12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293 |
- #[vertex]
- #version 450
- VERSION_DEFINES
- #include "scene_forward_inc.glsl"
- /* INPUT ATTRIBS */
- layout(location = 0) in vec3 vertex_attrib;
- //only for pure render depth when normal is not used
- #ifdef NORMAL_USED
- layout(location = 1) in vec3 normal_attrib;
- #endif
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- layout(location = 2) in vec4 tangent_attrib;
- #endif
- #if defined(COLOR_USED)
- layout(location = 3) in vec4 color_attrib;
- #endif
- #ifdef UV_USED
- layout(location = 4) in vec2 uv_attrib;
- #endif
- #if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(MODE_RENDER_MATERIAL)
- layout(location = 5) in vec2 uv2_attrib;
- #endif
- #if defined(CUSTOM0_USED)
- layout(location = 6) in vec4 custom0_attrib;
- #endif
- #if defined(CUSTOM1_USED)
- layout(location = 7) in vec4 custom1_attrib;
- #endif
- #if defined(CUSTOM2_USED)
- layout(location = 8) in vec4 custom2_attrib;
- #endif
- #if defined(CUSTOM3_USED)
- layout(location = 9) in vec4 custom3_attrib;
- #endif
- #if defined(BONES_USED)
- layout(location = 10) in uvec4 bone_attrib;
- #endif
- #if defined(WEIGHTS_USED)
- layout(location = 11) in vec4 weight_attrib;
- #endif
- /* Varyings */
- layout(location = 0) out vec3 vertex_interp;
- #ifdef NORMAL_USED
- layout(location = 1) out vec3 normal_interp;
- #endif
- #if defined(COLOR_USED)
- layout(location = 2) out vec4 color_interp;
- #endif
- #ifdef UV_USED
- layout(location = 3) out vec2 uv_interp;
- #endif
- #if defined(UV2_USED) || defined(USE_LIGHTMAP)
- layout(location = 4) out vec2 uv2_interp;
- #endif
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- layout(location = 5) out vec3 tangent_interp;
- layout(location = 6) out vec3 binormal_interp;
- #endif
- #ifdef USE_MATERIAL_UNIFORMS
- layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
- /* clang-format off */
- MATERIAL_UNIFORMS
- /* clang-format on */
- } material;
- #endif
- invariant gl_Position;
- #ifdef MODE_DUAL_PARABOLOID
- layout(location = 8) out float dp_clip;
- #endif
- layout(location = 9) out flat uint instance_index;
- /* clang-format off */
- VERTEX_SHADER_GLOBALS
- /* clang-format on */
- void main() {
- vec4 instance_custom = vec4(0.0);
- #if defined(COLOR_USED)
- color_interp = color_attrib;
- #endif
- instance_index = draw_call.instance_index;
- bool is_multimesh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH);
- if (!is_multimesh) {
- instance_index += gl_InstanceIndex;
- }
- mat4 world_matrix = instances.data[instance_index].transform;
- mat3 world_normal_matrix;
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_NON_UNIFORM_SCALE)) {
- world_normal_matrix = inverse(mat3(world_matrix));
- } else {
- world_normal_matrix = mat3(world_matrix);
- }
- if (is_multimesh) {
- //multimesh, instances are for it
- uint offset = (instances.data[instance_index].flags >> INSTANCE_FLAGS_MULTIMESH_STRIDE_SHIFT) & INSTANCE_FLAGS_MULTIMESH_STRIDE_MASK;
- offset *= gl_InstanceIndex;
- mat4 matrix;
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
- matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
- offset += 2;
- } else {
- matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0));
- offset += 3;
- }
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
- #ifdef COLOR_USED
- color_interp *= transforms.data[offset];
- #endif
- offset += 1;
- }
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
- instance_custom = transforms.data[offset];
- }
- //transpose
- matrix = transpose(matrix);
- world_matrix = world_matrix * matrix;
- world_normal_matrix = world_normal_matrix * mat3(matrix);
- }
- vec3 vertex = vertex_attrib;
- #ifdef NORMAL_USED
- vec3 normal = normal_attrib * 2.0 - 1.0;
- #endif
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- vec3 tangent = tangent_attrib.xyz * 2.0 - 1.0;
- float binormalf = tangent_attrib.a * 2.0 - 1.0;
- vec3 binormal = normalize(cross(normal, tangent) * binormalf);
- #endif
- #if 0
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_SKELETON)) {
- //multimesh, instances are for it
- uvec2 bones_01 = uvec2(bone_attrib.x & 0xFFFF, bone_attrib.x >> 16) * 3;
- uvec2 bones_23 = uvec2(bone_attrib.y & 0xFFFF, bone_attrib.y >> 16) * 3;
- vec2 weights_01 = unpackUnorm2x16(bone_attrib.z);
- vec2 weights_23 = unpackUnorm2x16(bone_attrib.w);
- mat4 m = mat4(transforms.data[bones_01.x], transforms.data[bones_01.x + 1], transforms.data[bones_01.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.x;
- m += mat4(transforms.data[bones_01.y], transforms.data[bones_01.y + 1], transforms.data[bones_01.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.y;
- m += mat4(transforms.data[bones_23.x], transforms.data[bones_23.x + 1], transforms.data[bones_23.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.x;
- m += mat4(transforms.data[bones_23.y], transforms.data[bones_23.y + 1], transforms.data[bones_23.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.y;
- //reverse order because its transposed
- vertex = (vec4(vertex, 1.0) * m).xyz;
- normal = (vec4(normal, 0.0) * m).xyz;
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- tangent = (vec4(tangent, 0.0) * m).xyz;
- binormal = (vec4(binormal, 0.0) * m).xyz;
- #endif
- }
- #endif
- #ifdef UV_USED
- uv_interp = uv_attrib;
- #endif
- #if defined(UV2_USED) || defined(USE_LIGHTMAP)
- uv2_interp = uv2_attrib;
- #endif
- #ifdef OVERRIDE_POSITION
- vec4 position;
- #endif
- mat4 projection_matrix = scene_data.projection_matrix;
- //using world coordinates
- #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- vertex = (world_matrix * vec4(vertex, 1.0)).xyz;
- normal = world_normal_matrix * normal;
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- tangent = world_normal_matrix * tangent;
- binormal = world_normal_matrix * binormal;
- #endif
- #endif
- float roughness = 1.0;
- mat4 modelview = scene_data.inv_camera_matrix * world_matrix;
- mat3 modelview_normal = mat3(scene_data.inv_camera_matrix) * world_normal_matrix;
- {
- /* clang-format off */
- VERTEX_SHADER_CODE
- /* clang-format on */
- }
- // using local coordinates (default)
- #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
- vertex = (modelview * vec4(vertex, 1.0)).xyz;
- #ifdef NORMAL_USED
- normal = modelview_normal * normal;
- #endif
- #endif
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- binormal = modelview_normal * binormal;
- tangent = modelview_normal * tangent;
- #endif
- //using world coordinates
- #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- vertex = (scene_data.inv_camera_matrix * vec4(vertex, 1.0)).xyz;
- normal = mat3(scene_data.inverse_normal_matrix) * normal;
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- binormal = mat3(scene_data.camera_inverse_binormal_matrix) * binormal;
- tangent = mat3(scene_data.camera_inverse_tangent_matrix) * tangent;
- #endif
- #endif
- vertex_interp = vertex;
- #ifdef NORMAL_USED
- normal_interp = normal;
- #endif
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- tangent_interp = tangent;
- binormal_interp = binormal;
- #endif
- #ifdef MODE_RENDER_DEPTH
- #ifdef MODE_DUAL_PARABOLOID
- vertex_interp.z *= scene_data.dual_paraboloid_side;
- dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
- //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
- vec3 vtx = vertex_interp;
- float distance = length(vtx);
- vtx = normalize(vtx);
- vtx.xy /= 1.0 - vtx.z;
- vtx.z = (distance / scene_data.z_far);
- vtx.z = vtx.z * 2.0 - 1.0;
- vertex_interp = vtx;
- #endif
- #endif //MODE_RENDER_DEPTH
- #ifdef OVERRIDE_POSITION
- gl_Position = position;
- #else
- gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
- #endif
- #ifdef MODE_RENDER_DEPTH
- if (scene_data.pancake_shadows) {
- if (gl_Position.z <= 0.00001) {
- gl_Position.z = 0.00001;
- }
- }
- #endif
- #ifdef MODE_RENDER_MATERIAL
- if (scene_data.material_uv2_mode) {
- vec2 uv_offset = unpackHalf2x16(draw_call.uv_offset);
- gl_Position.xy = (uv2_attrib.xy + uv_offset) * 2.0 - 1.0;
- gl_Position.z = 0.00001;
- gl_Position.w = 1.0;
- }
- #endif
- }
- #[fragment]
- #version 450
- VERSION_DEFINES
- #include "scene_forward_inc.glsl"
- /* Varyings */
- layout(location = 0) in vec3 vertex_interp;
- #ifdef NORMAL_USED
- layout(location = 1) in vec3 normal_interp;
- #endif
- #if defined(COLOR_USED)
- layout(location = 2) in vec4 color_interp;
- #endif
- #ifdef UV_USED
- layout(location = 3) in vec2 uv_interp;
- #endif
- #if defined(UV2_USED) || defined(USE_LIGHTMAP)
- layout(location = 4) in vec2 uv2_interp;
- #endif
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- layout(location = 5) in vec3 tangent_interp;
- layout(location = 6) in vec3 binormal_interp;
- #endif
- #ifdef MODE_DUAL_PARABOLOID
- layout(location = 8) in float dp_clip;
- #endif
- layout(location = 9) in flat uint instance_index;
- //defines to keep compatibility with vertex
- #define world_matrix instances.data[instance_index].transform
- #define projection_matrix scene_data.projection_matrix
- #if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE)
- //both required for transmittance to be enabled
- #define LIGHT_TRANSMITTANCE_USED
- #endif
- #ifdef USE_MATERIAL_UNIFORMS
- layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
- /* clang-format off */
- MATERIAL_UNIFORMS
- /* clang-format on */
- } material;
- #endif
- /* clang-format off */
- FRAGMENT_SHADER_GLOBALS
- /* clang-format on */
- #ifdef MODE_RENDER_DEPTH
- #ifdef MODE_RENDER_MATERIAL
- layout(location = 0) out vec4 albedo_output_buffer;
- layout(location = 1) out vec4 normal_output_buffer;
- layout(location = 2) out vec4 orm_output_buffer;
- layout(location = 3) out vec4 emission_output_buffer;
- layout(location = 4) out float depth_output_buffer;
- #endif
- #ifdef MODE_RENDER_NORMAL_ROUGHNESS
- layout(location = 0) out vec4 normal_roughness_output_buffer;
- #ifdef MODE_RENDER_GIPROBE
- layout(location = 1) out uvec2 giprobe_buffer;
- #endif
- #endif //MODE_RENDER_NORMAL
- #else // RENDER DEPTH
- #ifdef MODE_MULTIPLE_RENDER_TARGETS
- layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness
- layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter)
- #else
- layout(location = 0) out vec4 frag_color;
- #endif
- #endif // RENDER DEPTH
- #ifdef ALPHA_HASH_USED
- float hash_2d(vec2 p) {
- return fract(1.0e4 * sin(17.0 * p.x + 0.1 * p.y) *
- (0.1 + abs(sin(13.0 * p.y + p.x))));
- }
- float hash_3d(vec3 p) {
- return hash_2d(vec2(hash_2d(p.xy), p.z));
- }
- float compute_alpha_hash_threshold(vec3 pos, float hash_scale) {
- vec3 dx = dFdx(pos);
- vec3 dy = dFdx(pos);
- float delta_max_sqr = max(length(dx), length(dy));
- float pix_scale = 1.0 / (hash_scale * delta_max_sqr);
- vec2 pix_scales =
- vec2(exp2(floor(log2(pix_scale))), exp2(ceil(log2(pix_scale))));
- vec2 a_thresh = vec2(hash_3d(floor(pix_scales.x * pos.xyz)),
- hash_3d(floor(pix_scales.y * pos.xyz)));
- float lerp_factor = fract(log2(pix_scale));
- float a_interp = (1.0 - lerp_factor) * a_thresh.x + lerp_factor * a_thresh.y;
- float min_lerp = min(lerp_factor, 1.0 - lerp_factor);
- vec3 cases = vec3(a_interp * a_interp / (2.0 * min_lerp * (1.0 - min_lerp)),
- (a_interp - 0.5 * min_lerp) / (1.0 - min_lerp),
- 1.0 - ((1.0 - a_interp) * (1.0 - a_interp) /
- (2.0 * min_lerp * (1.0 - min_lerp))));
- float alpha_hash_threshold =
- (lerp_factor < (1.0 - min_lerp)) ? ((lerp_factor < min_lerp) ? cases.x : cases.y) : cases.z;
- return clamp(alpha_hash_threshold, 0.0, 1.0);
- }
- #endif // ALPHA_HASH_USED
- #ifdef ALPHA_ANTIALIASING_EDGE_USED
- float calc_mip_level(vec2 texture_coord) {
- vec2 dx = dFdx(texture_coord);
- vec2 dy = dFdy(texture_coord);
- float delta_max_sqr = max(dot(dx, dx), dot(dy, dy));
- return max(0.0, 0.5 * log2(delta_max_sqr));
- }
- float compute_alpha_antialiasing_edge(float input_alpha, vec2 texture_coord, float alpha_edge) {
- input_alpha *= 1.0 + max(0, calc_mip_level(texture_coord)) * 0.25; // 0.25 mip scale, magic number
- input_alpha = (input_alpha - alpha_edge) / max(fwidth(input_alpha), 0.0001) + 0.5;
- return clamp(input_alpha, 0.0, 1.0);
- }
- #endif // ALPHA_ANTIALIASING_USED
- // This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
- // We're dividing this factor off because the overall term we'll end up looks like
- // (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
- //
- // F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
- //
- // We're basically regouping this as
- //
- // F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
- //
- // and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
- //
- // The contents of the D and G (G1) functions (GGX) are taken from
- // E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
- // Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
- #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- float G_GGX_2cos(float cos_theta_m, float alpha) {
- // Schlick's approximation
- // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
- // Eq. (19), although see Heitz (2014) the about the problems with his derivation.
