- tangent, binormal, anisotropy,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- alpha,
- #endif
- diffuse_light, specular_light);
- }
- }
- }
- #ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
- #if defined(ALPHA_SCISSOR_USED)
- if (alpha < alpha_scissor) {
- discard;
- }
- #endif // ALPHA_SCISSOR_USED
- #ifdef USE_OPAQUE_PREPASS
- if (alpha < opaque_prepass_threshold) {
- discard;
- }
- #endif // USE_OPAQUE_PREPASS
- #endif // USE_SHADOW_TO_OPACITY
- #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- #ifdef MODE_RENDER_DEPTH
- #ifdef MODE_RENDER_SDF
- {
- vec3 local_pos = (scene_data.sdf_to_bounds * vec4(vertex, 1.0)).xyz;
- ivec3 grid_pos = scene_data.sdf_offset + ivec3(local_pos * vec3(scene_data.sdf_size));
- uint albedo16 = 0x1; //solid flag
- albedo16 |= clamp(uint(albedo.r * 31.0), 0, 31) << 11;
- albedo16 |= clamp(uint(albedo.g * 31.0), 0, 31) << 6;
- albedo16 |= clamp(uint(albedo.b * 31.0), 0, 31) << 1;
- imageStore(albedo_volume_grid, grid_pos, uvec4(albedo16));
- uint facing_bits = 0;
- const vec3 aniso_dir[6] = vec3[](
- vec3(1, 0, 0),
- vec3(0, 1, 0),
- vec3(0, 0, 1),
- vec3(-1, 0, 0),
- vec3(0, -1, 0),
- vec3(0, 0, -1));
- vec3 cam_normal = mat3(scene_data.camera_matrix) * normalize(normal_interp);
- float closest_dist = -1e20;
- for (uint i = 0; i < 6; i++) {
- float d = dot(cam_normal, aniso_dir[i]);
- if (d > closest_dist) {
- closest_dist = d;
- facing_bits = (1 << i);
- }
- }
- imageAtomicOr(geom_facing_grid, grid_pos, facing_bits); //store facing bits
- if (length(emission) > 0.001) {
- float lumas[6];
- vec3 light_total = vec3(0);
- for (int i = 0; i < 6; i++) {
- float strength = max(0.0, dot(cam_normal, aniso_dir[i]));
- vec3 light = emission * strength;
- light_total += light;
- lumas[i] = max(light.r, max(light.g, light.b));
- }
- float luma_total = max(light_total.r, max(light_total.g, light_total.b));
- uint light_aniso = 0;
- for (int i = 0; i < 6; i++) {
- light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5);
- }
- //compress to RGBE9995 to save space
- const float pow2to9 = 512.0f;
- const float B = 15.0f;
- const float N = 9.0f;
- const float LN2 = 0.6931471805599453094172321215;
- float cRed = clamp(light_total.r, 0.0, 65408.0);
- float cGreen = clamp(light_total.g, 0.0, 65408.0);
- float cBlue = clamp(light_total.b, 0.0, 65408.0);
- float cMax = max(cRed, max(cGreen, cBlue));
- float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B;
- float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f);
- float exps = expp + 1.0f;
- if (0.0 <= sMax && sMax < pow2to9) {
- exps = expp;
- }
- float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f);
- float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f);
- float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f);
- //store as 8985 to have 2 extra neighbour bits
- uint light_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25);
- imageStore(emission_grid, grid_pos, uvec4(light_rgbe));
- imageStore(emission_aniso_grid, grid_pos, uvec4(light_aniso));
- }
- }
- #endif
- #ifdef MODE_RENDER_MATERIAL
- albedo_output_buffer.rgb = albedo;
- albedo_output_buffer.a = alpha;
- normal_output_buffer.rgb = normal * 0.5 + 0.5;
- normal_output_buffer.a = 0.0;
- depth_output_buffer.r = -vertex.z;
- orm_output_buffer.r = ao;
- orm_output_buffer.g = roughness;
- orm_output_buffer.b = metallic;
- orm_output_buffer.a = sss_strength;
- emission_output_buffer.rgb = emission;
- emission_output_buffer.a = 0.0;
- #endif
- #ifdef MODE_RENDER_NORMAL_ROUGHNESS
- normal_roughness_output_buffer = vec4(normal * 0.5 + 0.5, roughness);
- #ifdef MODE_RENDER_GIPROBE
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
- uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
- uint index2 = instances.data[instance_index].gi_offset >> 16;
- giprobe_buffer.x = index1 & 0xFF;
- giprobe_buffer.y = index2 & 0xFF;
- } else {
- giprobe_buffer.x = 0xFF;
- giprobe_buffer.y = 0xFF;
- }
- #endif
- #endif //MODE_RENDER_NORMAL_ROUGHNESS
- //nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
- #else
- // multiply by albedo
- diffuse_light *= albedo; // ambient must be multiplied by albedo at the end
- // apply direct light AO
- ao = unpackUnorm4x8(orms).x;
- specular_light *= ao;
- diffuse_light *= ao;
- // apply metallic
- metallic = unpackUnorm4x8(orms).z;
- diffuse_light *= 1.0 - metallic;
- ambient_light *= 1.0 - metallic;
- //restore fog
- fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));
- #ifdef MODE_MULTIPLE_RENDER_TARGETS
- #ifdef MODE_UNSHADED
- diffuse_buffer = vec4(albedo.rgb, 0.0);
- specular_buffer = vec4(0.0);
- #else
- #ifdef SSS_MODE_SKIN
- sss_strength = -sss_strength;
- #endif
- diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength);
- specular_buffer = vec4(specular_light, metallic);
- #endif
- diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
- specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
- #else //MODE_MULTIPLE_RENDER_TARGETS
- #ifdef MODE_UNSHADED
- frag_color = vec4(albedo, alpha);
- #else
- frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
- //frag_color = vec4(1.0);
- #endif //USE_NO_SHADING
- // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
- frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
- ;
- #endif //MODE_MULTIPLE_RENDER_TARGETS
- #endif //MODE_RENDER_DEPTH
- }
|