- // It nevertheless approximates GGX well with k = alpha/2.
- float k = 0.5 * alpha;
- return 0.5 / (cos_theta_m * (1.0 - k) + k);
- // float cos2 = cos_theta_m * cos_theta_m;
- // float sin2 = (1.0 - cos2);
- // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
- }
- float D_GGX(float cos_theta_m, float alpha) {
- float alpha2 = alpha * alpha;
- float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
- return alpha2 / (M_PI * d * d);
- }
- float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float s_x = alpha_x * cos_phi;
- float s_y = alpha_y * sin_phi;
- return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
- }
- float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float r_x = cos_phi / alpha_x;
- float r_y = sin_phi / alpha_y;
- float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
- return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001);
- }
- float SchlickFresnel(float u) {
- float m = 1.0 - u;
- float m2 = m * m;
- return m2 * m2 * m; // pow(m,5)
- }
- float GTR1(float NdotH, float a) {
- if (a >= 1.0)
- return 1.0 / M_PI;
- float a2 = a * a;
- float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
- return (a2 - 1.0) / (M_PI * log(a2) * t);
- }
- vec3 F0(float metallic, float specular, vec3 albedo) {
- float dielectric = 0.16 * specular * specular;
- // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
- // see https://google.github.io/filament/Filament.md.html
- return mix(vec3(dielectric), albedo, vec3(metallic));
- }
- void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float attenuation, vec3 f0, uint orms, float specular_amount,
- #ifdef LIGHT_BACKLIGHT_USED
- vec3 backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- vec4 transmittance_color,
- float transmittance_depth,
- float transmittance_curve,
- float transmittance_boost,
- float transmittance_z,
- #endif
- #ifdef LIGHT_RIM_USED
- float rim, float rim_tint, vec3 rim_color,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- float clearcoat, float clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- vec3 B, vec3 T, float anisotropy,
- #endif
- #ifdef USE_SOFT_SHADOWS
- float A,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- inout float alpha,
- #endif
- inout vec3 diffuse_light, inout vec3 specular_light) {
- #if defined(USE_LIGHT_SHADER_CODE)
- // light is written by the light shader
- vec3 normal = N;
- vec3 light = L;
- vec3 view = V;
- /* clang-format off */
- LIGHT_SHADER_CODE
- /* clang-format on */
- #else
- #ifdef USE_SOFT_SHADOWS
- float NdotL = min(A + dot(N, L), 1.0);
- #else
- float NdotL = dot(N, L);
- #endif
- float cNdotL = max(NdotL, 0.0); // clamped NdotL
- float NdotV = dot(N, V);
- float cNdotV = max(NdotV, 0.0);
- #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
- vec3 H = normalize(V + L);
- #endif
- #if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
- #ifdef USE_SOFT_SHADOWS
- float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
- #else
- float cNdotH = clamp(dot(N, H), 0.0, 1.0);
- #endif
- #endif
- #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
- #ifdef USE_SOFT_SHADOWS
- float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
- #else
- float cLdotH = clamp(dot(L, H), 0.0, 1.0);
- #endif
- #endif
- float metallic = unpackUnorm4x8(orms).z;
- if (metallic < 1.0) {
- float roughness = unpackUnorm4x8(orms).y;
- #if defined(DIFFUSE_OREN_NAYAR)
- vec3 diffuse_brdf_NL;
- #else
- float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
- #endif
- #if defined(DIFFUSE_LAMBERT_WRAP)
- // energy conserving lambert wrap shader
- diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
- #elif defined(DIFFUSE_TOON)
- diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
- #elif defined(DIFFUSE_BURLEY)
- {
- float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
- float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
- float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
- diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
- /*
- float energyBias = mix(roughness, 0.0, 0.5);
- float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
- float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
- float f0 = 1.0;
- float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
- float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
- diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
- */
- }
- #else
- // lambert
- diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
- #endif
- diffuse_light += light_color * diffuse_brdf_NL * attenuation;
- #if defined(LIGHT_BACKLIGHT_USED)
- diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
- #endif
- #if defined(LIGHT_RIM_USED)
- float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
- diffuse_light += rim_light * rim * mix(vec3(1.0), rim_color, rim_tint) * light_color;
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- #ifdef SSS_MODE_SKIN
- {
- float scale = 8.25 / transmittance_depth;
- float d = scale * abs(transmittance_z);
- float dd = -d * d;
- vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
- vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
- vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
- vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
- vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
- vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
- diffuse_light += profile * transmittance_color.a * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI);
- }
- #else
- if (transmittance_depth > 0.0) {
- float fade = clamp(abs(transmittance_z / transmittance_depth), 0.0, 1.0);
- fade = pow(max(0.0, 1.0 - fade), transmittance_curve);
- fade *= clamp(transmittance_boost - NdotL, 0.0, 1.0);
- diffuse_light += transmittance_color.rgb * light_color * (1.0 / M_PI) * transmittance_color.a * fade;
- }
- #endif //SSS_MODE_SKIN
- #endif //LIGHT_TRANSMITTANCE_USED
- }
- float roughness = unpackUnorm4x8(orms).y;
- if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
- // D
- #if defined(SPECULAR_BLINN)
- //normalized blinn
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess) * cNdotL;
- blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- float intensity = blinn;
- specular_light += light_color * intensity * attenuation * specular_amount;
- #elif defined(SPECULAR_PHONG)
- vec3 R = normalize(-reflect(L, N));
- float cRdotV = clamp(A + dot(R, V), 0.0, 1.0);
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float phong = pow(cRdotV, shininess);
- phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
- float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
- specular_light += light_color * intensity * attenuation * specular_amount;
- #elif defined(SPECULAR_TOON)
- vec3 R = normalize(-reflect(L, N));
- float RdotV = dot(R, V);
- float mid = 1.0 - roughness;
- mid *= mid;
- float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
- diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection
- #elif defined(SPECULAR_DISABLED)
- // none..
- #elif defined(SPECULAR_SCHLICK_GGX)
- // shlick+ggx as default
- #if defined(LIGHT_ANISOTROPY_USED)
- float alpha_ggx = roughness * roughness;
- float aspect = sqrt(1.0 - anisotropy * 0.9);
- float ax = alpha_ggx / aspect;
- float ay = alpha_ggx * aspect;
- float XdotH = dot(T, H);
- float YdotH = dot(B, H);
- float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
- float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
- #else
- float alpha_ggx = roughness * roughness;
- float D = D_GGX(cNdotH, alpha_ggx);
- float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
- #endif
- // F
- float cLdotH5 = SchlickFresnel(cLdotH);
- vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
- vec3 specular_brdf_NL = cNdotL * D * F * G;
- specular_light += specular_brdf_NL * light_color * attenuation * specular_amount;
- #endif
- #if defined(LIGHT_CLEARCOAT_USED)
- #if !defined(SPECULAR_SCHLICK_GGX)
- float cLdotH5 = SchlickFresnel(cLdotH);
- #endif
- float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
- float Fr = mix(.04, 1.0, cLdotH5);
- float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
- float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
- specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount;
- #endif
- }
- #ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(1.0 - attenuation), 0.0, 1.0));
- #endif
- #endif //defined(USE_LIGHT_SHADER_CODE)
- }
- #ifndef USE_NO_SHADOWS
- // Interleaved Gradient Noise
- // http://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
- float quick_hash(vec2 pos) {
- const vec3 magic = vec3(0.06711056f, 0.00583715f, 52.9829189f);
- return fract(magic.z * fract(dot(pos, magic.xy)));
- }
- float sample_directional_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
- vec2 pos = coord.xy;
- float depth = coord.z;
- //if only one sample is taken, take it from the center
- if (scene_data.directional_soft_shadow_samples == 1) {
- return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
- }
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- float avg = 0.0;
- for (uint i = 0; i < scene_data.directional_soft_shadow_samples; i++) {
- avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.directional_soft_shadow_kernel[i].xy), depth, 1.0));
- }
- return avg * (1.0 / float(scene_data.directional_soft_shadow_samples));
- }
- float sample_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
- vec2 pos = coord.xy;
- float depth = coord.z;
- //if only one sample is taken, take it from the center
- if (scene_data.soft_shadow_samples == 1) {
- return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
- }
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- float avg = 0.0;
- for (uint i = 0; i < scene_data.soft_shadow_samples; i++) {
- avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.soft_shadow_kernel[i].xy), depth, 1.0));
- }
- return avg * (1.0 / float(scene_data.soft_shadow_samples));
- }
- float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex_scale) {
- //find blocker
- float blocker_count = 0.0;
- float blocker_average = 0.0;
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) {
- vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
- float d = textureLod(sampler2D(shadow, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
- if (d < pssm_coord.z) {
- blocker_average += d;
- blocker_count += 1.0;
- }
- }
- if (blocker_count > 0.0) {
- //blockers found, do soft shadow
- blocker_average /= blocker_count;
- float penumbra = (pssm_coord.z - blocker_average) / blocker_average;
- tex_scale *= penumbra;
- float s = 0.0;
- for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) {
- vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
- s += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(suv, pssm_coord.z, 1.0));
- }
- return s / float(scene_data.directional_penumbra_shadow_samples);
- } else {
- //no blockers found, so no shadow
- return 1.0;
- }
- }
- #endif //USE_NO_SHADOWS
- float get_omni_attenuation(float distance, float inv_range, float decay) {
- float nd = distance * inv_range;
- nd *= nd;
- nd *= nd; // nd^4
- nd = max(1.0 - nd, 0.0);
- nd *= nd; // nd^2
- return nd * pow(max(distance, 0.0001), -decay);
- }
- float light_process_omni_shadow(uint idx, vec3 vertex, vec3 normal) {
- #ifndef USE_NO_SHADOWS
- if (omni_lights.data[idx].shadow_enabled) {
- // there is a shadowmap
- vec3 light_rel_vec = omni_lights.data[idx].position - vertex;
- float light_length = length(light_rel_vec);
- vec4 v = vec4(vertex, 1.0);
- vec4 splane = (omni_lights.data[idx].shadow_matrix * v);
- float shadow_len = length(splane.xyz); //need to remember shadow len from here
- {
- vec3 nofs = normal_interp * omni_lights.data[idx].shadow_normal_bias / omni_lights.data[idx].inv_radius;
- nofs *= (1.0 - max(0.0, dot(normalize(light_rel_vec), normalize(normal_interp))));
- v.xyz += nofs;
- splane = (omni_lights.data[idx].shadow_matrix * v);
- }
- float shadow;
- #ifdef USE_SOFT_SHADOWS
- if (omni_lights.data[idx].soft_shadow_size > 0.0) {
- //soft shadow
- //find blocker
- float blocker_count = 0.0;
- float blocker_average = 0.0;
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- vec3 normal = normalize(splane.xyz);
- vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
- vec3 tangent = normalize(cross(v0, normal));
- vec3 bitangent = normalize(cross(tangent, normal));
- float z_norm = shadow_len * omni_lights.data[idx].inv_radius;
- tangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale;
- bitangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale;
- for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
- vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy;
- vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y;
- pos = normalize(pos);
- vec4 uv_rect = omni_lights.data[idx].atlas_rect;
- if (pos.z >= 0.0) {
- pos.z += 1.0;
- uv_rect.y += uv_rect.w;
- } else {
- pos.z = 1.0 - pos.z;
- }
- pos.xy /= pos.z;
- pos.xy = pos.xy * 0.5 + 0.5;
- pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
- float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), pos.xy, 0.0).r;
- if (d < z_norm) {
- blocker_average += d;
- blocker_count += 1.0;
- }
- }
- if (blocker_count > 0.0) {
- //blockers found, do soft shadow
- blocker_average /= blocker_count;
- float penumbra = (z_norm - blocker_average) / blocker_average;
- tangent *= penumbra;
- bitangent *= penumbra;
- z_norm -= omni_lights.data[idx].inv_radius * omni_lights.data[idx].shadow_bias;
- shadow = 0.0;
- for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
- vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy;
- vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y;
- pos = normalize(pos);
- vec4 uv_rect = omni_lights.data[idx].atlas_rect;
- if (pos.z >= 0.0) {
- pos.z += 1.0;
- uv_rect.y += uv_rect.w;
- } else {
- pos.z = 1.0 - pos.z;
- }
- pos.xy /= pos.z;
- pos.xy = pos.xy * 0.5 + 0.5;
- pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
- shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(pos.xy, z_norm, 1.0));
- }
- shadow /= float(scene_data.penumbra_shadow_samples);
- } else {
- //no blockers found, so no shadow
- shadow = 1.0;
- }
- } else {
- #endif
- splane.xyz = normalize(splane.xyz);
- vec4 clamp_rect = omni_lights.data[idx].atlas_rect;
- if (splane.z >= 0.0) {
- splane.z += 1.0;
- clamp_rect.y += clamp_rect.w;
- } else {
- splane.z = 1.0 - splane.z;
- }
- splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
- splane.z = (shadow_len - omni_lights.data[idx].shadow_bias) * omni_lights.data[idx].inv_radius;
- splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
- splane.w = 1.0; //needed? i think it should be 1 already
- shadow = sample_pcf_shadow(shadow_atlas, omni_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, splane);
- #ifdef USE_SOFT_SHADOWS
- }
- #endif
- return shadow;
- }
- #endif
- return 1.0;
- }
- void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow,
- #ifdef LIGHT_BACKLIGHT_USED
- vec3 backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- vec4 transmittance_color,
- float transmittance_depth,
- float transmittance_curve,
- float transmittance_boost,
- #endif
- #ifdef LIGHT_RIM_USED
- float rim, float rim_tint, vec3 rim_color,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- float clearcoat, float clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- vec3 binormal, vec3 tangent, float anisotropy,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- inout float alpha,
- #endif
- inout vec3 diffuse_light, inout vec3 specular_light) {
- vec3 light_rel_vec = omni_lights.data[idx].position - vertex;
- float light_length = length(light_rel_vec);
- float omni_attenuation = get_omni_attenuation(light_length, omni_lights.data[idx].inv_radius, omni_lights.data[idx].attenuation);
- float light_attenuation = omni_attenuation;
- vec3 color = omni_lights.data[idx].color;
- #ifdef USE_SOFT_SHADOWS
- float size_A = 0.0;
- if (omni_lights.data[idx].size > 0.0) {
- float t = omni_lights.data[idx].size / max(0.001, light_length);
- size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
- }
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- float transmittance_z = transmittance_depth; //no transmittance by default
- transmittance_color.a *= light_attenuation;
- {
- vec4 clamp_rect = omni_lights.data[idx].atlas_rect;
- //redo shadowmapping, but shrink the model a bit to avoid arctifacts
- vec4 splane = (omni_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * omni_lights.data[idx].transmittance_bias, 1.0));
- shadow_len = length(splane.xyz);
- splane = normalize(splane.xyz);
- if (splane.z >= 0.0) {
- splane.z += 1.0;
- } else {
- splane.z = 1.0 - splane.z;
- }
- splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
- splane.z = shadow_len * omni_lights.data[idx].inv_radius;
- splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
- splane.w = 1.0; //needed? i think it should be 1 already
- float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
- transmittance_z = (splane.z - shadow_z) / omni_lights.data[idx].inv_radius;
- }
- #endif
- #if 0
- if (omni_lights.data[idx].projector_rect != vec4(0.0)) {
- vec3 local_v = (omni_lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
- local_v = normalize(local_v);
- vec4 atlas_rect = omni_lights.data[idx].projector_rect;
- if (local_v.z >= 0.0) {
- local_v.z += 1.0;
- atlas_rect.y += atlas_rect.w;
- } else {
- local_v.z = 1.0 - local_v.z;
- }
- local_v.xy /= local_v.z;
- local_v.xy = local_v.xy * 0.5 + 0.5;
- vec2 proj_uv = local_v.xy * atlas_rect.zw;
- vec2 proj_uv_ddx;
- vec2 proj_uv_ddy;
- {
- vec3 local_v_ddx = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz;
- local_v_ddx = normalize(local_v_ddx);
- if (local_v_ddx.z >= 0.0) {
- local_v_ddx.z += 1.0;
- } else {
- local_v_ddx.z = 1.0 - local_v_ddx.z;
- }
- local_v_ddx.xy /= local_v_ddx.z;
- local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5;
- proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv;
- vec3 local_v_ddy = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz;
- local_v_ddy = normalize(local_v_ddy);
- if (local_v_ddy.z >= 0.0) {
- local_v_ddy.z += 1.0;
- } else {
- local_v_ddy.z = 1.0 - local_v_ddy.z;
- }
- local_v_ddy.xy /= local_v_ddy.z;
- local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5;
- proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv;
- }
- vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy);
- no_shadow = mix(no_shadow, proj.rgb, proj.a);
- }
- #endif
- light_attenuation *= shadow;
- light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, omni_lights.data[idx].specular_amount,
- #ifdef LIGHT_BACKLIGHT_USED
- backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_curve,
- transmittance_boost,
- transmittance_z,
- #endif
- #ifdef LIGHT_RIM_USED
- rim * omni_attenuation, rim_tint, rim_color,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- binormal, tangent, anisotropy,
- #endif
- #ifdef USE_SOFT_SHADOWS
- size_A,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- alpha,
- #endif
- diffuse_light,
- specular_light);
- }
- float light_process_spot_shadow(uint idx, vec3 vertex, vec3 normal) {
- #ifndef USE_NO_SHADOWS
- if (spot_lights.data[idx].shadow_enabled) {
- vec3 light_rel_vec = spot_lights.data[idx].position - vertex;
- float light_length = length(light_rel_vec);
- vec3 spot_dir = spot_lights.data[idx].direction;
- //there is a shadowmap
- vec4 v = vec4(vertex, 1.0);
- v.xyz -= spot_dir * spot_lights.data[idx].shadow_bias;
- float z_norm = dot(spot_dir, -light_rel_vec) * spot_lights.data[idx].inv_radius;
- float depth_bias_scale = 1.0 / (max(0.0001, z_norm)); //the closer to the light origin, the more you have to offset to reach 1px in the map
- vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(spot_dir, -normalize(normal_interp)))) * spot_lights.data[idx].shadow_normal_bias * depth_bias_scale;
- normal_bias -= spot_dir * dot(spot_dir, normal_bias); //only XY, no Z
- v.xyz += normal_bias;
- //adjust with bias
- z_norm = dot(spot_dir, v.xyz - spot_lights.data[idx].position) * spot_lights.data[idx].inv_radius;
- float shadow;
- vec4 splane = (spot_lights.data[idx].shadow_matrix * v);
- splane /= splane.w;
- #ifdef USE_SOFT_SHADOWS
- if (spot_lights.data[idx].soft_shadow_size > 0.0) {
- //soft shadow
- //find blocker
- vec2 shadow_uv = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy;
- float blocker_count = 0.0;
- float blocker_average = 0.0;
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- float uv_size = spot_lights.data[idx].soft_shadow_size * z_norm * spot_lights.data[idx].soft_shadow_scale;
- vec2 clamp_max = spot_lights.data[idx].atlas_rect.xy + spot_lights.data[idx].atlas_rect.zw;
- for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
- vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size;
- suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max);
- float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
- if (d < z_norm) {
- blocker_average += d;
- blocker_count += 1.0;
- }
- }
- if (blocker_count > 0.0) {
- //blockers found, do soft shadow
- blocker_average /= blocker_count;
- float penumbra = (z_norm - blocker_average) / blocker_average;
- uv_size *= penumbra;
- shadow = 0.0;
- for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
- vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size;
- suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max);
- shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, z_norm, 1.0));
- }
- shadow /= float(scene_data.penumbra_shadow_samples);
- } else {
- //no blockers found, so no shadow
- shadow = 1.0;
- }
- } else {
- #endif
- //hard shadow
- vec4 shadow_uv = vec4(splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy, splane.z, 1.0);
- shadow = sample_pcf_shadow(shadow_atlas, spot_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, shadow_uv);
- #ifdef USE_SOFT_SHADOWS
- }
- #endif
- return shadow;
- }
- #endif //USE_NO_SHADOWS
- return 1.0;
- }
- void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow,
- #ifdef LIGHT_BACKLIGHT_USED
- vec3 backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- vec4 transmittance_color,
- float transmittance_depth,
- float transmittance_curve,
- float transmittance_boost,
- #endif
- #ifdef LIGHT_RIM_USED
- float rim, float rim_tint, vec3 rim_color,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- float clearcoat, float clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- vec3 binormal, vec3 tangent, float anisotropy,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- inout float alpha,
- #endif
- inout vec3 diffuse_light,
- inout vec3 specular_light) {
- vec3 light_rel_vec = spot_lights.data[idx].position - vertex;
- float light_length = length(light_rel_vec);
- float spot_attenuation = get_omni_attenuation(light_length, spot_lights.data[idx].inv_radius, spot_lights.data[idx].attenuation);
- vec3 spot_dir = spot_lights.data[idx].direction;
- float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights.data[idx].cone_angle);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights.data[idx].cone_angle));
- spot_attenuation *= 1.0 - pow(spot_rim, spot_lights.data[idx].cone_attenuation);
- float light_attenuation = spot_attenuation;
- vec3 color = spot_lights.data[idx].color;
- float specular_amount = spot_lights.data[idx].specular_amount;
- #ifdef USE_SOFT_SHADOWS
- float size_A = 0.0;
- if (spot_lights.data[idx].size > 0.0) {
- float t = spot_lights.data[idx].size / max(0.001, light_length);
- size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
- }
- #endif
- /*
- if (spot_lights.data[idx].atlas_rect!=vec4(0.0)) {
- //use projector texture
- }
- */
- #ifdef LIGHT_TRANSMITTANCE_USED
- float transmittance_z = transmittance_depth;
- transmittance_color.a *= light_attenuation;
- {
- splane = (spot_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * spot_lights.data[idx].transmittance_bias, 1.0));
- splane /= splane.w;
- splane.xy = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy;
- float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
- //reconstruct depth
- shadow_z /= spot_lights.data[idx].inv_radius;
- //distance to light plane
- float z = dot(spot_dir, -light_rel_vec);
- transmittance_z = z - shadow_z;
- }
- #endif //LIGHT_TRANSMITTANCE_USED
- light_attenuation *= shadow;
- light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, spot_lights.data[idx].specular_amount,
- #ifdef LIGHT_BACKLIGHT_USED
- backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_curve,
- transmittance_boost,
- transmittance_z,
- #endif
- #ifdef LIGHT_RIM_USED
- rim * spot_attenuation, rim_tint, rim_color,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- binormal, tangent, anisotropy,
- #endif
- #ifdef USE_SOFT_SHADOW
- size_A,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- alpha,
- #endif
- diffuse_light, specular_light);
- }
- void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughness, vec3 ambient_light, vec3 specular_light, inout vec4 ambient_accum, inout vec4 reflection_accum) {
- vec3 box_extents = reflections.data[ref_index].box_extents;
- vec3 local_pos = (reflections.data[ref_index].local_matrix * vec4(vertex, 1.0)).xyz;
- if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
- return;
- }
- vec3 ref_vec = normalize(reflect(vertex, normal));
- vec3 inner_pos = abs(local_pos / box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
- //make blend more rounded
- blend = mix(length(inner_pos), blend, blend);
- blend *= blend;
- blend = max(0.0, 1.0 - blend);
- if (reflections.data[ref_index].intensity > 0.0) { // compute reflection
- vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz;
- if (reflections.data[ref_index].box_project) { //box project
- vec3 nrdir = normalize(local_ref_vec);
- vec3 rbmax = (box_extents - local_pos) / nrdir;
- vec3 rbmin = (-box_extents - local_pos) / nrdir;
- vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));
- float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
- vec3 posonbox = local_pos + nrdir * fa;
- local_ref_vec = posonbox - reflections.data[ref_index].box_offset;
- }
- vec4 reflection;
- reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_ref_vec, reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb;
- if (reflections.data[ref_index].exterior) {
- reflection.rgb = mix(specular_light, reflection.rgb, blend);
- }
- reflection.rgb *= reflections.data[ref_index].intensity; //intensity
- reflection.a = blend;
- reflection.rgb *= reflection.a;
- reflection_accum += reflection;
- }
- switch (reflections.data[ref_index].ambient_mode) {
- case REFLECTION_AMBIENT_DISABLED: {
- //do nothing
- } break;
- case REFLECTION_AMBIENT_ENVIRONMENT: {
- //do nothing
- vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz;
- vec4 ambient_out;
- ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb;
- ambient_out.a = blend;
- if (reflections.data[ref_index].exterior) {
- ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
- }
- ambient_out.rgb *= ambient_out.a;
- ambient_accum += ambient_out;
- } break;
- case REFLECTION_AMBIENT_COLOR: {
- vec4 ambient_out;
- ambient_out.a = blend;
- ambient_out.rgb = reflections.data[ref_index].ambient;
- if (reflections.data[ref_index].exterior) {
- ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
- }
- ambient_out.rgb *= ambient_out.a;
- ambient_accum += ambient_out;
- } break;
- }
- }
- #ifdef USE_FORWARD_GI
- //standard voxel cone trace
- vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
- float dist = p_bias;
- vec4 color = vec4(0.0);
- while (dist < max_distance && color.a < 0.95) {
- float diameter = max(1.0, 2.0 * tan_half_angle * dist);
- vec3 uvw_pos = (pos + dist * direction) * cell_size;
- float half_diameter = diameter * 0.5;
- //check if outside, then break
- if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) {
- break;
- }
- vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2(diameter));
- float a = (1.0 - color.a);
- color += a * scolor;
- dist += half_diameter;
- }
- return color;
- }
- vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
- float dist = p_bias;
- vec4 color = vec4(0.0);
- float radius = max(0.5, tan_half_angle * dist);
- float lod_level = log2(radius * 2.0);
- while (dist < max_distance && color.a < 0.95) {
- vec3 uvw_pos = (pos + dist * direction) * cell_size;
- //check if outside, then break
- if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) {
- break;
- }
- vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level);
- lod_level += 1.0;
- float a = (1.0 - color.a);
- scolor *= a;
- color += scolor;
- dist += radius;
- radius = max(0.5, tan_half_angle * dist);
- }
- return color;
- }
- void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3 normal_xform, float roughness, vec3 ambient, vec3 environment, inout vec4 out_spec, inout vec4 out_diff) {
- position = (gi_probes.data[index].xform * vec4(position, 1.0)).xyz;
- ref_vec = normalize((gi_probes.data[index].xform * vec4(ref_vec, 0.0)).xyz);
- normal = normalize((gi_probes.data[index].xform * vec4(normal, 0.0)).xyz);
- position += normal * gi_probes.data[index].normal_bias;
- //this causes corrupted pixels, i have no idea why..
- if (any(bvec2(any(lessThan(position, vec3(0.0))), any(greaterThan(position, gi_probes.data[index].bounds))))) {
- return;
- }
- vec3 blendv = abs(position / gi_probes.data[index].bounds * 2.0 - 1.0);
- float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0);
- //float blend=1.0;
- float max_distance = length(gi_probes.data[index].bounds);
- vec3 cell_size = 1.0 / gi_probes.data[index].bounds;
- //radiance
- #define MAX_CONE_DIRS 4
- vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
- vec3(0.707107, 0.0, 0.707107),
- vec3(0.0, 0.707107, 0.707107),
- vec3(-0.707107, 0.0, 0.707107),
- vec3(0.0, -0.707107, 0.707107));
- float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
- float cone_angle_tan = 0.98269;
- vec3 light = vec3(0.0);
- for (int i = 0; i < MAX_CONE_DIRS; i++) {
- vec3 dir = normalize((gi_probes.data[index].xform * vec4(normal_xform * cone_dirs[i], 0.0)).xyz);
- vec4 cone_light = voxel_cone_trace_45_degrees(gi_probe_textures[index], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
- if (gi_probes.data[index].blend_ambient) {
- cone_light.rgb = mix(ambient, cone_light.rgb, min(1.0, cone_light.a / 0.95));
- }
- light += cone_weights[i] * cone_light.rgb;
- }
- light *= gi_probes.data[index].dynamic_range;
- out_diff += vec4(light * blend, blend);
- //irradiance
- vec4 irr_light = voxel_cone_trace(gi_probe_textures[index], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, gi_probes.data[index].bias);
- if (gi_probes.data[index].blend_ambient) {
- irr_light.rgb = mix(environment, irr_light.rgb, min(1.0, irr_light.a / 0.95));
- }
- irr_light.rgb *= gi_probes.data[index].dynamic_range;
- //irr_light=vec3(0.0);
- out_spec += vec4(irr_light.rgb * blend, blend);
- }
- vec2 octahedron_wrap(vec2 v) {
- vec2 signVal;
- signVal.x = v.x >= 0.0 ? 1.0 : -1.0;
- signVal.y = v.y >= 0.0 ? 1.0 : -1.0;
- return (1.0 - abs(v.yx)) * signVal;
- }
- vec2 octahedron_encode(vec3 n) {
- // https://twitter.com/Stubbesaurus/status/937994790553227264
- n /= (abs(n.x) + abs(n.y) + abs(n.z));
- n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy);
- n.xy = n.xy * 0.5 + 0.5;
- return n.xy;
- }
- void sdfgi_process(uint cascade, vec3 cascade_pos, vec3 cam_pos, vec3 cam_normal, vec3 cam_specular_normal, bool use_specular, float roughness, out vec3 diffuse_light, out vec3 specular_light, out float blend) {
- cascade_pos += cam_normal * sdfgi.normal_bias;
- vec3 base_pos = floor(cascade_pos);
- //cascade_pos += mix(vec3(0.0),vec3(0.01),lessThan(abs(cascade_pos-base_pos),vec3(0.01))) * cam_normal;
- ivec3 probe_base_pos = ivec3(base_pos);
- vec4 diffuse_accum = vec4(0.0);
- vec3 specular_accum;
- ivec3 tex_pos = ivec3(probe_base_pos.xy, int(cascade));
- tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size;
- tex_pos.xy = tex_pos.xy * (SDFGI_OCT_SIZE + 2) + ivec2(1);
- vec3 diffuse_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size;
- vec3 specular_posf;
- if (use_specular) {
- specular_accum = vec3(0.0);
- specular_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_specular_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size;
- }
- vec4 light_accum = vec4(0.0);
- float weight_accum = 0.0;
- for (uint j = 0; j < 8; j++) {
- ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
- ivec3 probe_posi = probe_base_pos;
- probe_posi += offset;
- // Compute weight
- vec3 probe_pos = vec3(probe_posi);
- vec3 probe_to_pos = cascade_pos - probe_pos;
- vec3 probe_dir = normalize(-probe_to_pos);
- vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
- float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(cam_normal, probe_dir));
- // Compute lightprobe occlusion
- if (sdfgi.use_occlusion) {
- ivec3 occ_indexv = abs((sdfgi.cascades[cascade].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4);
- vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3)));
- vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw;
- occ_pos.z += float(cascade);
- if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures
- occ_pos.x += 1.0;
- }
- occ_pos *= sdfgi.occlusion_renormalize;
- float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_cascades, material_samplers[SAMPLER_LINEAR_CLAMP]), occ_pos, 0.0), occ_mask);
- weight *= max(occlusion, 0.01);
- }
- // Compute lightprobe texture position
- vec3 diffuse;
- vec3 pos_uvw = diffuse_posf;
- pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy;
- pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z;
- diffuse = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb;
- diffuse_accum += vec4(diffuse * weight, weight);
- if (use_specular) {
- vec3 specular = vec3(0.0);
- vec3 pos_uvw = specular_posf;
- pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy;
- pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z;
- if (roughness < 0.99) {
- specular = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw + vec3(0, 0, float(sdfgi.max_cascades)), 0.0).rgb;
- }
- if (roughness > 0.5) {
- specular = mix(specular, textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb, (roughness - 0.5) * 2.0);
- }
- specular_accum += specular * weight;
- }
- }
- if (diffuse_accum.a > 0.0) {
- diffuse_accum.rgb /= diffuse_accum.a;
- }
- diffuse_light = diffuse_accum.rgb;
- if (use_specular) {
- if (diffuse_accum.a > 0.0) {
- specular_accum /= diffuse_accum.a;
- }
- specular_light = specular_accum;
- }
- {
- //process blend
- float blend_from = (float(sdfgi.probe_axis_size - 1) / 2.0) - 2.5;
- float blend_to = blend_from + 2.0;
- vec3 inner_pos = cam_pos * sdfgi.cascades[cascade].to_probe;
- float len = length(inner_pos);
- inner_pos = abs(normalize(inner_pos));
- len *= max(inner_pos.x, max(inner_pos.y, inner_pos.z));
- if (len >= blend_from) {
- blend = smoothstep(blend_from, blend_to, len);
- } else {
- blend = 0.0;
- }
- }
- }
- #endif //USE_FORWARD_GI
- #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- #ifndef MODE_RENDER_DEPTH
- #ifndef LOW_END_MODE
- vec4 volumetric_fog_process(vec2 screen_uv, float z) {
- vec3 fog_pos = vec3(screen_uv, z * scene_data.volumetric_fog_inv_length);
- if (fog_pos.z < 0.0) {
- return vec4(0.0);
- } else if (fog_pos.z < 1.0) {
- fog_pos.z = pow(fog_pos.z, scene_data.volumetric_fog_detail_spread);
- }
- return texture(sampler3D(volumetric_fog_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), fog_pos);
- }
- #endif
- vec4 fog_process(vec3 vertex) {
- vec3 fog_color = scene_data.fog_light_color;
- if (scene_data.fog_aerial_perspective > 0.0) {
- vec3 sky_fog_color = vec3(0.0);
- vec3 cube_view = scene_data.radiance_inverse_xform * vertex;
- // mip_level always reads from the second mipmap and higher so the fog is always slightly blurred
- float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near));
- #ifdef USE_RADIANCE_CUBEMAP_ARRAY
- float lod, blend;
- blend = modf(mip_level * MAX_ROUGHNESS_LOD, lod);
- sky_fog_color = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod)).rgb;
- sky_fog_color = mix(sky_fog_color, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod + 1)).rgb, blend);
- #else
- sky_fog_color = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_view, mip_level * MAX_ROUGHNESS_LOD).rgb;
- #endif //USE_RADIANCE_CUBEMAP_ARRAY
- fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective);
- }
- if (scene_data.fog_sun_scatter > 0.001) {
- vec4 sun_scatter = vec4(0.0);
- float sun_total = 0.0;
- vec3 view = normalize(vertex);
- for (uint i = 0; i < scene_data.directional_light_count; i++) {
- vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy;
- float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0);
- fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
- }
- }
- float fog_amount = 1.0 - exp(min(0.0, vertex.z * scene_data.fog_density));
- if (abs(scene_data.fog_height_density) > 0.001) {
- float y = (scene_data.camera_matrix * vec4(vertex, 1.0)).y;
- float y_dist = scene_data.fog_height - y;
- float vfog_amount = clamp(exp(y_dist * scene_data.fog_height_density), 0.0, 1.0);
- fog_amount = max(vfog_amount, fog_amount);
- }
- return vec4(fog_color, fog_amount);
- }
- void cluster_get_item_range(uint p_offset, out uint item_min, out uint item_max, out uint item_from, out uint item_to) {
- uint item_min_max = cluster_buffer.data[p_offset];
- item_min = item_min_max & 0xFFFF;
- item_max = item_min_max >> 16;
- ;
- item_from = item_min >> 5;
- item_to = (item_max == 0) ? 0 : ((item_max - 1) >> 5) + 1; //side effect of how it is stored, as item_max 0 means no elements
- }
- uint cluster_get_range_clip_mask(uint i, uint z_min, uint z_max) {
- int local_min = clamp(int(z_min) - int(i) * 32, 0, 31);
- int mask_width = min(int(z_max) - int(z_min), 32 - local_min);
- return bitfieldInsert(uint(0), uint(0xFFFFFFFF), local_min, mask_width);
- }
- float blur_shadow(float shadow) {
- return shadow;
- #if 0
- //disabling for now, will investigate later
- float interp_shadow = shadow;
- if (gl_HelperInvocation) {
- interp_shadow = -4.0; // technically anything below -4 will do but just to make sure
- }
- uvec2 fc2 = uvec2(gl_FragCoord.xy);
- interp_shadow -= dFdx(interp_shadow) * (float(fc2.x & 1) - 0.5);
- interp_shadow -= dFdy(interp_shadow) * (float(fc2.y & 1) - 0.5);
- if (interp_shadow >= 0.0) {
- shadow = interp_shadow;
- }
- return shadow;
- #endif
- }
- #endif //!MODE_RENDER DEPTH
- void main() {
- #ifdef MODE_DUAL_PARABOLOID
- if (dp_clip > 0.0)
- discard;
- #endif
- //lay out everything, whathever is unused is optimized away anyway
- vec3 vertex = vertex_interp;
- vec3 view = -normalize(vertex_interp);
- vec3 albedo = vec3(1.0);
- vec3 backlight = vec3(0.0);
- vec4 transmittance_color = vec4(0.0);
- float transmittance_depth = 0.0;
- float transmittance_curve = 1.0;
- float transmittance_boost = 0.0;
- float metallic = 0.0;
- float specular = 0.5;
- vec3 emission = vec3(0.0);
- float roughness = 1.0;
- float rim = 0.0;
- float rim_tint = 0.0;
- float clearcoat = 0.0;
- float clearcoat_gloss = 0.0;
- float anisotropy = 0.0;
- vec2 anisotropy_flow = vec2(1.0, 0.0);
- vec4 fog = vec4(0.0);
- #if defined(CUSTOM_RADIANCE_USED)
- vec4 custom_radiance = vec4(0.0);
- #endif
- #if defined(CUSTOM_IRRADIANCE_USED)
- vec4 custom_irradiance = vec4(0.0);
- #endif
- float ao = 1.0;
- float ao_light_affect = 0.0;
- float alpha = 1.0;
- #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
- vec3 binormal = normalize(binormal_interp);
- vec3 tangent = normalize(tangent_interp);
- #else
- vec3 binormal = vec3(0.0);
- vec3 tangent = vec3(0.0);
- #endif
- #ifdef NORMAL_USED
- vec3 normal = normalize(normal_interp);
- #if defined(DO_SIDE_CHECK)
- if (!gl_FrontFacing) {
- normal = -normal;
- }
- #endif
- #endif //NORMAL_USED
- #ifdef UV_USED
- vec2 uv = uv_interp;
- #endif
- #if defined(UV2_USED) || defined(USE_LIGHTMAP)
- vec2 uv2 = uv2_interp;
- #endif
- #if defined(COLOR_USED)
- vec4 color = color_interp;
- #endif
- #if defined(NORMAL_MAP_USED)
- vec3 normal_map = vec3(0.5);
- #endif
- float normal_map_depth = 1.0;
- vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center
- float sss_strength = 0.0;
- #ifdef ALPHA_SCISSOR_USED
- float alpha_scissor_threshold = 1.0;
- #endif // ALPHA_SCISSOR_USED
- #ifdef ALPHA_HASH_USED
- float alpha_hash_scale = 1.0;
- #endif // ALPHA_HASH_USED
- #ifdef ALPHA_ANTIALIASING_EDGE_USED
- float alpha_antialiasing_edge = 0.0;
- vec2 alpha_texture_coordinate = vec2(0.0, 0.0);
- #endif // ALPHA_ANTIALIASING_EDGE_USED
- {
- /* clang-format off */
- FRAGMENT_SHADER_CODE
- /* clang-format on */
- }
- #ifdef LIGHT_TRANSMITTANCE_USED
- #ifdef SSS_MODE_SKIN
- transmittance_color.a = sss_strength;
- #else
- transmittance_color.a *= sss_strength;
- #endif
- #endif
- #ifndef USE_SHADOW_TO_OPACITY
- #ifdef ALPHA_SCISSOR_USED
- if (alpha < alpha_scissor_threshold) {
- discard;
- }
- #endif // ALPHA_SCISSOR_USED
- // alpha hash can be used in unison with alpha antialiasing
- #ifdef ALPHA_HASH_USED
- if (alpha < compute_alpha_hash_threshold(vertex, alpha_hash_scale)) {
- discard;
- }
- #endif // ALPHA_HASH_USED
- // If we are not edge antialiasing, we need to remove the output alpha channel from scissor and hash
- #if (defined(ALPHA_SCISSOR_USED) || defined(ALPHA_HASH_USED)) && !defined(ALPHA_ANTIALIASING_EDGE_USED)
- alpha = 1.0;
- #endif
- #ifdef ALPHA_ANTIALIASING_EDGE_USED
- // If alpha scissor is used, we must further the edge threshold, otherwise we wont get any edge feather
- #ifdef ALPHA_SCISSOR_USED
- alpha_antialiasing_edge = clamp(alpha_scissor_threshold + alpha_antialiasing_edge, 0.0, 1.0);
- #endif
- alpha = compute_alpha_antialiasing_edge(alpha, alpha_texture_coordinate, alpha_antialiasing_edge);
- #endif // ALPHA_ANTIALIASING_EDGE_USED
- #ifdef USE_OPAQUE_PREPASS
- if (alpha < opaque_prepass_threshold) {
- discard;
- }
- #endif // USE_OPAQUE_PREPASS
- #endif // !USE_SHADOW_TO_OPACITY
- #ifdef NORMAL_MAP_USED
- normal_map.xy = normal_map.xy * 2.0 - 1.0;
- normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
- normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth));
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- if (anisotropy > 0.01) {
- //rotation matrix
- mat3 rot = mat3(tangent, binormal, normal);
- //make local to space
- tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
- binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
- }
- #endif
- #ifdef ENABLE_CLIP_ALPHA
- if (albedo.a < 0.99) {
- //used for doublepass and shadowmapping
- discard;
- }
- #endif
- /////////////////////// FOG //////////////////////
- #ifndef MODE_RENDER_DEPTH
- #ifndef CUSTOM_FOG_USED
- // fog must be processed as early as possible and then packed.
- // to maximize VGPR usage
- // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
- if (scene_data.fog_enabled) {
- fog = fog_process(vertex);
- }
- #ifndef LOW_END_MODE
- if (scene_data.volumetric_fog_enabled) {
- vec4 volumetric_fog = volumetric_fog_process(screen_uv, -vertex.z);
- if (scene_data.fog_enabled) {
- //must use the full blending equation here to blend fogs
- vec4 res;
- float sa = 1.0 - volumetric_fog.a;
- res.a = fog.a * sa + volumetric_fog.a;
- if (res.a == 0.0) {
- res.rgb = vec3(0.0);
- } else {
- res.rgb = (fog.rgb * fog.a * sa + volumetric_fog.rgb * volumetric_fog.a) / res.a;
- }
- fog = res;
- } else {
- fog = volumetric_fog;
- }
- }
- #endif //!LOW_END_MODE
- #endif //!CUSTOM_FOG_USED
- uint fog_rg = packHalf2x16(fog.rg);
- uint fog_ba = packHalf2x16(fog.ba);
- #endif //!MODE_RENDER_DEPTH
- /////////////////////// DECALS ////////////////////////////////
- #ifndef MODE_RENDER_DEPTH
- uvec2 cluster_pos = uvec2(gl_FragCoord.xy) >> scene_data.cluster_shift;
- uint cluster_offset = (scene_data.cluster_width * cluster_pos.y + cluster_pos.x) * (scene_data.max_cluster_element_count_div_32 + 32);
- uint cluster_z = uint(clamp((-vertex.z / scene_data.z_far) * 32.0, 0.0, 31.0));
- //used for interpolating anything cluster related
- vec3 vertex_ddx = dFdx(vertex);
- vec3 vertex_ddy = dFdy(vertex);
- { // process decals
- uint cluster_decal_offset = cluster_offset + scene_data.cluster_type_size * 2;
- uint item_min;
- uint item_max;
- uint item_from;
- uint item_to;
- cluster_get_item_range(cluster_decal_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- #ifdef USE_SUBGROUPS
- item_from = subgroupBroadcastFirst(subgroupMin(item_from));
- item_to = subgroupBroadcastFirst(subgroupMax(item_to));
- #endif
- for (uint i = item_from; i < item_to; i++) {
- uint mask = cluster_buffer.data[cluster_decal_offset + i];
- mask &= cluster_get_range_clip_mask(i, item_min, item_max);
- #ifdef USE_SUBGROUPS
- uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
- #else
- uint merged_mask = mask;
- #endif
- while (merged_mask != 0) {
- uint bit = findMSB(merged_mask);
- merged_mask &= ~(1 << bit);
- #ifdef USE_SUBGROUPS
- if (((1 << bit) & mask) == 0) { //do not process if not originally here
- continue;
- }
- #endif
- uint decal_index = 32 * i + bit;
- if (!bool(decals.data[decal_index].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
- vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz;
- if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) {
- continue; //out of decal
- }
- //we need ddx/ddy for mipmaps, so simulate them
- vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz;
- vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz;
- float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade);
- if (decals.data[decal_index].normal_fade > 0.0) {
- fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5);
- }
- if (decals.data[decal_index].albedo_rect != vec4(0.0)) {
- //has albedo
- vec4 decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw);
- decal_albedo *= decals.data[decal_index].modulate;
- decal_albedo.a *= fade;
- albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix);
- if (decals.data[decal_index].normal_rect != vec4(0.0)) {
- vec3 decal_normal = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz;
- decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software
- decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy)));
- //convert to view space, use xzy because y is up
- decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz;
- normal = normalize(mix(normal, decal_normal, decal_albedo.a));
- }
- if (decals.data[decal_index].orm_rect != vec4(0.0)) {
- vec3 decal_orm = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz;
- ao = mix(ao, decal_orm.r, decal_albedo.a);
- roughness = mix(roughness, decal_orm.g, decal_albedo.a);
- metallic = mix(metallic, decal_orm.b, decal_albedo.a);
- }
- }
- if (decals.data[decal_index].emission_rect != vec4(0.0)) {
- //emission is additive, so its independent from albedo
- emission += textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade;
- }
- }
- }
- }
- //pack albedo until needed again, saves 2 VGPRs in the meantime
- #endif //not render depth
- /////////////////////// LIGHTING //////////////////////////////
- #ifdef NORMAL_USED
- if (scene_data.roughness_limiter_enabled) {
- //http://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf
- float roughness2 = roughness * roughness;
- vec3 dndu = dFdx(normal), dndv = dFdx(normal);
- float variance = scene_data.roughness_limiter_amount * (dot(dndu, dndu) + dot(dndv, dndv));
- float kernelRoughness2 = min(2.0 * variance, scene_data.roughness_limiter_limit); //limit effect
- float filteredRoughness2 = min(1.0, roughness2 + kernelRoughness2);
- roughness = sqrt(filteredRoughness2);
- }
- #endif
- //apply energy conservation
- vec3 specular_light = vec3(0.0, 0.0, 0.0);
- vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
- vec3 ambient_light = vec3(0.0, 0.0, 0.0);
- #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- if (scene_data.use_reflection_cubemap) {
- vec3 ref_vec = reflect(-view, normal);
- ref_vec = scene_data.radiance_inverse_xform * ref_vec;
- #ifdef USE_RADIANCE_CUBEMAP_ARRAY
- float lod, blend;
- blend = modf(roughness * MAX_ROUGHNESS_LOD, lod);
- specular_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb;
- specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend);
- #else
- specular_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb;
- #endif //USE_RADIANCE_CUBEMAP_ARRAY
- specular_light *= scene_data.ambient_light_color_energy.a;
- }
- #if defined(CUSTOM_RADIANCE_USED)
- specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a);
- #endif
- #ifndef USE_LIGHTMAP
- //lightmap overrides everything
- if (scene_data.use_ambient_light) {
- ambient_light = scene_data.ambient_light_color_energy.rgb;
- if (scene_data.use_ambient_cubemap) {
- vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
- #ifdef USE_RADIANCE_CUBEMAP_ARRAY
- vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb;
- #else
- vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb;
- #endif //USE_RADIANCE_CUBEMAP_ARRAY
- ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
- }
- }
- #endif // USE_LIGHTMAP
- #if defined(CUSTOM_IRRADIANCE_USED)
- ambient_light = mix(specular_light, custom_irradiance.rgb, custom_irradiance.a);
- #endif
- #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- //radiance
- /// GI ///
- #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- #ifdef USE_LIGHTMAP
- //lightmap
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture
- uint index = instances.data[instance_index].gi_offset;
- vec3 wnormal = mat3(scene_data.camera_matrix) * normal;
- const float c1 = 0.429043;
- const float c2 = 0.511664;
- const float c3 = 0.743125;
- const float c4 = 0.886227;
- const float c5 = 0.247708;
- ambient_light += (c1 * lightmap_captures.data[index].sh[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) +
- c3 * lightmap_captures.data[index].sh[6].rgb * wnormal.z * wnormal.z +
- c4 * lightmap_captures.data[index].sh[0].rgb -
- c5 * lightmap_captures.data[index].sh[6].rgb +
- 2.0 * c1 * lightmap_captures.data[index].sh[4].rgb * wnormal.x * wnormal.y +
- 2.0 * c1 * lightmap_captures.data[index].sh[7].rgb * wnormal.x * wnormal.z +
- 2.0 * c1 * lightmap_captures.data[index].sh[5].rgb * wnormal.y * wnormal.z +
- 2.0 * c2 * lightmap_captures.data[index].sh[3].rgb * wnormal.x +
- 2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y +
- 2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z);
- } else if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap
- bool uses_sh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP);
- uint ofs = instances.data[instance_index].gi_offset & 0xFFFF;
- vec3 uvw;
- uvw.xy = uv2 * instances.data[instance_index].lightmap_uv_scale.zw + instances.data[instance_index].lightmap_uv_scale.xy;
- uvw.z = float((instances.data[instance_index].gi_offset >> 16) & 0xFFFF);
- if (uses_sh) {
- uvw.z *= 4.0; //SH textures use 4 times more data
- vec3 lm_light_l0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb;
- vec3 lm_light_l1n1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb;
- vec3 lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb;
- vec3 lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb;
- uint idx = instances.data[instance_index].gi_offset >> 20;
- vec3 n = normalize(lightmaps.data[idx].normal_xform * normal);
- ambient_light += lm_light_l0 * 0.282095f;
- ambient_light += lm_light_l1n1 * 0.32573 * n.y;
- ambient_light += lm_light_l1_0 * 0.32573 * n.z;
- ambient_light += lm_light_l1p1 * 0.32573 * n.x;
- if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick
- vec3 r = reflect(normalize(-vertex), normal);
- specular_light += lm_light_l1n1 * 0.32573 * r.y;
- specular_light += lm_light_l1_0 * 0.32573 * r.z;
- specular_light += lm_light_l1p1 * 0.32573 * r.x;
- }
- } else {
- ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw, 0.0).rgb;
- }
- }
- #elif defined(USE_FORWARD_GI)
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SDFGI)) { //has lightmap capture
- //make vertex orientation the world one, but still align to camera
- vec3 cam_pos = mat3(scene_data.camera_matrix) * vertex;
- vec3 cam_normal = mat3(scene_data.camera_matrix) * normal;
- vec3 cam_reflection = mat3(scene_data.camera_matrix) * reflect(-view, normal);
- //apply y-mult
- cam_pos.y *= sdfgi.y_mult;
- cam_normal.y *= sdfgi.y_mult;
- cam_normal = normalize(cam_normal);
- cam_reflection.y *= sdfgi.y_mult;
- cam_normal = normalize(cam_normal);
- cam_reflection = normalize(cam_reflection);
- vec4 light_accum = vec4(0.0);
- float weight_accum = 0.0;
- vec4 light_blend_accum = vec4(0.0);
- float weight_blend_accum = 0.0;
- float blend = -1.0;
- // helper constants, compute once
- uint cascade = 0xFFFFFFFF;
- vec3 cascade_pos;
- vec3 cascade_normal;
- for (uint i = 0; i < sdfgi.max_cascades; i++) {
- cascade_pos = (cam_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe;
- if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) {
- continue; //skip cascade
- }
- cascade = i;
- break;
- }
- if (cascade < SDFGI_MAX_CASCADES) {
- bool use_specular = true;
- float blend;
- vec3 diffuse, specular;
- sdfgi_process(cascade, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse, specular, blend);
- if (blend > 0.0) {
- //blend
- if (cascade == sdfgi.max_cascades - 1) {
- diffuse = mix(diffuse, ambient_light, blend);
- if (use_specular) {
- specular = mix(specular, specular_light, blend);
- }
- } else {
- vec3 diffuse2, specular2;
- float blend2;
- cascade_pos = (cam_pos - sdfgi.cascades[cascade + 1].position) * sdfgi.cascades[cascade + 1].to_probe;
- sdfgi_process(cascade + 1, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse2, specular2, blend2);
- diffuse = mix(diffuse, diffuse2, blend);
- if (use_specular) {
- specular = mix(specular, specular2, blend);
- }
- }
- }
- ambient_light = diffuse;
- if (use_specular) {
- specular_light = specular;
- }
- }
- }
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
- uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
- vec3 ref_vec = normalize(reflect(normalize(vertex), normal));
- //find arbitrary tangent and bitangent, then build a matrix
- vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
- vec3 tangent = normalize(cross(v0, normal));
- vec3 bitangent = normalize(cross(tangent, normal));
- mat3 normal_mat = mat3(tangent, bitangent, normal);
- vec4 amb_accum = vec4(0.0);
- vec4 spec_accum = vec4(0.0);
- gi_probe_compute(index1, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
- uint index2 = instances.data[instance_index].gi_offset >> 16;
- if (index2 != 0xFFFF) {
- gi_probe_compute(index2, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
- }
- if (amb_accum.a > 0.0) {
- amb_accum.rgb /= amb_accum.a;
- }
- if (spec_accum.a > 0.0) {
- spec_accum.rgb /= spec_accum.a;
- }
- specular_light = spec_accum.rgb;
- ambient_light = amb_accum.rgb;
- }
- #elif !defined(LOW_END_MODE)
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GI_BUFFERS)) { //use GI buffers
- vec2 coord;
- if (scene_data.gi_upscale_for_msaa) {
- vec2 base_coord = screen_uv;
- vec2 closest_coord = base_coord;
- float closest_ang = dot(normal, textureLod(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), base_coord, 0.0).xyz * 2.0 - 1.0);
- for (int i = 0; i < 4; i++) {
- const vec2 neighbours[4] = vec2[](vec2(-1, 0), vec2(1, 0), vec2(0, -1), vec2(0, 1));
- vec2 neighbour_coord = base_coord + neighbours[i] * scene_data.screen_pixel_size;
- float neighbour_ang = dot(normal, textureLod(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), neighbour_coord, 0.0).xyz * 2.0 - 1.0);
- if (neighbour_ang > closest_ang) {
- closest_ang = neighbour_ang;
- closest_coord = neighbour_coord;
- }
- }
- coord = closest_coord;
- } else {
- coord = screen_uv;
- }
- vec4 buffer_ambient = textureLod(sampler2D(ambient_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0.0);
- vec4 buffer_reflection = textureLod(sampler2D(reflection_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0.0);
- ambient_light = mix(ambient_light, buffer_ambient.rgb, buffer_ambient.a);
- specular_light = mix(specular_light, buffer_reflection.rgb, buffer_reflection.a);
- }
- #endif
- #ifndef LOW_END_MODE
- if (scene_data.ssao_enabled) {
- float ssao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
- ao = min(ao, ssao);
- ao_light_affect = mix(ao_light_affect, max(ao_light_affect, scene_data.ssao_light_affect), scene_data.ssao_ao_affect);
- }
- #endif //LOW_END_MODE
- { // process reflections
- vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
- vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
- uint cluster_reflection_offset = cluster_offset + scene_data.cluster_type_size * 3;
- uint item_min;
- uint item_max;
- uint item_from;
- uint item_to;
- cluster_get_item_range(cluster_reflection_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- #ifdef USE_SUBGROUPS
- item_from = subgroupBroadcastFirst(subgroupMin(item_from));
- item_to = subgroupBroadcastFirst(subgroupMax(item_to));
- #endif
- for (uint i = item_from; i < item_to; i++) {
- uint mask = cluster_buffer.data[cluster_reflection_offset + i];
- mask &= cluster_get_range_clip_mask(i, item_min, item_max);
- #ifdef USE_SUBGROUPS
- uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
- #else
- uint merged_mask = mask;
- #endif
- while (merged_mask != 0) {
- uint bit = findMSB(merged_mask);
- merged_mask &= ~(1 << bit);
- #ifdef USE_SUBGROUPS
- if (((1 << bit) & mask) == 0) { //do not process if not originally here
- continue;
- }
- #endif
- uint reflection_index = 32 * i + bit;
- if (!bool(reflections.data[reflection_index].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
- reflection_process(reflection_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
- }
- }
- if (reflection_accum.a > 0.0) {
- specular_light = reflection_accum.rgb / reflection_accum.a;
- }
- #if !defined(USE_LIGHTMAP)
- if (ambient_accum.a > 0.0) {
- ambient_light = ambient_accum.rgb / ambient_accum.a;
- }
- #endif
- }
- //finalize ambient light here
- ambient_light *= albedo.rgb;
- ambient_light *= ao;
- // convert ao to direct light ao
- ao = mix(1.0, ao, ao_light_affect);
- //this saves some VGPRs
- vec3 f0 = F0(metallic, specular, albedo);
- {
- #if defined(DIFFUSE_TOON)
- //simplify for toon, as
- specular_light *= specular * metallic * albedo * 2.0;
- #else
- // scales the specular reflections, needs to be be computed before lighting happens,
- // but after environment, GI, and reflection probes are added
- // Environment brdf approximation (Lazarov 2013)
- // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
- const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
- const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
- vec4 r = roughness * c0 + c1;
- float ndotv = clamp(dot(normal, view), 0.0, 1.0);
- float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
- vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
- specular_light *= env.x * f0 + env.y;
- #endif
- }
- #endif //GI !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- #if !defined(MODE_RENDER_DEPTH)
- //this saves some VGPRs
- uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular));
- #endif
- // LIGHTING
- #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- { //directional light
- // Do shadow and lighting in two passes to reduce register pressure
- uint shadow0 = 0;
- uint shadow1 = 0;
- for (uint i = 0; i < 8; i++) {
- if (i >= scene_data.directional_light_count) {
- break;
- }
- if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
- float shadow = 1.0;
- #ifdef USE_SOFT_SHADOWS
- //version with soft shadows, more expensive
- if (directional_lights.data[i].shadow_enabled) {
- float depth_z = -vertex.z;
- vec4 pssm_coord;
- vec3 shadow_color = vec3(0.0);
- vec3 light_dir = directional_lights.data[i].direction;
- #define BIAS_FUNC(m_var, m_idx) \
- m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
- vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))) * directional_lights.data[i].shadow_normal_bias[m_idx]; \
- normal_bias -= light_dir * dot(light_dir, normal_bias); \
- m_var.xyz += normal_bias;
- if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 0)
- pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
- pssm_coord /= pssm_coord.w;
- if (directional_lights.data[i].softshadow_angle > 0) {
- float range_pos = dot(directional_lights.data[i].direction, v.xyz);
- float range_begin = directional_lights.data[i].shadow_range_begin.x;
- float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
- vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius;
- shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
- } else {
- shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- }
- shadow_color = directional_lights.data[i].shadow_color1.rgb;
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 1)
- pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
- pssm_coord /= pssm_coord.w;
- if (directional_lights.data[i].softshadow_angle > 0) {
- float range_pos = dot(directional_lights.data[i].direction, v.xyz);
- float range_begin = directional_lights.data[i].shadow_range_begin.y;
- float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
- vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
- shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
- } else {
- shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- }
- shadow_color = directional_lights.data[i].shadow_color2.rgb;
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 2)
- pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
- pssm_coord /= pssm_coord.w;
- if (directional_lights.data[i].softshadow_angle > 0) {
- float range_pos = dot(directional_lights.data[i].direction, v.xyz);
- float range_begin = directional_lights.data[i].shadow_range_begin.z;
- float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
- vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
- shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
- } else {
- shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- }
- shadow_color = directional_lights.data[i].shadow_color3.rgb;
- } else {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 3)
- pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
- pssm_coord /= pssm_coord.w;
- if (directional_lights.data[i].softshadow_angle > 0) {
- float range_pos = dot(directional_lights.data[i].direction, v.xyz);
- float range_begin = directional_lights.data[i].shadow_range_begin.w;
- float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
- vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
- shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
- } else {
- shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- }
- shadow_color = directional_lights.data[i].shadow_color4.rgb;
- }
- if (directional_lights.data[i].blend_splits) {
- vec3 shadow_color_blend = vec3(0.0);
- float pssm_blend;
- float shadow2;
- if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 1)
- pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
- pssm_coord /= pssm_coord.w;
- if (directional_lights.data[i].softshadow_angle > 0) {
- float range_pos = dot(directional_lights.data[i].direction, v.xyz);
- float range_begin = directional_lights.data[i].shadow_range_begin.y;
- float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
- vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
- shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
- } else {
- shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- }
- pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
- shadow_color_blend = directional_lights.data[i].shadow_color2.rgb;
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 2)
- pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
- pssm_coord /= pssm_coord.w;
- if (directional_lights.data[i].softshadow_angle > 0) {
- float range_pos = dot(directional_lights.data[i].direction, v.xyz);
- float range_begin = directional_lights.data[i].shadow_range_begin.z;
- float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
- vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
- shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
- } else {
- shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- }
- pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
- shadow_color_blend = directional_lights.data[i].shadow_color3.rgb;
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 3)
- pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
- pssm_coord /= pssm_coord.w;
- if (directional_lights.data[i].softshadow_angle > 0) {
- float range_pos = dot(directional_lights.data[i].direction, v.xyz);
- float range_begin = directional_lights.data[i].shadow_range_begin.w;
- float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
- vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
- shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
- } else {
- shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- }
- pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
- shadow_color_blend = directional_lights.data[i].shadow_color4.rgb;
- } else {
- pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
- }
- pssm_blend = sqrt(pssm_blend);
- shadow = mix(shadow, shadow2, pssm_blend);
- shadow_color = mix(shadow_color, shadow_color_blend, pssm_blend);
- }
- shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
- #undef BIAS_FUNC
- }
- #else
- // Soft shadow disabled version
- if (directional_lights.data[i].shadow_enabled) {
- float depth_z = -vertex.z;
- vec4 pssm_coord;
- vec3 light_dir = directional_lights.data[i].direction;
- vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp))));
- #define BIAS_FUNC(m_var, m_idx) \
- m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
- vec3 normal_bias = base_normal_bias * directional_lights.data[i].shadow_normal_bias[m_idx]; \
- normal_bias -= light_dir * dot(light_dir, normal_bias); \
- m_var.xyz += normal_bias;
- if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 0)
- pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
- #ifdef LIGHT_TRANSMITTANCE_USED
- {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x;
- transmittance_z = z - shadow_z;
- }
- #endif
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 1)
- pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
- #ifdef LIGHT_TRANSMITTANCE_USED
- {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y;
- transmittance_z = z - shadow_z;
- }
- #endif
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 2)
- pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
- #ifdef LIGHT_TRANSMITTANCE_USED
- {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z;
- transmittance_z = z - shadow_z;
- }
- #endif
- } else {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 3)
- pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
- #ifdef LIGHT_TRANSMITTANCE_USED
- {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w;
- transmittance_z = z - shadow_z;
- }
- #endif
- }
- pssm_coord /= pssm_coord.w;
- shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- if (directional_lights.data[i].blend_splits) {
- float pssm_blend;
- if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 1)
- pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
- pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 2)
- pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
- pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
- vec4 v = vec4(vertex, 1.0);
- BIAS_FUNC(v, 3)
- pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
- pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
- } else {
- pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
- }
- pssm_coord /= pssm_coord.w;
- float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
- shadow = mix(shadow, shadow2, pssm_blend);
- }
- shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
- #undef BIAS_FUNC
- }
- #endif
- if (i < 4) {
- shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8);
- } else {
- shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8);
- }
- }
- for (uint i = 0; i < 8; i++) {
- if (i >= scene_data.directional_light_count) {
- break;
- }
- if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
- #ifdef LIGHT_TRANSMITTANCE_USED
- float transmittance_z = transmittance_depth;
- if (directional_lights.data[i].shadow_enabled) {
- float depth_z = -vertex.z;
- if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x;
- transmittance_z = z - shadow_z;
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y;
- transmittance_z = z - shadow_z;
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z;
- transmittance_z = z - shadow_z;
- } else {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex;
- trans_coord /= trans_coord.w;
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w;
- float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w;
- transmittance_z = z - shadow_z;
- }
- #endif
- float shadow = 1.0;
- if (i < 4) {
- shadow = float(shadow0 >> (i * 8) & 0xFF) / 255.0;
- } else {
- shadow = float(shadow1 >> ((i - 4) * 8) & 0xFF) / 255.0;
- }
- blur_shadow(shadow);
- light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].color * directional_lights.data[i].energy, shadow, f0, orms, 1.0,
- #ifdef LIGHT_BACKLIGHT_USED
- backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_curve,
- transmittance_boost,
- transmittance_z,
- #endif
- #ifdef LIGHT_RIM_USED
- rim, rim_tint, albedo,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- binormal, tangent, anisotropy,
- #endif
- #ifdef USE_SOFT_SHADOW
- directional_lights.data[i].size,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- alpha,
- #endif
- diffuse_light,
- specular_light);
- }
- }
- { //omni lights
- uint cluster_omni_offset = cluster_offset;
- uint item_min;
- uint item_max;
- uint item_from;
- uint item_to;
- cluster_get_item_range(cluster_omni_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- #ifdef USE_SUBGROUPS
- item_from = subgroupBroadcastFirst(subgroupMin(item_from));
- item_to = subgroupBroadcastFirst(subgroupMax(item_to));
- #endif
- for (uint i = item_from; i < item_to; i++) {
- uint mask = cluster_buffer.data[cluster_omni_offset + i];
- mask &= cluster_get_range_clip_mask(i, item_min, item_max);
- #ifdef USE_SUBGROUPS
- uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
- #else
- uint merged_mask = mask;
- #endif
- while (merged_mask != 0) {
- uint bit = findMSB(merged_mask);
- merged_mask &= ~(1 << bit);
- #ifdef USE_SUBGROUPS
- if (((1 << bit) & mask) == 0) { //do not process if not originally here
- continue;
- }
- #endif
- uint light_index = 32 * i + bit;
- if (!bool(omni_lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
- float shadow = light_process_omni_shadow(light_index, vertex, view);
- shadow = blur_shadow(shadow);
- light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow,
- #ifdef LIGHT_BACKLIGHT_USED
- backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_curve,
- transmittance_boost,
- #endif
- #ifdef LIGHT_RIM_USED
- rim,
- rim_tint,
- albedo,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- tangent, binormal, anisotropy,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- alpha,
- #endif
- diffuse_light, specular_light);
- }
- }
- }
- { //spot lights
- uint cluster_spot_offset = cluster_offset + scene_data.cluster_type_size;
- uint item_min;
- uint item_max;
- uint item_from;
- uint item_to;
- cluster_get_item_range(cluster_spot_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- #ifdef USE_SUBGROUPS
- item_from = subgroupBroadcastFirst(subgroupMin(item_from));
- item_to = subgroupBroadcastFirst(subgroupMax(item_to));
- #endif
- for (uint i = item_from; i < item_to; i++) {
- uint mask = cluster_buffer.data[cluster_spot_offset + i];
- mask &= cluster_get_range_clip_mask(i, item_min, item_max);
- #ifdef USE_SUBGROUPS
- uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
- #else
- uint merged_mask = mask;
- #endif
- while (merged_mask != 0) {
- uint bit = findMSB(merged_mask);
- merged_mask &= ~(1 << bit);
- #ifdef USE_SUBGROUPS
- if (((1 << bit) & mask) == 0) { //do not process if not originally here
- continue;
- }
- #endif
- uint light_index = 32 * i + bit;
- if (!bool(spot_lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
- float shadow = light_process_spot_shadow(light_index, vertex, view);
- shadow = blur_shadow(shadow);
- light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow,
- #ifdef LIGHT_BACKLIGHT_USED
- backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_curve,
- transmittance_boost,
- #endif
- #ifdef LIGHT_RIM_USED
- rim,
- rim_tint,
- albedo,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- tangent, binormal, anisotropy,
- #endif
- #ifdef USE_SHADOW_TO_OPACITY
- alpha,
- #endif
- diffuse_light, specular_light);
- }
- }
- }
- #ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
- #if defined(ALPHA_SCISSOR_USED)
- if (alpha < alpha_scissor) {
- discard;
- }
- #endif // ALPHA_SCISSOR_USED
- #ifdef USE_OPAQUE_PREPASS
- if (alpha < opaque_prepass_threshold) {
- discard;
- }
- #endif // USE_OPAQUE_PREPASS
- #endif // USE_SHADOW_TO_OPACITY
- #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
- #ifdef MODE_RENDER_DEPTH
- #ifdef MODE_RENDER_SDF
- {
- vec3 local_pos = (scene_data.sdf_to_bounds * vec4(vertex, 1.0)).xyz;
- ivec3 grid_pos = scene_data.sdf_offset + ivec3(local_pos * vec3(scene_data.sdf_size));
- uint albedo16 = 0x1; //solid flag
- albedo16 |= clamp(uint(albedo.r * 31.0), 0, 31) << 11;
- albedo16 |= clamp(uint(albedo.g * 31.0), 0, 31) << 6;
- albedo16 |= clamp(uint(albedo.b * 31.0), 0, 31) << 1;
- imageStore(albedo_volume_grid, grid_pos, uvec4(albedo16));
- uint facing_bits = 0;
- const vec3 aniso_dir[6] = vec3[](
- vec3(1, 0, 0),
- vec3(0, 1, 0),
- vec3(0, 0, 1),
- vec3(-1, 0, 0),
- vec3(0, -1, 0),
- vec3(0, 0, -1));
- vec3 cam_normal = mat3(scene_data.camera_matrix) * normalize(normal_interp);
- float closest_dist = -1e20;
- for (uint i = 0; i < 6; i++) {
- float d = dot(cam_normal, aniso_dir[i]);
- if (d > closest_dist) {
- closest_dist = d;
- facing_bits = (1 << i);
- }
- }
- imageAtomicOr(geom_facing_grid, grid_pos, facing_bits); //store facing bits
- if (length(emission) > 0.001) {
- float lumas[6];
- vec3 light_total = vec3(0);
- for (int i = 0; i < 6; i++) {
- float strength = max(0.0, dot(cam_normal, aniso_dir[i]));
- vec3 light = emission * strength;
- light_total += light;
- lumas[i] = max(light.r, max(light.g, light.b));
- }
- float luma_total = max(light_total.r, max(light_total.g, light_total.b));
- uint light_aniso = 0;
- for (int i = 0; i < 6; i++) {
- light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5);
- }
- //compress to RGBE9995 to save space
- const float pow2to9 = 512.0f;
- const float B = 15.0f;
- const float N = 9.0f;
- const float LN2 = 0.6931471805599453094172321215;
- float cRed = clamp(light_total.r, 0.0, 65408.0);
- float cGreen = clamp(light_total.g, 0.0, 65408.0);
- float cBlue = clamp(light_total.b, 0.0, 65408.0);
- float cMax = max(cRed, max(cGreen, cBlue));
- float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B;
- float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f);
- float exps = expp + 1.0f;
- if (0.0 <= sMax && sMax < pow2to9) {
- exps = expp;
- }
- float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f);
- float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f);
- float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f);
- //store as 8985 to have 2 extra neighbour bits
- uint light_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25);
- imageStore(emission_grid, grid_pos, uvec4(light_rgbe));
- imageStore(emission_aniso_grid, grid_pos, uvec4(light_aniso));
- }
- }
- #endif
- #ifdef MODE_RENDER_MATERIAL
- albedo_output_buffer.rgb = albedo;
- albedo_output_buffer.a = alpha;
- normal_output_buffer.rgb = normal * 0.5 + 0.5;
- normal_output_buffer.a = 0.0;
- depth_output_buffer.r = -vertex.z;
- orm_output_buffer.r = ao;
- orm_output_buffer.g = roughness;
- orm_output_buffer.b = metallic;
- orm_output_buffer.a = sss_strength;
- emission_output_buffer.rgb = emission;
- emission_output_buffer.a = 0.0;
- #endif
- #ifdef MODE_RENDER_NORMAL_ROUGHNESS
- normal_roughness_output_buffer = vec4(normal * 0.5 + 0.5, roughness);
- #ifdef MODE_RENDER_GIPROBE
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
- uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
- uint index2 = instances.data[instance_index].gi_offset >> 16;
- giprobe_buffer.x = index1 & 0xFF;
- giprobe_buffer.y = index2 & 0xFF;
- } else {
- giprobe_buffer.x = 0xFF;
- giprobe_buffer.y = 0xFF;
- }
- #endif
- #endif //MODE_RENDER_NORMAL_ROUGHNESS
- //nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
- #else
- // multiply by albedo
- diffuse_light *= albedo; // ambient must be multiplied by albedo at the end
- // apply direct light AO
- ao = unpackUnorm4x8(orms).x;
- specular_light *= ao;
- diffuse_light *= ao;
- // apply metallic
- metallic = unpackUnorm4x8(orms).z;
- diffuse_light *= 1.0 - metallic;
- ambient_light *= 1.0 - metallic;
- //restore fog
- fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));
- #ifdef MODE_MULTIPLE_RENDER_TARGETS
- #ifdef MODE_UNSHADED
- diffuse_buffer = vec4(albedo.rgb, 0.0);
- specular_buffer = vec4(0.0);
- #else
- #ifdef SSS_MODE_SKIN
- sss_strength = -sss_strength;
- #endif
- diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength);
- specular_buffer = vec4(specular_light, metallic);
- #endif
- diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
- specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
- #else //MODE_MULTIPLE_RENDER_TARGETS
- #ifdef MODE_UNSHADED
- frag_color = vec4(albedo, alpha);
- #else
- frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
- //frag_color = vec4(1.0);
- #endif //USE_NO_SHADING
- // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
- frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
- ;
- #endif //MODE_MULTIPLE_RENDER_TARGETS
- #endif //MODE_RENDER_DEPTH
- }
|